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Abstract. Let R be a prime ring. It is shown that, under certain restrictions on
char(R), R admits a functional identity f(z)xf(x)...xf(z) = 0, x € R, where
f R — R is a nonzero additive map, if and only if its central closure S contains
an idempotent e # 0, 1 such that eSe = Ce where C is the extended centroid of R.
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1. Introduction

By a functional identity on a ring R we mean, roughly speaking, an identical relation satisfied
by elements in R, which involves some maps of R. The usual goal when treating a functional
identity is to either describe the form of the maps appearing in the identity or, when this is
not possible, to determine the structure of the ring admitting this identity. For a detailed
account on the theory of functional identities and its applications we refer the reader to [4].

In contrast to thoroughly analyzed (see e.g. [1]) functional identities that involve expres-
sions such as f(z1,...,2,_1)z, or T, f(x1,...,2,-1) (here fis a map of R X ... xR into R),
more general functional identities consisting of expressions as g(z1, ..., ;i 1)x;h(Ti1, ..., )
are rather undiscovered. It seems that up till now the only work devoted to identities of such
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type is [5]. Its main result states that if R is a prime ring with char(R) # 2, then there exist
nonzero additive maps f,g : R — R satisfying f(x)zg(z) = 0 for all x € R if and only if
the central closure S of R contains an idempotent e # 0, 1 such that eSe = Ce (thus, S is a
primitive ring with nonzero socle and the associated division ring is a field). In this paper
we consider a similar functional identity in more variables, however, involving one map only.
Our main result is

Theorem 1.1. Let R be a prime ring with extended centroid C and central closure S. Let n
be a positive integer and suppose that char(R) = 0 or char(R) > 4n — 2. Then there ezists a
nonzero additive map f : R — R satisfying

(f(x)x)"f(x) =0 forallz eR (1)
if and only if S contains an idempotent e # 0,1 such that eSe = Ce.

We remark that the condition (1) may be regarded as a generalization of the condition
appearing in the classical result, usually in the literature quoted as Levitzki’s theorem (see
e.g. [7, Lemma 1.1]). Namely, a possible way to state this result is the following one: If R is
a (semi)prime ring and a € R is such that (az)"a = 0 for all z € R and some fixed n, then
a=0.

At several places the proof of Theorem 1.1 is similar to the one in [5], and moreover,
some result from [5] will be used in the proof. Nevertheless, the proof in the present paper
is considerably shorter and less complicated. This gives some hope that eventually one shall
be able to investigate some more general functional identities.

2. Proof

The rest of the paper is basically devoted to the proof of Theorem 1.1 only. It has already
been shown that the existence of an idempotent e # 0,1 in S such that eSe = Ce yields
the existence of a nonzero additive map f : R — R satisfying f(z)zf(x) =0 for all z € R
[5, p. 3766]. Therefore, we only need to prove the only if part of Theorem 1.1. This proof
is broken up into the series of steps. The first one is the reduction of our problem to the
case when R satisfies a generalized polynomial identity (GPI). The reader is referred to the
book of Beidar et al. [2] for the basic terminology and results of the theory of rings with
GPIs. The fundamental theorem of this theory, due to Martindale, states that a prime ring
R satisfies a GPI (shortly, R is a GPI ring) if and only if its central closure S contains
an idempotent e such that eSe is a finite dimensional division algebra over the extended
centroid C [2, Theorem 6.1.6]. The proof of the next lemma rests heavily on a recent work
of the second author [6]. More precisely, we shall use the following result which is a special
case of [6, Theorems 2.6 and 2.7].

Proposition 2.1. Let R be a prime ring. Suppose there exist maps g; : R* ' =R x ... X
R — R,i=1,...,n, and a nonzero element a € R such that one of the following two
identities

n
Zgi(z’l, e T 1, Tt 1y - Tp)xa =0 forall zy,...,x, € R,
i—1
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n
> azigi(z1, ..., i1, Tig1y . Tp) =0 forallay,...,z, €R
i=1

holds true. Then either each g; =0 or R is a GPI ring.

Lemma 2.2. Let R be a prime ring. Suppose there exists a nonzero additive map f : R — R
satisfying (1). If char(R) = 0 is or char(R) > 4n — 2, then R is a GPI ring.

Proof. Assume on the contrary that R is not a GPI ring. Also, we may assume that n is the
smallest positive integer for which there is a nonzero map satisyfing the functional identity

of type (1).
It will be useful to use (1) in its linearized form, that is,
Y f(200)To@ [(To(3) - - Ton) f(To@nin) = 0 (2)
0ESan41
for all z1,..., 29,41 € R.

Claim 1. There ezxist a,b € R such that af(y) # 0 and f(y)b # 0 for some y € R and
af(x)b=20 for all z € R.

Proof. Set x1 = ... = X9, = T, Topy1 = y in (2) and multiply the identity obtained from the
right by (zf(z))". Applying the assumption on char(R) it follows that (f(z)x)"f(y)(xf(z))"
= 0 for all z,y € R. Therefore, it suffices to show that there is 2 € R such that (f(z)z)"f(y)
# 0 and f(y)(zf(z))™ # 0 for some y € R. If this were not true we would have
f)(zf(z))"2(f(x)z)"f(y) = 0 for all z,y,z € R. Fixing y € R such that f(y) # 0 and
linearizing the last identity we get

S FWze)f(@o@) - - f(o@n)2f (ZTo@nt1) - - - [(To@an—1))Ton) f(y) =0

0'63471

for all xq,...,z4, € R. Now applying Proposition 2.1 twice, each time with f(y) playing the
role of a, however, once appearing on the left and once on the right, it follows that

> f(@o) - f(@o@n—1)2f (To@n) - - - [(Zotan—2)) =0

0ESin—2

for all zq,...,24, 2 € R. Again using the assumption on char(R), this time on the whole, it
follows that (f(z)z)" ' f(z)z(f(x)z)" 1 f(z) = 0 for all z,z € R. The primeness of R yields
(f(z)z)" "' f(x) = 0 for all z € R. However, this contradicts our assumption and so Claim 1
is proved.

Claim 2. af(bx) =0 for all x € R.

Proof. Setting 1 = ... = xp41 = bx, Tpyo = ... = Topy1 = ya in (2), and then multiplying
from the left by a, we get, using af(R)b = 0, that af(bx)(yaf(bzx))” = 0 for all z,y € R.
The Levitzki’s theorem mentioned in the introduction then yields af(bx) = 0.

Claim 3. f(bx)b =0 for all x € R.

Proof. We want to show that the map = — f(bz)b is zero. Suppose this were not true. Then
we would have, according to our assumption, ([f(bz)b]z)" 1 f(bx) # 0 for some z € R. Set
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Ty =...= Toy_1 = bz and 3, = Ta,41 = ¥ in (2) and then multiply from the left by a. Using
Claims 1 and 2 we see that the identity so obtained reduces to af(y)y(f(bx)bx)" L f(bz) =0
for all y € R. Linearizing and then using Proposition 2.1 it follows that af(y) = 0 for all
y € R. However, this contradicts Claim 1.

Claim 4. f(bxa) =0 for all x € R.

Proof. Claims 2 and 3 imply, in particular, that f(bza)bra = braf(bxa) = 0 for all x € R.
Therefore, setting 1 = ... = 2,41 = bxa, Tpio = ... = Topyy = Yy in (2) we arrive at

(f(bza)y)™ f(bxa) = 0 for all z,y € R. Levitzki’s theorem yields f(bza) = 0.
Claim 5. af(y)yf(y)b =0 for ally € R.

Proof. Since the assumption on char(R) will not be used anymore, there is no loss of generality
in assuming that n is an odd number > 1 (otherwise we multiply (1) from the left by f(x)z).
So,letn =2k+1,k>1. Setxy =... =z =braand 211 = ... = Tgr 3 = y in (2) and then
multiply from the left by a and from the right by bz. Using f(bRa) =0 and af(R)b = 0 we
see that the identity obtained reduces to ((af(y)yf(y)b)z) ™! = 0 for all z,y € R. Levitzki’s
theorem therefore implies the desired conclusion.

We have thereby reduced the functional identity under consideration to the one treated in
[5]. Applying [5, Lemma 2.4] we get that either af(y) = 0 or f(y)b = 0 for each y € R which,
however, contradicts Claim 1. The proof of the lemma is therefore complete.

We continue by treating our functional identity in a rather special setting, to which the
general case will be reduced in the proof below.

Lemma 2.3. Let D be a domain and A be its subring. Suppose there exists a nonzero additive
map f: My (A) — M, (D), m > 1, and a positive integer n such that (f(A)A)"f(A) =0 for
all A € M, (A). Then A is commutative.

Proof. First of all, it is clear that m > 1. Let us assume that A is noncommutative. Our
goal is to show that this contradicts the assumption f # 0.

Following [5] we write f : M,,(A) — M, (D) in the matrix form f = (fi;), where
fij + Mn(A) — D are additive maps. Moreover, each fi; : M,,(A) — D can be presented
as fij(A) = i 0% £ (aw), where f}: A — D are additive maps (here ay denotes the
entry of the matrix A). By a;;E;; we denote the matrix whose entry in position (i, 7) is a;;
and all other entries are zero. Letting A = a;;Fj; in (f(A)A)"*! = 0 we get, by considering
the position (i,4), that ( %i(aj,;)aji)”“ = 0, which gives ff; = 0 for all 4,j. Using this we
see that letting A = a;Eyi + aj;Eji in (f(A)A)"™ = 0 and again considering the position
(i,1), we get (f¥(ap)aj + fie(a;:)ar)"* = 0, and hence f&i(ay;)aj + ff};(aji)aki = 0. But
then, since A is assumed to be noncommutative, [5, Lemma 2.5] yields fi'j-l =0 for all ¢, 7, k.
In a similar fashion, by considering A = ay.Ei + a;jE;j in (Af(A))"T = 0, we see that

j’f = 0 for all 4,7, k. Finally, lettting A = ay By + ajiEji, | # 4, in (f(A)A)"™ = 0 we get
by considering the position (i,7) that (f(ax)a;:)"*" = 0, which gives f}' = 0 for all 4, j, k, 1.
But this means that f = 0. The lemma is thereby proved.

Proof of Theorem 1.1. As mentioned above, we only need to prove the only if part of the
theorem. By Lemma 2.2 R is a GPI ring and so the central closure & of R contains an
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idempotent e such that D = eSe is a finite dimensional division algebra over its center Ce,
where C is the extended centroid of R. Moreover, e # 1 for otherwise R would be a domain
which is clearly impossible. Our goal is to show that D is actually 1-dimensional over C, that
is, that D is commutative.

Let ‘H be the socle of S and set Z = H N R. Since H # 0 (in particular, e € H),
it follows easily that Z is a nonzero ideal of R. Suppose f(Z) = 0. Pick r € R such
that f(r) # 0. Setting 1 = ... =z, =2 € Z and o417 = ... = Topy1 = 7 in (2) we
arrive at (f(r)z)"f(r) = 0 for every z € Z. But then Levitzki’s theorem yields f(r)Z = 0
which in turn gives f(r) = 0, contrary to the assumption. Thus f(Z) # 0. This further
implies that f(z)z # 0 for some z € Z by [3, Lemma 4.4]. According to Litoff’s theorem [2,
Theorem 4.3.11] there exists an idempotent u € H such that z, f(z)z € B = uSu = M,,(D)
for some m > 1. Set R' = RN B and define g : R — B by ¢g(y) = uf(y)u. Since f(z)x # 0
and z, f(xz)z € B, it follows that g(z) # 0. Further, (¢(y)y)"g(y) = 0 for all y € R’, because
uyu = y. Using [2, Theorem 4.3.7 (iii) and (viii)] we see that B = uSu = uQ,(R)u, where
Q:(R) is the symmetric Martindale ring of quotients of R, and so [2, Proposition 2.3.14]
implies that R’ is a prime ring and B = Q4(R'). As B = M,,(D), B is a PI ring and so R’ is
a PI ring too. By Posner’s Theorem [2, Theorem 6.1.11] B is the classical ring of quotients
of R and R’ is a two sided Goldie ring. By the Faith-Utumi Theorem [8, Theorem 3.2.6]
R’ contains a subring A of the form M,,(A), where A is a domain whose classical ring of
quotients is isomorphic D. So we have M,,(A) 2 A C R’ C B = M,,(D). According to
Lemma 2.3 we have that either g(A) = 0 or A is commutative. Arguing as above when
we showed that f(Z) # 0, we see that g(A) = 0 implies (g(z)y)"g(z) = 0 for all z € R’
and y € A. Now Levitzki’s theorem is not really applicable, but using a sharper result [2,
Theorem 6.6.2] we get g(z) = 0 for all z € R’. However, g(x) # 0. Therefore, the only
possibility is that A is commutative. But then D is commutative too.
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