Geometric Probabilities for Convex Bodies of Large Revolution in the Euclidean Space E_{3} (II)

Andrei Duma Marius Stoka *
FB Mathematik, Fernuniversität - GHS
Lützowstr. 125, D-58084 Hagen, Germany
Dipartimento di Matematica, Università di Torino
Via C. Alberto, 10, I-10123 Torino, Italy

Abstract

In this paper we solve problems of Buffon type for an arbitrary convex body of revolution and four different types of lattices.

MSC 2000: 60D05, 52A22
Keywords: geometric probability, stochastic geometry, random sets, random convex sets and integral geometry

Buffon's problem for an arbitrary convex body \mathbf{K} and a lattice of parallelograms in the Euclidean space E_{2} has been investigated in [1]. In [5] this problem is considered for two different types of lattices in the space E_{2} namely, for those lattices whose fundamental cell is a triangle or a regular hexagon. Buffon's Needle Problem for a lattice of right-angled parallelepipeds in the n-dimensional Euclidean space was solved in [9]. In her dissertation, E. Bosetto has answered the corresponding questions for other types of lattices in the 3dimensional space and for test bodies like the needle or the sphere. In [7] Buffon's problem is solved for a lattice of right-angled parallelepipeds in the 3-dimensional space (which will be denoted here by \mathcal{R}_{1}) and an arbitrary convex body of revolution. In the present paper we prove results of this type for arbitrary convex bodies of revolution and four types of lattices in E_{3}, considered also by E. Bosetto.

[^0]Let \mathbf{K} be an arbitrary convex body of revolution with centroid S and oriented axis of rotation d. Clearly, the axis \mathbf{d} is determined by the angle θ between \mathbf{d} and the z-axis and by the angle φ between the projection of \mathbf{d} on the $x y$-plane and the x-axis and we express this by writing $\mathbf{d}=\mathbf{d}(\theta, \varphi)$. If for a given $\mathbf{d}=\mathbf{d}(\theta, \varphi)$, the body \mathbf{K} is tangent to the $x y$-plane such that the centroid S lies in the upper half-space, we denote by $p(\theta, \varphi)$ the distance from S to the $x y$-plane. Then the length of the projection of \mathbf{K} on the z-axis is given by $L(\theta, \varphi)=p(\theta, \varphi)+p(\pi-\theta, \varphi)$. Note that $p(\theta, \varphi)$ does actually depend only on the angle θ and moreover, since \mathbf{K} is a body of revolution about the axis \mathbf{d} the value $p(\theta, \varphi)$ is invariant to any rotation about this axis, say by an ψ. Now let \mathcal{F} be a fundamental cell of the lattice \mathcal{R} and assume that the two 3 -dimensional random variables defined by the coordinates of S and by the triple (θ, φ, ψ) are uniformly distributed in the cell \mathcal{F} and in $[0, \pi] \times[0,2 \pi] \times[0,2 \pi]$ respectively. We are interested in the probability $p_{\mathbf{K}, \mathcal{R}}$ that the body \mathbf{K} intersects the lattice \mathcal{R}. Furthermore, we will assume, as it is done in all papers cited here, that the body \mathbf{K} is small with respect to the lattice \mathcal{R}. In order to recall briefly this concept, consider for fixed $(\theta, \varphi) \in[0, \pi] \times[0,2 \pi]$ the set of all points $P \in \mathcal{F}$ for which the body \mathbf{K} with centroid P and rotation axis $\mathbf{d}=\mathbf{d}(\theta, \varphi)$ does not intersect the boundary $\partial \mathcal{F}$ and let $\mathcal{F}(\theta, \varphi)$ be the closure of this open subset of \mathcal{F}. We say that the body \mathbf{K} is small with respect to \mathcal{R}, if the polyhedrons sides of $\mathcal{F}(\theta, \varphi)$ and \mathcal{F} are then clearly pairwise parallel.
Denote by $\mathcal{M}_{\mathcal{F}}$ the set of all test bodies \mathbf{K} whose centroid S lies in \mathcal{F} and by $\mathcal{N}_{\mathcal{F}}$ the set of bodies \mathbf{K} that are completely contained in \mathcal{F}. Of course, we can identify these sets with subsets of \mathbb{R}^{6} and if μ denotes the Lebesgue measure then the probability is given by

$$
\begin{equation*}
p_{\mathbf{K}, \mathcal{R}}=1-\frac{\mu\left(\mathcal{N}_{\mathcal{F}}\right)}{\mu\left(\mathcal{M}_{\mathcal{F}}\right)} . \tag{1}
\end{equation*}
$$

Using the cinematic measure (see [6])

$$
\begin{equation*}
d \mathbf{K}=d x \wedge d y \wedge d z \wedge d \Omega \wedge d \psi \tag{2}
\end{equation*}
$$

where x, y, z are the coordinates of $S, d \Omega=\sin \theta d \theta \wedge d \varphi$ and ψ is an angle of rotation about d we can compute

$$
\begin{equation*}
\mu\left(\mathcal{M}_{\mathcal{F}}\right)=\int_{0}^{2 \pi} d \psi \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} \sin \theta d \theta \iiint_{\{(x, y, z) \in \mathcal{F}\}} d x d y d z=8 \pi^{2} \operatorname{Vol}(\mathcal{F}) \tag{3}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\mu\left(\mathcal{N}_{\mathcal{F}}\right)=\int_{0}^{2 \pi}\left(\int_{0}^{2 \pi}\left(\int_{0}^{\pi} \sin \theta(\underset{\{(x, y, z) \in \mathcal{F}(\theta, \varphi)\}}{ } d x d y d z) d \theta\right) d \varphi\right) d \psi \tag{4}
\end{equation*}
$$

$$
=2 \pi \int_{0}^{2 \pi}\left(\int_{0}^{\pi} \operatorname{Vol} \mathcal{F}(\theta, \varphi) \cdot \sin \theta d \theta\right) d \varphi
$$

$$
p_{\mathbf{K}, \mathcal{R}}=1-\frac{1}{4 \pi \operatorname{Vol}(\mathcal{F})} \int_{0}^{2 \pi}\left(\int_{0}^{\pi} \operatorname{Vol} \mathcal{F}(\theta, \varphi) \cdot \sin \theta d \theta\right) d \varphi .
$$

The above reasoning is valid for all lattices \mathcal{R} provided \mathbf{K} is small with respect to the lattice. Our purpose here is "only" to show that for four different types of lattices that we denote as in [3] by $\mathcal{R}_{2}, \mathcal{R}_{3}, \mathcal{R}_{4}, \mathcal{R}_{5}$, the volume of $\mathcal{F}(\theta, \varphi)$ can be expressed in terms of the well known support- and width-function (p and L) associated to the body \mathbf{K} and to compute some of the integrals involved.

1. The lattice \boldsymbol{R}_{2}

The fundamental cell \mathcal{F}_{2} of the lattice \mathcal{R}_{2} is the parallelepiped spanned by the vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$, where $\mathbf{c}=(0,0, c)$ is perpendicular on $\mathbf{a}=(a \sin \alpha, a \cos \alpha, 0)$ and $\mathbf{b}=(0, b, 0)$. We can assume without loss that the angle α between \mathbf{a} and \mathbf{b} belongs to $\left.] 0, \frac{\pi}{2}\right]$. One checks that \mathbf{K} is small with respect to \mathcal{R}_{2} if and only if its diameter is less than $\min (a \sin \alpha, b \sin \alpha, c)$. Recall that given $\mathbf{d}=\mathbf{d}(\theta, \varphi), L(\theta, \varphi)$ denotes the length of the orthogonal projection of \mathbf{K} onto the z-axis. In order to simplify the expression for $\operatorname{Vol} \mathcal{F}_{2}(\theta, \varphi)$ we use the functions θ_{1}, φ_{1} and θ_{2}, φ_{2} defined as follows:

$$
\begin{aligned}
& \theta_{1}(\theta, \varphi):=\arccos (\sin \theta \cos \varphi), \varphi_{1}(\theta, \varphi):=\arctan \left(\frac{\cot \theta}{\sin \varphi}\right) \\
& \theta_{2}(\theta, \varphi):=\arccos \left(\sin \theta \sin \left(\varphi+\alpha-\frac{\pi}{2}\right)\right), \varphi_{2}(\theta, \varphi):=\arctan (\tan \theta \sin (\varphi+\alpha))
\end{aligned}
$$

Thus, for $\mathbf{d}=\mathbf{d}(\theta, \varphi)$, the length of the orthogonal projection of \mathbf{K} onto the x-axis is given by $L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)$ and also, the distance between the two planes that are parallel to the plane spanned by the vectors a and \mathbf{c} and tangent to \mathbf{K} equals $L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)$. This implies

$$
\begin{aligned}
& \text { Vol } \mathcal{F}_{2}(\theta, \varphi)=\left(a \sin \alpha-L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)\right)\left(\left(b-\frac{1}{\sin \alpha} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)\right)\right. \\
& \quad \cdot(c-L(\theta, \varphi)) \\
& =a b c \sin \alpha-a b \sin \alpha L(\theta, \varphi)-b c L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \\
& -c a L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)+a L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) L(\theta, \varphi) \\
& +b L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)+\frac{c}{\sin \alpha} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \\
& -\frac{1}{\sin \alpha} L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)
\end{aligned}
$$

From this we obtain

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} \operatorname{Vol} \mathcal{F}_{2}(\theta, \varphi) \sin \theta d \theta d \varphi=4 \pi a b c \sin \alpha-a b \sin \alpha \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) \sin \theta d \theta d \varphi \\
& -b c \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \sin \theta d \theta d \varphi-c a \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi
\end{aligned}
$$

$+a \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) L(\theta, \varphi) \sin \theta d \theta d \varphi$
$+\frac{c}{\sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi$
$+b \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \sin \theta d \theta d \varphi$
$-\frac{1}{\sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi$,
and by (1^{\prime})
$\left(5_{2}\right) \quad p_{\mathbf{K}, \mathcal{R}_{\mathbf{2}}}=\frac{1}{4 \pi a \sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \sin \theta d \theta d \varphi$

$$
\begin{aligned}
& +\frac{1}{4 \pi b \sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi+\frac{1}{4 \pi c} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) \sin \theta d \theta d \varphi \\
& -\frac{1}{4 \pi b c \sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) L(\theta, \varphi) \sin \theta d \theta d \varphi \\
& -\frac{1}{4 \pi a b \sin ^{2} \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi \\
& -\frac{1}{4 \pi c a \sin \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) \sin \theta d \theta d \varphi \\
& +\frac{1}{4 \pi a b c \sin ^{2} \alpha} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right) L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right) \sin \theta d \theta d \varphi
\end{aligned}
$$

Thus, we have proved:
Theorem 1. The probability $p_{\mathbf{K}, \mathcal{R}_{2}}$ is given by the equality $\left(5_{2}\right)$.
Remarks. 1) For $\alpha=\frac{1}{2}$ one obtains (for the lattice \mathcal{R}_{1}) the equality (1) in [7], since in this case the expression involved is symmetric in a, b and c.
2) If \mathbf{K} has constant width then the above result becomes

$$
\left(\frac{1}{a \sin \alpha}+\frac{1}{b \sin \alpha}+\frac{1}{c}\right) k-\left(\frac{1}{a b \sin ^{2} \alpha}+\frac{1}{b c \sin \alpha}+\frac{1}{c a \sin \alpha}\right) k^{2}+\frac{1}{a b c \sin ^{2} \alpha} k^{3} .
$$

In the case of sphere this expression is exactly the right-hand side of the formula (1.21) in [3].
3) If \mathbf{K} is a needle of length $l<\min (a \sin \alpha, b \sin \alpha, c)$, we have $L(\theta, \varphi)=l|\cos \theta|$, which implies $L\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)=l|\sin \theta \cos (\varphi+\alpha)|$ and $L\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right)=l|\sin \theta \cos \varphi|$ and the computations give the same result as in formula (1.13) in [3], i.e..

$$
p_{\mathbf{K}, \mathcal{R}_{2}}=\frac{a b \sin \alpha+a c+b c}{2 a b c \sin \alpha} l-2 \frac{a+b+\left[1+\left(\frac{\pi}{2}-\alpha\right) \cot \alpha\right] c}{3 \pi a b c \sin \alpha} l^{2}+\frac{1+\left(\frac{\pi}{2}-\alpha\right) \cot \alpha}{4 \pi a b c \sin \alpha} l^{3} .
$$

2. The lattice \mathcal{R}_{3}

The fundamental cell \mathcal{F}_{3} of the lattice \mathcal{R}_{3} is the parallelepiped spanned by the vectors $\mathbf{a}=$ $(a \sin \alpha, a \cos \alpha, 0), \mathbf{b}=(0, b, 0)$ and \mathbf{c} (with $\|\mathbf{c}\|=c)$. Let α, β and γ the angles between a and \mathbf{b}, \mathbf{b} and \mathbf{c} and \mathbf{c} and \mathbf{a} respectively. We can assume without loss that all three angles belong to the interval $\left.] 0, \frac{\pi}{2}\right]$. We denote also by E_{1}, E_{2} and E_{3} the planes spanned by \mathbf{b} and \mathbf{c}, \mathbf{c} and \mathbf{a} and \mathbf{a} and \mathbf{b} respectively. Of course, E_{3} is the $x y$-plane. Further, if $\xi_{i j}$ with $0<\xi_{i j} \leq \frac{\pi}{2}$ is the angle between E_{i} and E_{j} then $d_{1}=a \sin \xi_{13} \sin \alpha=a \sin \xi_{12} \sin \gamma, d_{2}=$ $b \sin \xi_{12} \sin \beta=b \sin \xi_{23} \sin \alpha$ and $d_{3}=c \sin \xi_{23} \sin \gamma=c \sin \xi_{13} \sin \beta$ are the heights of the parallelepiped. Note that (α, β, γ) is uniquely determined by ξ_{12}, ξ_{23}, ξ_{13} and viceversa. Thus, we can write \mathcal{R}_{3} as a union of lattices of parallel equidistant planes denoted by $\mathcal{E}^{1}, \mathcal{E}^{2}$ and \mathcal{E}^{3} such that the distance between the planes of \mathcal{E}^{i} equals d_{i}. The normal vector to E_{3} is $\mathbf{n}_{3}=(0,0,1)$. As we did before, we denote by θ and φ the angles between \mathbf{d} and \mathbf{n}_{3} and between $(1,0,0)$ and the projection of \mathbf{d} on E_{3}.
Let \mathbf{c}^{\prime} be the orthogonal projection of \mathbf{c} on the $x z$-plane and $\mathbf{c}_{1}=\frac{1}{\left\|\mathbf{c}^{\prime}\right\|} \mathbf{c}^{\prime}=\left(\cos \xi_{13}, 0, \sin \xi_{13}\right)$. The vector $\mathbf{n}_{1}=\left(\sin \xi_{13}, 0,-\cos \xi_{13}\right)$ is orthogonal to E_{1} and $\left(\mathbf{b}, \mathbf{c}_{1}, \mathbf{n}_{1}\right)$ is a (positively oriented) triple of orthonormal vectors. Let θ_{1} and φ_{1} be the angles formed by \mathbf{d} and \mathbf{n}_{1} and the projection of \mathbf{d} on E_{1} and \mathbf{b}. We have

$$
\begin{aligned}
& \theta_{1}=\theta_{1}(\theta, \varphi)=\arccos \left(\sin \xi_{13} \sin \theta \cos \varphi-\cos \xi_{13} \cos \theta\right), \\
& \varphi_{1}=\varphi_{1}(\theta, \varphi)=\arctan \left(\cos \xi_{13} \cot \varphi+\frac{\sin \xi_{13} \cot \theta}{\sin \varphi}\right) .
\end{aligned}
$$

$x \sin \xi_{23} \cos \alpha-y \sin \xi_{23} \sin \alpha+z \cos \xi_{23}=0$ is an equation for the plane E_{2}. The corresponding normal vector is $\mathbf{n}_{2}=\left(\sin \xi_{23} \cos \alpha,-\sin \xi_{23} \sin \alpha, \cos \xi_{23}\right)$. The vectors $\mathbf{c}_{2}=\left(-\cos \xi_{23} \cos \alpha\right.$, $\cos \xi_{23} \sin \alpha, \sin \xi_{23}$), a and \mathbf{n}_{2} form a positively oriented triple of orthogonal vectors. If we consider the angles θ_{2} and φ_{2} between \mathbf{d} and \mathbf{n}_{2} and between the projection of \mathbf{d} on E_{2} and \mathbf{c}_{2} we have

$$
\begin{aligned}
& \theta_{2}=\theta_{2}(\theta, \varphi)=\arccos \left(-\sin \xi_{23} \sin \theta \cos (\varphi+\alpha)-\cos \xi_{23} \cos \theta\right) \\
& \varphi_{2}=\varphi_{2}(\theta, \varphi)=\arctan \left(\frac{\sin \theta \sin (\alpha+\varphi)}{\sin \xi_{23} \cos \theta-\sin \theta \cos \xi_{23} \cos (\alpha+\varphi)}\right)
\end{aligned}
$$

The parallelepiped \mathcal{F}_{3} has the volume

$$
\text { Vol } \begin{aligned}
\mathcal{F}_{3} & =a b \sin \alpha \cdot d_{3}=a b c \sin \alpha \sin \gamma \sin \xi_{23} \\
& =\frac{d_{1}}{\sin \xi_{13}} \cdot \frac{d_{2}}{\sin \alpha \sin \xi_{23}} \cdot d_{3}=\frac{d_{1} d_{2} d_{3}}{\sin \xi_{13} \sin \xi_{23} \sin \alpha} .
\end{aligned}
$$

Now when \mathbf{K} is small with respect to \mathcal{R}_{3}, that is, when the diameter $\sup _{(\theta, \varphi)} L(\theta, \varphi)$ of \mathbf{K} is smaller than $\min \left(d_{1}, d_{2}, d_{3}\right)$, then $\mathcal{F}_{3}(\theta, \varphi)$ is at its turn a parallelepiped whose faces and sides are parallel to the corresponding faces and sides of \mathcal{F}_{3} for all values $(\theta, \varphi) \in[0, \pi] \times[0,2 \pi]$. The heights of $\mathcal{F}_{3}(\theta, \varphi)$ are given by

$$
d_{1}(\theta, \varphi)=d_{1}-L\left(\theta_{1}, \varphi_{1}\right), d_{2}(\theta, \varphi)=d_{2}-L\left(\theta_{2}, \varphi_{2}\right), d_{3}(\theta, \varphi)=d_{3}-L(\theta, \varphi)
$$

Then $\operatorname{Vol} \mathcal{F}_{3}(\theta, \varphi)=\frac{d_{1}(\theta, \varphi) d_{2}(\theta, \varphi) d_{3}(\theta, \varphi)}{\sin \xi_{13} \sin \xi_{23} \sin \alpha}$ and from (1') we get

$$
\begin{aligned}
p_{\mathbf{K}, \mathcal{R}_{3}}= & 1-\frac{1}{4 \pi} \operatorname{Vol} \mathcal{F}_{3} \\
= & \int_{0}^{2 \pi} \int_{0}^{\pi} \operatorname{Vol} \mathcal{F}_{3}(\theta, \varphi) \sin \theta d \theta d \varphi \\
= & 1-\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left[1-\frac{L\left(\theta_{1}, \varphi_{1}\right)}{d_{1}}-\frac{L\left(\theta_{2}, \varphi_{2}\right)}{d_{2}}-\frac{L(\theta, \varphi)}{d_{3}}+\frac{L\left(\theta_{1}, \varphi_{1}\right) L\left(\theta_{2}, \varphi_{2}\right)}{d_{1} d_{2}}+\right. \\
& \left.\frac{L\left(\theta_{2}, \varphi_{2}\right) L(\theta, \varphi)}{d_{2} d_{3}}+\frac{L(\theta, \varphi) L\left(\theta_{1}, \varphi_{1}\right)}{d_{3} d_{1}}-\frac{L(\theta, \varphi) L\left(\theta_{1}, \varphi_{1}\right) L\left(\theta_{2}, \varphi_{2}\right)}{d_{1} d_{2} d_{3}}\right] \sin \theta d \theta d \varphi .
\end{aligned}
$$

We have proved
Theorem 2. If \boldsymbol{K} is small with respect to \mathcal{R}_{3}, the probability $p_{\mathbf{K}, \mathcal{R}_{3}}$ is given by
(53) $p_{\mathbf{K}, \mathcal{R}_{3}}=\frac{1}{4 \pi}\left[\frac{1}{d_{1}} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}, \varphi_{1}\right) \sin \theta d \theta d \varphi+\frac{1}{d_{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}, \varphi_{2}\right) \sin \theta d \theta d \varphi\right.$

$$
\begin{aligned}
& +\frac{1}{d_{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi), \sin \theta d \theta d \varphi-\frac{1}{d_{1} d_{2}} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{1}, \varphi_{1}\right) L\left(\theta_{2}, \varphi_{2}\right) \sin \theta d \theta d \varphi \\
& -\frac{1}{d_{2} d_{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} L\left(\theta_{2}, \varphi_{2}\right) L(\theta, \varphi) \sin \theta d \theta d \varphi-\frac{1}{d_{3} d_{1}} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}, \varphi_{1}\right) \sin \theta d \theta d \varphi \\
& \left.+\frac{1}{d_{1} d_{2} d_{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} L(\theta, \varphi) L\left(\theta_{1}, \varphi_{1}\right) L\left(\theta_{2}, \varphi_{2}\right) \sin \theta d \theta d \varphi\right]
\end{aligned}
$$

Remarks. 1) The result is a generalization of Theorem 1 which is obtained for $\xi_{13}=\xi_{23}=$ $\frac{\pi}{2}, \beta=\gamma=\frac{\pi}{2}$.
2) If \mathbf{K} has constant width $k<\min \left(d_{1}, d_{2}, d_{3}\right)$ we obtain the special case

$$
p_{\mathbf{K}, \mathcal{R}_{3}}=\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}+\frac{1}{d_{3}}\right) k-\left(\frac{1}{d_{1} d_{2}}+\frac{1}{d_{2} d_{3}}+\frac{1}{d_{3} d_{1}}\right) k^{2}+\frac{k^{3}}{d_{1} d_{2} d_{3}} .
$$

3) For a needle of length $l<\min \left(d_{1}, d_{2}, d_{3}\right)$ one can find more detailed computations in [2].

3. The lattice \boldsymbol{R}_{4}

The fundamental cell \mathcal{F}_{4} of the lattice \mathcal{R}_{4} is a right-angled prism whose base \mathcal{B}_{4} is a rightangled triangle with catheti a and b. If c is the height of the prism, then we can assume that the vertices of \mathcal{F}_{4} are $(0,0,0),(a, 0,0),(0, b, 0),(0,0, c),(a, 0, c)$ and $(0, b, c)$. We denote $\gamma:=\arctan \frac{b}{a}$ and $h:=\frac{a b}{\sqrt{a^{2}+b^{2}}}$. The body \mathbf{K} is small with respect to \mathcal{R}_{4} if

$$
\operatorname{Diam}(\mathbf{K})<\min \left(\frac{3 a b}{2\left(a+b+\sqrt{a^{2}+b^{2}}\right)}\right)
$$

(see [6]). In this case the set $\mathcal{F}_{4}(\theta, \varphi)$ is also a right-angled prism with height $c-L(\theta, \varphi)$, and whose base $\mathcal{B}_{4}(\theta, \varphi)$ is a right-angled triangle. We denote by p_{1}, p_{2} and p_{3} the lengths $p\left(\theta_{1}(\theta, \varphi), \varphi_{1}(\theta, \varphi)\right), p\left(\theta_{2}(\theta, \varphi), \varphi_{2}(\theta, \varphi)\right)$ and $p\left(\theta_{3}(\theta, \varphi), \varphi_{3}(\theta, \varphi)\right)$. Let $\theta_{1}, \varphi_{1}, \theta_{2}, \varphi_{2}, \theta_{3}$ and φ_{3} be the functions defined by

$$
\begin{aligned}
& \theta_{1}(\theta, \varphi):=\arccos (\sin \theta \cos \varphi), \varphi_{1}(\theta, \varphi):=\arctan \left(\frac{\cot \theta}{\sin \varphi}\right) \\
& \theta_{2}(\theta, \varphi):=\arccos (\sin \theta \sin \varphi), \varphi_{2}(\theta, \varphi):=\arctan (\tan \theta \cos \varphi) \\
& \theta_{3}(\theta, \varphi):=\arccos (-\sin \theta \sin (\varphi+\gamma)), \varphi_{3}(\theta, \varphi):=\operatorname{arccot}(-\tan \theta \cos (\varphi+\gamma)) .
\end{aligned}
$$

b

By a simple geometric argument (see e.g. [2]) is follows that

$$
\frac{\text { Area } \mathcal{B}_{4}(\theta, \varphi)}{\text { Area } \mathcal{B}_{4}}=\left(1-\frac{p_{1}}{a}-\frac{p_{2}}{b}-\frac{p_{3}}{h}\right)^{2} .
$$

Using also the fact that $L(\theta, \varphi)=L$ we obtain

$$
\frac{\operatorname{Vol} \mathcal{F}_{4}(\theta, \varphi)}{\operatorname{Vol} \mathcal{F}_{4}}=\left(1-\frac{p_{1}}{a}-\frac{p_{2}}{b}-\frac{p_{3}}{h}\right)^{2}\left(1-\frac{L}{c}\right) .
$$

We now prove
Theorem 3. The probability $p_{\mathbf{K}, \mathcal{R}_{4}}$ is given by
(54) $p_{\mathbf{K}, \mathcal{R}_{4}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{p_{1}}{a}+\frac{p_{2}}{b}+\frac{p_{3}}{h}+\frac{L}{2 c}\right) \sin \theta d \theta d \varphi$

$$
\begin{aligned}
& -\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{p_{1} p_{2}}{a b}+\frac{p_{2} p_{3}}{b h}+\frac{p_{3} p_{1}}{h a}+\frac{p_{1} L}{a c}+\frac{p_{2} L}{b c}+\frac{p_{3} L}{h c}\right) \sin \theta d \theta d \varphi \\
& -\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{p_{1}^{2}}{a^{2}}+\frac{p_{2}^{2}}{b^{2}}+\frac{p_{3}^{2}}{h^{2}}\right) \sin \theta d \theta d \varphi \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{p_{1} p_{2} L}{a b c}+\frac{p_{2} p_{3} L}{b h c}+\frac{p_{3} p_{1} L}{h a c}\right) \sin \theta d \theta d \varphi \\
& +\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(\frac{p_{1}^{2} L}{a^{2} c}+\frac{p_{2}^{2} L}{b^{2} c}+\frac{p_{3}^{2} L}{h^{2} c}\right) \sin \theta d \theta d \varphi .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& \left(1-\frac{p_{1}}{a}-\frac{p_{2}}{b}-\frac{p_{3}}{h}\right)^{2}\left(1-\frac{L}{c}\right)=1-2\left(\frac{p_{1}}{a}+\frac{p_{2}}{b}+\frac{p_{3}}{h}+\frac{L}{2 c}\right) \\
& +2\left(\frac{p_{1} p_{2}}{a b}+\frac{p_{2} p_{3}}{b h}+\frac{p_{3} p_{1}}{h a}+\frac{p_{1} L}{a c}+\frac{p_{2} L}{b c}+\frac{p_{3} L}{h c}\right)+\frac{p_{1}^{2}}{a^{2}}+\frac{p_{2}^{2}}{b^{2}}+\frac{p_{3}^{2}}{h^{2}} \\
& -2\left(\frac{p_{1} p_{2} L}{a b c}+\frac{p_{2} p_{3} L}{b h c}+\frac{p_{3} p_{1} L}{h a c}\right)-\left(\frac{p_{1}^{2} L}{a^{2} c}+\frac{p_{2}^{2} L}{b^{2} c}+\frac{p_{3}^{2} L}{h^{2} c}\right)
\end{aligned}
$$

and from (1^{\prime}) we obtain (5_{4}).
Remarks. 1) In the case when \mathbf{K} is a needle of length $l<\min (h, c)$ one can deduce from $\left(5_{4}\right)$, after some tedious calculations, the result of Theorem 1.3.3 in [3].
2) In the case when \mathbf{K} is a sphere of radius $r<\min \left(\frac{c}{2}, \frac{a b}{a+b+\sqrt{a^{2}+b^{2}}}\right)$, one obtains the probability

$$
\begin{aligned}
& 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{h}+\frac{1}{c}\right) r-2\left(\frac{1}{a b}+\frac{1}{b h}+\frac{1}{h a}\right) r^{2}-4\left(\frac{1}{a c}+\frac{1}{b c}+\frac{1}{h c}\right) r^{2} \\
& -\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{h^{2}}\right) r^{2}+4\left(\frac{1}{a b c}+\frac{1}{b h c}+\frac{1}{h a c}\right) r^{3}+2\left(\frac{1}{a^{2} c}+\frac{1}{b^{2} c}+\frac{1}{h^{2} c}\right) r^{3}
\end{aligned}
$$

which can be shown to be equivalent to the formula (1.23) in [3].

4. The lattice \boldsymbol{R}_{5}

The fundamental cell \mathcal{F}_{5} of the lattice \mathcal{R}_{5} is a right-angled prism whose base \mathcal{T}_{5} is a rightangled trapezoid, as it is shown in the figure below.

The convex body \mathbf{K} is small with respect to \mathcal{R}_{5} if it satisfies the inequality $\operatorname{Diam}(\mathbf{K})<$ $\min (a-b \cot \gamma, b, c)$. In this case $\mathcal{F}_{5}(\theta, \varphi)$ is again a right-angled prism having the height $c-L(\theta, \varphi)$ (or in short form $c-L$) and the trapezoid $\mathcal{T}_{5}(\theta, \varphi)$ as a base. Using the notations from the previous section, we have again that the prism is completely determined by the distances p_{1}, p_{2}, p_{3} and $p_{2}^{\prime}=p\left(\pi-\theta_{2}, \varphi_{2}\right)$:

If we denote $L:=L(\theta, \varphi)$ and $L_{2}:=p_{2}+p_{2}^{\prime}$ we can write
Area $\mathcal{T}_{5}(\theta, \varphi)=\left(b-p_{2}-p_{2}^{\prime}\right)\left(a-\frac{b}{2} \cot \gamma-p_{1}-\frac{p_{2}-p_{2}^{\prime}}{2} \cot \gamma-\frac{p_{3}}{\sin \gamma}\right)=$
Area $\mathcal{T}_{5}-b\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right)+\frac{b}{2}\left(p_{2}-p_{2}^{\prime}\right) \cot \gamma-\left(a-\frac{b}{2} \cot \gamma\right) L_{2}+\frac{1}{2}\left(p_{2}^{2}-p_{2}^{\prime 2}\right) \cot \gamma$

$$
+L_{2}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right)
$$

$\operatorname{Vol} \mathcal{F}_{5}(\theta, \varphi)=(c-L)$ Area $\mathcal{T}_{5}(\theta, \varphi)=\operatorname{Vol} \mathcal{F}_{5}-b c\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right)$
$+\frac{b c}{2}\left(p_{2}^{\prime}-p_{2}\right) \cot \gamma-\left(a-\frac{b}{2} \cot \gamma\right) c L_{2}+\frac{c}{2}\left(p_{2}^{2}-p_{2}^{\prime 2}\right) \cot \gamma$
$-\left(a-\frac{b}{2} \cot \gamma\right) b L+b\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right) L-\frac{b}{2}\left(p_{2}^{\prime}-p_{2}\right) L \cot \gamma+c L_{2}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right)$
$+\left(a-\frac{b}{2} \cot \gamma\right) L L_{2}-\frac{1}{2}\left(p_{2}^{2}-p_{2}^{\prime 2}\right) L \cot \gamma-L L_{2}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right)$.
Using now (1^{\prime}) and the equalities

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} p_{2}^{i} \sin \theta d \theta d \varphi=\int_{0}^{2 \pi} \int_{0}^{\pi} p_{2}^{\prime i} \sin \theta d \theta d \varphi, \quad i=1,2 \\
& 2 \pi \\
& \int_{0}^{\pi} \int_{0}^{\pi} p_{2}^{i} L \sin \theta d \theta d \varphi=\int_{0}^{\pi} \int_{0}^{\pi} p_{2}^{\prime i} L \sin \theta d \theta d \varphi, \quad i=1,2
\end{aligned}
$$

we obtain a proof of the following result.
Theorem 4. The probability $p_{\mathbf{K}, \mathcal{R}_{5}}$ that a uniformly distributed convex body of revolution \boldsymbol{K}, which is small with respect to \mathcal{R}_{5}, hits \mathcal{R}_{5} is
(55) $p_{\mathbf{K}, \mathcal{R}_{\mathbf{5}}}=\frac{1}{4 \pi}\left[\frac{1}{a-\frac{b}{2} \cot \gamma} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right) \sin \theta d \theta d \varphi+\frac{1}{b} \int_{0}^{2 \pi} \int_{0}^{\pi} L_{2} \sin \theta d \theta d \varphi\right.$

$$
\begin{aligned}
& +\frac{1}{c} \int_{0}^{2 \pi} \int_{0}^{\pi} L \sin \theta d \theta d \varphi-\frac{1}{\left(a-\frac{b}{2} \cot \gamma\right) c} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right) L \sin \theta d \theta d \varphi \\
& -\frac{1}{\left(a-\frac{b}{2} \cot \gamma\right) b} \int_{0}^{2 \pi} \int_{0}^{\pi} L_{2}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right) \sin \theta d \theta d \varphi-\frac{1}{b c} \int_{0}^{2 \pi} \int_{0}^{\pi} L L_{2} \sin \theta d \theta d \varphi \\
& \left.+\frac{1}{\left(a-\frac{b}{2} \cot \gamma\right) b c} \int_{0}^{2 \pi} \int_{0}^{\pi} L L_{2}\left(p_{1}+\frac{p_{3}}{\sin \gamma}\right) \sin \theta d \theta d \varphi\right]
\end{aligned}
$$

Remarks. 1) In the case \mathbf{K} is a sphere of radius r, the conditions for \mathbf{K} to be small with respect to \mathcal{R}_{5} can be weakened; the upper bound $a-b$ cot γ can be replaced by the larger number $\frac{2 a-b \cot \gamma}{1+\tan \frac{\gamma}{2}}$, and the condition in the theorem becomes

$$
2 r<\min \left(2 \frac{a-b \cot \gamma}{1+\tan \frac{\gamma}{2}}, b, c\right)
$$

From (55) we obtain

$$
\begin{aligned}
p_{\mathbf{K}, \mathcal{R}_{\mathbf{5}}}= & \frac{1+\frac{1}{\sin \gamma}}{a-\frac{b}{2} \cot \gamma} r+\frac{2 r}{b}+\frac{2 r}{c}-2 \frac{1+\frac{1}{\sin \gamma}}{\left(a-\frac{b}{2} \cot \gamma\right) b} r^{2} \\
& -2 \frac{1+\frac{1}{\sin \gamma}}{\left(a-\frac{b}{2} \cot \gamma\right) c} r^{2}-4 \frac{r^{2}}{b c}+4 \frac{1+\frac{1}{\sin \gamma}}{\left(a-\frac{b}{2} \cot \gamma\right) b c} r^{3}
\end{aligned}
$$

The same result follows from the formula (1.24) from [3] after some manipulations.
2) If \mathbf{K} is a needle of length $l<\min (a-b \cot \gamma, b, c)$ then one can use $\left(5_{5}\right)$ to deduce the formula (1.18) in [3], however some integrals are to be computed for this purpose.

References

[1] Aleman, A.; Stoka, M.; Zamfirescu, T.: Convex bodies instead of needles in Buffon's experiment. Geometriae Dedicata 67 (1997), 301-308.

Zbl 0892.60018
[2] Arca, G.; Duma, A.: Two "Buffon-Laplace type" problems in the Euclidean plane. Suppl. Rend. Circ. Mat. Palermo, (II), n. 35 (1994), 29-39.

Zbl 0809.52006
[3] Bosetto, E.: Geometric Probabilities in the Euclidean space E_{3}. Dissertation, Fernuniversität Hagen 1996.

Zbl 0907.53046
[4] Duma, A.: Problems of Buffon type for "non-small" needles (II). Revue Roum. Math. Pures et Appl., Tome XLIII, Nr. 1-2 (1998), 121-135.

Zbl 0941.60022
[5] Duma, A.; Stoka, M.: Geometrical probabilities for convex test bodies. Beiträge Algebra Geom. 40(1) (1999), 15-25.

Zbl 0959.60002
[6] Duma, A.; Stoka, M.: Geometrical probabilities for convex test bodies (III). Suppl. Rend. Circ. Mat. Palermo, (II), n. 65 (2000), 99-108. Zbl pre01577755
[7] Duma, A.; Stoka, M.: Geometric probabilities for convex bodies of revolution in the euclidian space E_{3}. Suppl. Rend. Circ. Mat. Palermo, (II), n. 65, (2000), 109-115. Zbl 0967.60002
[8] Santaló, L. A.: Über das kinematische Maß im Raum. Act. Sci. et Ind. 357, Hermann, Paris 1936.

Zbl 0014.12503
[9] Stoka, M.: Une extension du problème de l'aiguille de Buffon dans l'espace euclidien \mathbb{R}^{n}. Bull. Unione Mat. Italiana 10 (1974), 386-389.

Zbl 0306.52008

Received November 26, 2000

[^0]: *Work partially supported by C.N.R.-G.N.S.A.G.A.

