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Buffon’s problem for an arbitrary convex body K and a lattice of parallelograms in the
Euclidean space E2 has been investigated in [1]. In [5] this problem is considered for two
different types of lattices in the space E2 namely, for those lattices whose fundamental cell
is a triangle or a regular hexagon. Buffon’s Needle Problem for a lattice of right-angled
parallelepipeds in the n-dimensional Euclidean space was solved in [9]. In her dissertation,
E. Bosetto has answered the corresponding questions for other types of lattices in the 3-
dimensional space and for test bodies like the needle or the sphere. In [7] Buffon’s problem
is solved for a lattice of right-angled parallelepipeds in the 3-dimensional space (which will
be denoted here by R1) and an arbitrary convex body of revolution. In the present paper we
prove results of this type for arbitrary convex bodies of revolution and four types of lattices
in E3, considered also by E. Bosetto.

∗Work partially supported by C.N.R.-G.N.S.A.G.A.

0138-4821/93 $ 2.50 c© 2002 Heldermann Verlag



340 A. Duma, M. Stoka: Geometric Probabilities for Convex Bodies of . . .

LetK be an arbitrary convex body of revolution with centroid S and oriented axis of rotation
d. Clearly, the axis d is determined by the angle θ between d and the z-axis and by the
angle ϕ between the projection of d on the xy-plane and the x-axis and we express this
by writing d = d(θ, ϕ). If for a given d = d(θ, ϕ), the body K is tangent to the xy-plane
such that the centroid S lies in the upper half-space, we denote by p(θ, ϕ) the distance
from S to the xy-plane. Then the length of the projection of K on the z-axis is given by
L(θ, ϕ) = p(θ, ϕ) + p(π − θ, ϕ). Note that p(θ, ϕ) does actually depend only on the angle θ
and moreover, since K is a body of revolution about the axis d the value p(θ, ϕ) is invariant
to any rotation about this axis, say by an ψ. Now let F be a fundamental cell of the lattice
R and assume that the two 3-dimensional random variables defined by the coordinates of S
and by the triple (θ, ϕ, ψ) are uniformly distributed in the cell F and in [0, π]× [0, 2π]× [0, 2π]
respectively. We are interested in the probability pK,R that the body K intersects the lattice
R. Furthermore, we will assume, as it is done in all papers cited here, that the body K is
small with respect to the lattice R. In order to recall briefly this concept, consider for fixed
(θ, ϕ) ∈ [0, π] × [0, 2π] the set of all points P ∈ F for which the body K with centroid P
and rotation axis d = d(θ, ϕ) does not intersect the boundary ∂F and let F(θ, ϕ) be the
closure of this open subset of F . We say that the body K is small with respect to R, if the
polyhedrons sides of F(θ, ϕ) and F are then clearly pairwise parallel.

Denote by MF the set of all test bodies K whose centroid S lies in F and by NF the set
of bodies K that are completely contained in F . Of course, we can identify these sets with
subsets of R6 and if µ denotes the Lebesgue measure then the probability is given by

(1) pK,R = 1−
µ(NF)

µ(MF)
.

Using the cinematic measure (see [6])

(2) dK = dx ∧ dy ∧ dz ∧ dΩ ∧ dψ ,

where x, y, z are the coordinates of S, dΩ = sin θdθ ∧ dϕ and ψ is an angle of rotation about
d we can compute

(3) µ(MF) =

2π∫

0

dψ

2π∫

0

dϕ

π∫

0

sin θdθ

∫∫∫

{(x,y,z)∈F}

dxdydz = 8π2 Vol (F) ,

(4) µ(NF) =

2π∫

0

( 2π∫

0

( π∫

0

sin θ

( ∫∫∫

{(x,y,z)∈F(θ,ϕ)}

dxdydz

)
dθ

)
dϕ

)
dψ

= 2π

2π∫

0

( π∫

0

Vol F(θ, ϕ) · sin θdθ

)
dϕ ,

which leads to

(1′) pK,R = 1−
1

4π Vol (F)

2π∫

0

( π∫

0

Vol F(θ, ϕ) · sin θdθ

)
dϕ .
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The above reasoning is valid for all lattices R provided K is small with respect to the lattice.
Our purpose here is “only” to show that for four different types of lattices that we denote as
in [3] by R2,R3,R4, R5, the volume of F(θ, ϕ) can be expressed in terms of the well known
support- and width-function (p and L) associated to the body K and to compute some of
the integrals involved.

1. The lattice R2

The fundamental cell F2 of the latticeR2 is the parallelepiped spanned by the vectors a, b, c,
where c = (0, 0, c) is perpendicular on a = (a sinα, a cosα, 0) and b = (0, b, 0). We can

assume without loss that the angle α between a and b belongs to
]
0, π
2

]
. One checks that

K is small with respect to R2 if and only if its diameter is less than min(a sinα, b sinα, c).

Recall that given d = d(θ, ϕ), L(θ, ϕ) denotes the length of the orthogonal projection of K
onto the z-axis. In order to simplify the expression for Vol F2(θ, ϕ) we use the functions
θ1, ϕ1 and θ2, ϕ2 defined as follows:

θ1(θ, ϕ) := arccos(sin θ cosϕ), ϕ1(θ, ϕ) := arctan
(
cot θ
sinϕ

)
,

θ2(θ, ϕ) := arccos
(
sin θ sin

(
ϕ+ α− π

2

))
, ϕ2(θ, ϕ) := arctan (tan θ sin(ϕ+ α)) .

Thus, for d = d(θ, ϕ), the length of the orthogonal projection of K onto the x-axis is given
by L(θ1(θ, ϕ), ϕ1(θ, ϕ)) and also, the distance between the two planes that are parallel to the
plane spanned by the vectors a and c and tangent to K equals L(θ2(θ, ϕ), ϕ2(θ, ϕ)). This
implies

Vol F2(θ, ϕ)=

(
a sinα−L

(
θ1(θ, ϕ), ϕ1(θ, ϕ)

))((
b−

1

sinα
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

))

·
(
c− L(θ, ϕ)

)

= abc sinα− ab sinα L(θ, ϕ)− bc L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)

− ca L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
+ a L

(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
L(θ, ϕ)

+ b L(θ, ϕ) L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
+

c

sinα
L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)

−
1

sinα
L(θ, ϕ) L

(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
.

From this we obtain
2π∫

0

π∫

0

Vol F2(θ, ϕ) sin θdθdϕ = 4πabc sinα− ab sinα

2π∫

0

π∫

0

L(θ, ϕ) sin θdθdϕ

−bc

2π∫

0

π∫

0

L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
sin θdθdϕ− ca

2π∫

0

π∫

0

L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ
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+a

2π∫

0

π∫

0

L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
L(θ, ϕ) sin θdθdϕ

+
c

sinα

2π∫

0

π∫

0

L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ

+b

2π∫

0

π∫

0

L(θ, ϕ)L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
sin θdθdϕ

−
1

sinα

2π∫

0

π∫

0

L(θ, ϕ)L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ ,

and by (1′)

(52) pK,R2 =
1

4πa sinα

2π∫

0

π∫

0

L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
sin θdθdϕ

+
1

4πb sinα

2π∫

0

π∫

0

L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ+

1

4πc

2π∫

0

π∫

0

L(θ, ϕ) sin θdθdϕ

−
1

4πbc sinα

2π∫

0

π∫

0

L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
L(θ, ϕ) sin θdθdϕ

−
1

4πab sin2 α

2π∫

0

π∫

0

L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ

−
1

4πca sinα

2π∫

0

π∫

0

L(θ, ϕ)L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
sin θdθdϕ

+
1

4πabc sin2 α

2π∫

0

π∫

0

L(θ, ϕ)L
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
L
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
sin θdθdϕ .

Thus, we have proved:

Theorem 1. The probability pK,R2 is given by the equality (52).

Remarks. 1) For α = 1
2
one obtains (for the lattice R1) the equality (1) in [7], since in this

case the expression involved is symmetric in a, b and c.

2) If K has constant width then the above result becomes

( 1

a sinα
+

1

b sinα
+
1

c

)
k −
( 1

ab sin2 α
+

1

bc sinα
+

1

ca sinα

)
k2 +

1

abc sin2 α
k3 .



A. Duma, M. Stoka: Geometric Probabilities for Convex Bodies of . . . 343

In the case of sphere this expression is exactly the right-hand side of the formula (1.21) in
[3].

3) If K is a needle of length l < min(a sinα, b sinα, c), we have L(θ, ϕ) = l| cos θ|, which
implies L(θ2(θ, ϕ), ϕ2(θ, ϕ)) = l| sin θ cos(ϕ + α)| and L(θ1(θ, ϕ), ϕ1(θ, ϕ)) = l| sin θ cosϕ|
and the computations give the same result as in formula (1.13) in [3], i.e..

pK,R2 =
ab sinα+ ac+ bc

2abc sinα
l − 2

a+ b+ [1 + (π
2
− α)cot α]c

3πabc sinα
l2 +

1 + (π
2
− α)cot α

4πabc sinα
l3 .

2. The lattice R3

The fundamental cell F3 of the lattice R3 is the parallelepiped spanned by the vectors a =
(a sinα, a cosα, 0), b = (0, b, 0) and c (with ‖c‖ = c). Let α, β and γ the angles between a
and b, b and c and c and a respectively. We can assume without loss that all three angles

belong to the interval
]
0,
π

2

]
. We denote also by E1, E2 and E3 the planes spanned by b

and c, c and a and a and b respectively. Of course, E3 is the xy-plane. Further, if ξij with

0 < ξij ≤
π

2
is the angle between Ei and Ej then d1 = a sin ξ13 sinα = a sin ξ12 sin γ , d2 =

b sin ξ12 sin β = b sin ξ23 sinα and d3 = c sin ξ23 sin γ = c sin ξ13 sin β are the heights of the
parallelepiped. Note that (α, β, γ) is uniquely determined by ξ12, ξ23, ξ13 and viceversa.
Thus, we can write R3 as a union of lattices of parallel equidistant planes denoted by E1, E2

and E3 such that the distance between the planes of E i equals di. The normal vector to E3
is n3 = (0, 0, 1). As we did before, we denote by θ and ϕ the angles between d and n3 and
between (1, 0, 0) and the projection of d on E3.

Let c′ be the orthogonal projection of c on the xz-plane and c1=
1

‖c′‖
c′=(cos ξ13, 0, sin ξ13).

The vector n1 = (sin ξ13, 0,− cos ξ13) is orthogonal to E1 and (b, c1,n1) is a (positively
oriented) triple of orthonormal vectors. Let θ1 and ϕ1 be the angles formed by d and n1 and
the projection of d on E1 and b. We have

θ1 = θ1(θ, ϕ) = arccos(sin ξ13 sin θ cosϕ− cos ξ13 cos θ) ,

ϕ1 = ϕ1(θ, ϕ) = arctan
(
cos ξ13 cotϕ+

sin ξ13 cot θ
sinϕ

)
.

x sin ξ23 cosα−y sin ξ23 sinα+z cos ξ23 = 0 is an equation for the plane E2. The corresponding
normal vector is n2 = (sin ξ23 cosα,− sin ξ23 sinα, cos ξ23). The vectors c2 = (− cos ξ23 cosα,
cos ξ23 sinα, sin ξ23), a and n2 form a positively oriented triple of orthogonal vectors. If we
consider the angles θ2 and ϕ2 between d and n2 and between the projection of d on E2 and
c2 we have

θ2 = θ2(θ, ϕ) = arccos(− sin ξ23 sin θ cos(ϕ+ α)− cos ξ23 cos θ) ,

ϕ2 = ϕ2(θ, ϕ) = arctan
(

sin θ sin(α+ϕ)
sin ξ23 cos θ−sin θ cos ξ23 cos(α+ϕ)

)
.

The parallelepiped F3 has the volume

Vol F3 = ab sinα · d3 = abc sinα sin γ sin ξ23

= d1
sin ξ13

· d2
sinα sin ξ23

· d3 =
d1d2d3

sin ξ13 sin ξ23 sinα
.
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Now when K is small with respect to R3, that is, when the diameter sup
(θ,ϕ)

L(θ, ϕ) of K is

smaller than min(d1, d2, d3), then F3(θ, ϕ) is at its turn a parallelepiped whose faces and
sides are parallel to the corresponding faces and sides of F3 for all values (θ, ϕ) ∈ [0, π]×[0, 2π].
The heights of F3(θ, ϕ) are given by

d1(θ, ϕ) = d1 − L(θ1, ϕ1), d2(θ, ϕ) = d2 − L(θ2, ϕ2), d3(θ, ϕ) = d3 − L(θ, ϕ) .

Then VolF3(θ, ϕ) =
d1(θ, ϕ)d2(θ, ϕ)d3(θ, ϕ)

sin ξ13 sin ξ23 sinα
and from (1′) we get

pK,R3 = 1−
1

4π Vol F3

2π∫

0

π∫

0

Vol F3(θ, ϕ) sin θdθdϕ

= 1− 1
4π

2π∫

0

π∫

0

[
1− L(θ1,ϕ1)

d1
− L(θ2,ϕ2)

d2
− L(θ,ϕ)

d3
+ L(θ1,ϕ1)L(θ2,ϕ2)

d1d2
+

L(θ2,ϕ2)L(θ,ϕ)
d2d3

+ L(θ,ϕ)L(θ1,ϕ1)
d3d1

− L(θ,ϕ)L(θ1,ϕ1)L(θ2,ϕ2)
d1d2d3

]
sin θdθdϕ.

We have proved

Theorem 2. If K is small with respect to R3, the probability pK,R3 is given by

(53) pK,R3 =
1

4π

[
1

d1

2π∫

0

π∫

0

L(θ1, ϕ1) sin θdθdϕ+
1

d2

2π∫

0

π∫

0

L(θ2, ϕ2) sin θdθdϕ

+
1

d3

2π∫

0

π∫

0

L(θ, ϕ), sin θdθdϕ−
1

d1d2

2π∫

0

π∫

0

L(θ1, ϕ1)L(θ2, ϕ2) sin θdθdϕ

−
1

d2d3

2π∫

0

π∫

0

L(θ2, ϕ2)L(θ, ϕ) sin θdθdϕ−
1

d3d1

2π∫

0

π∫

0

L(θ, ϕ)L(θ1, ϕ1) sin θdθdϕ

+
1

d1d2d3

2π∫

0

π∫

0

L(θ, ϕ)L(θ1, ϕ1)L(θ2, ϕ2) sin θdθdϕ

]
.

Remarks. 1) The result is a generalization of Theorem 1 which is obtained for ξ13 = ξ23 =
π
2
, β = γ = π

2
.

2) If K has constant width k < min (d1, d2, d3) we obtain the special case

pK,R3 =
( 1
d1
+
1

d2
+
1

d3

)
k −
( 1
d1d2

+
1

d2d3
+
1

d3d1

)
k2 +

k3

d1d2d3
.

3) For a needle of length l < min (d1, d2, d3) one can find more detailed computations in [2].
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3. The lattice R4

The fundamental cell F4 of the lattice R4 is a right-angled prism whose base B4 is a right-
angled triangle with catheti a and b. If c is the height of the prism, then we can assume that
the vertices of F4 are (0, 0, 0) , (a, 0, 0) , (0, b, 0) , (0, 0, c) , (a, 0, c) and (0, b, c). We denote

γ := arctan
b

a
and h :=

ab
√
a2 + b2

. The body K is small with respect to R4 if

Diam (K) < min
( 3ab

2(a+ b+
√
a2 + b2)

)

(see [6]). In this case the set F4(θ, ϕ) is also a right-angled prism with height c − L(θ, ϕ),
and whose base B4(θ, ϕ) is a right-angled triangle. We denote by p1, p2 and p3 the lengths

p
(
θ1(θ, ϕ), ϕ1(θ, ϕ)

)
, p
(
θ2(θ, ϕ), ϕ2(θ, ϕ)

)
and p

(
θ3(θ, ϕ), ϕ3(θ, ϕ)

)
. Let θ1, ϕ1, θ2, ϕ2, θ3

and ϕ3 be the functions defined by

θ1(θ, ϕ) := arccos(sin θ cosϕ), ϕ1(θ, ϕ) := arctan
(
cot θ
sinϕ

)
,

θ2(θ, ϕ) := arccos(sin θ sinϕ), ϕ2(θ, ϕ) := arctan(tan θ cosϕ) ,

θ3(θ, ϕ) := arccos(− sin θ sin(ϕ+ γ)), ϕ3(θ, ϕ) := arccot(−tan θ cos(ϕ+ γ)) .

x

y

z

a

b

c

γ
h

a

b

√
a2 + b2

γ

T4(ϕ, θ)
F4

p1

p2

p3

By a simple geometric argument (see e.g. [2]) is follows that

Area B4(θ, ϕ)

Area B4
=
(
1−

p1

a
−
p2

b
−
p3

h

)2
.
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Using also the fact that L(θ, ϕ) = L we obtain

Vol F4(θ, ϕ)

Vol F4
=
(
1−

p1

a
−
p2

b
−
p3

h

)2 (
1−

L

c

)
.

We now prove

Theorem 3. The probability pK,R4 is given by

(54) pK,R4 =
1

2π

2π∫

0

π∫

0

(p1
a
+
p2

b
+
p3

h
+
L

2c

)
sin θdθdϕ

−
1

2π

2π∫

0

π∫

0

(p1p2
ab
+
p2p3

bh
+
p3p1

ha
+
p1L

ac
+
p2L

bc
+
p3L

hc

)
sin θdθdϕ

−
1

4π

2π∫

0

π∫

0

(p21
a2
+
p22
b2
+
p23
h2

)
sin θdθdϕ

+
1

2π

2π∫

0

π∫

0

(p1p2L
abc

+
p2p3L

bhc
+
p3p1L

hac

)
sin θdθdϕ

+
1

4π

2π∫

0

π∫

0

(p21L
a2c
+
p22L

b2c
+
p23L

h2c

)
sin θdθdϕ .

Proof. We have
(
1−

p1

a
−
p2

b
−
p3

h

)2(
1−

L

c

)
= 1− 2

(p1
a
+
p2

b
+
p3

h
+
L

2c

)

+2
(p1p2
ab
+
p2p3

bh
+
p3p1

ha
+
p1L

ac
+
p2L

bc
+
p3L

hc

)
+
p21
a2
+
p22
b2
+
p23
h2

−2
(p1p2L
abc

+
p2p3L

bhc
+
p3p1L

hac

)
−
(p21L
a2c
+
p22L

b2c
+
p23L

h2c

)

and from (1′) we obtain (54) .

Remarks. 1) In the case when K is a needle of length l < min (h, c) one can deduce from
(54), after some tedious calculations, the result of Theorem 1.3.3 in [3].

2) In the case when K is a sphere of radius r < min
( c
2
,

ab

a+ b+
√
a2 + b2

)
, one obtains the

probability

2
(1
a
+
1

b
+
1

h
+
1

c

)
r − 2

( 1
ab
+
1

bh
+
1

ha

)
r2 − 4

( 1
ac
+
1

bc
+
1

hc

)
r2

−
( 1
a2
+
1

b2
+
1

h2

)
r2 + 4

( 1
abc
+
1

bhc
+
1

hac

)
r3 + 2

( 1
a2c
+
1

b2c
+
1

h2c

)
r3 ,
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which can be shown to be equivalent to the formula (1.23) in [3].

4. The lattice R5

The fundamental cell F5 of the lattice R5 is a right-angled prism whose base T5 is a right-
angled trapezoid, as it is shown in the figure below.

x

y

z

a

b

c

γ

a tg γ

R5

x

y

a

b

T5

γ

a tg γ

The convex body K is small with respect to R5 if it satisfies the inequality Diam(K) <
min(a − b cot γ, b, c). In this case F5(θ, ϕ) is again a right-angled prism having the height
c−L(θ, ϕ) (or in short form c−L) and the trapezoid T5(θ, ϕ) as a base. Using the notations
from the previous section, we have again that the prism is completely determined by the
distances p1, p2, p3 and p′2 = p(π − θ2, ϕ2) :

a

b

a− b ctg γ

T5(θ, ϕ)

γ

p1

p2

p3

p′2
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If we denote L := L(θ, ϕ) and L2 := p2 + p
′
2 we can write

Area T5(θ, ϕ) = (b− p2 − p
′
2)
(
a−

b

2
cot γ − p1 −

p2 − p′2
2

cot γ −
p3

sin γ

)
=

Area T5 − b
(
p1 +

p3

sin γ

)
+
b

2
(p2 − p

′
2) cot γ −

(
a−

b

2
cot γ

)
L2 +

1

2
(p22 − p

′2
2 ) cot γ

+L2

(
p1 +

p3

sin γ

)
,

Vol F5(θ, ϕ) = (c− L) Area T5(θ, ϕ) = Vol F5 − bc
(
p1 +

p3

sin γ

)

+
bc

2
(p′2 − p2) cot γ −

(
a−

b

2
cot γ

)
cL2 +

c

2
(p22 − p

′2
2 ) cot γ

−
(
a−

b

2
cot γ

)
bL+ b

(
p1 +

p3

sin γ

)
L−

b

2
(p′2 − p2)L cot γ + cL2

(
p1 +

p3

sin γ

)

+
(
a−

b

2
cot γ

)
LL2 −

1

2
(p22 − p

′2
2 )L cot γ − LL2

(
p1 +

p3

sin γ

)
.

Using now (1′) and the equalities

2π∫

0

π∫

0

pi2 sin θdθdϕ =
2π∫

0

π∫

0

p′i2 sin θdθdϕ , i = 1, 2 ,

2π∫

0

π∫

0

pi2L sin θdθdϕ =
2π∫

0

π∫

0

p′i2L sin θdθdϕ , i = 1, 2

we obtain a proof of the following result.

Theorem 4. The probability pK,R5 that a uniformly distributed convex body of revolution K,
which is small with respect to R5, hits R5 is

(55) pK,R5 =
1

4π

[
1

a− b
2
cot γ

2π∫

0

π∫

0

(
p1 +

p3

sin γ

)
sin θdθdϕ+

1

b

2π∫

0

π∫

0

L2 sin θdθdϕ

+
1

c

2π∫

0

π∫

0

L sin θdθdϕ−
1

(a− b
2
cot γ)c

2π∫

0

π∫

0

(
p1 +

p3

sin γ

)
L sin θdθdϕ

−
1

(a− b
2
cot γ)b

2π∫

0

π∫

0

L2

(
p1 +

p3

sin γ

)
sin θdθdϕ−

1

bc

2π∫

0

π∫

0

LL2 sin θdθdϕ

+
1

(a− b
2
cot γ)bc

2π∫

0

π∫

0

LL2

(
p1 +

p3

sin γ

)
sin θdθdϕ

]
.

Remarks. 1) In the case K is a sphere of radius r, the conditions for K to be small with
respect to R5 can be weakened; the upper bound a − b cot γ can be replaced by the larger

number
2a− b cot γ

1 + tan γ
2

, and the condition in the theorem becomes

2r < min

(
2
a− b cot γ

1 + tan γ
2

, b, c

)
.
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From (55) we obtain

pK,R5 =
1+ 1

sin γ

a− b
2
cot γ

r + 2r
b
+ 2r
c
− 2

1+ 1
sin γ

(a− b
2
cot γ)b

r2

−2
1+ 1

sin γ

(a− b
2
cot γ)c

r2 − 4 r
2

bc
+ 4

1+ 1
sin γ

(a− b
2
cot γ)bc

r3 .

The same result follows from the formula (1.24) from [3] after some manipulations.

2) If K is a needle of length l < min (a− b cot γ, b, c) then one can use (55) to deduce the
formula (1.18) in [3], however some integrals are to be computed for this purpose.
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