On the Intersection of Invariant Rings

Thomas Bayer
Institut für Informatik, Technische Universität München
80290 München, Germany
e-mail: bayert@in.tum.de

Abstract

Based on Weitzenböck's theorem and Nagata's counterexample for Hilbert's fourteenth problem we construct two finitely generated invariant rings $R, S \subset \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ s.t. the intersection $R \cap S$ is not finitely generated as a K-algebra.

1. Introduction

Recently the author has provided an algorithm for computing the intersection of invariant rings of finite groups and for computing \mathbf{K}-vectorspace bases of the intersection of arbitrary graded finitely generated algebras up to a given degree, cf. [2]. One might ask if it is possible to extend the algorithm to compute the intersection of arbitrary finitely generated invariant rings. We give a negative answer by showing the existence of finitely generated invariant rings $R, S \subset \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ s.t. their intersection $R \cap S$ cannot be finitely generated. The example builds upon Weitzenböck's theorem and a counterexample of Nagata for Hilbert's fourteenth problem, which can be formulated as follows: Let \mathbf{K} be a field and $G \subseteq G L_{n}(\mathbf{K})$ be an algebraic subgroup. Is the invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$ finitely generated as a Kalgebra?

In 1958 Nagata gave a negative answer by using commutative groups (cf. [6]) and in 1965 he provided invariant rings of non-commutative groups which are not finitely generated (cf. [7]). Later, these examples were greatly simplified and extended by R. Steinberg (cf. [9]). Meanwhile, based on the work of Roberts (cf. [8]), several counterexamples of invariant rings of algebraic \mathbf{G}_{a}-actions have been found. We refer, e.g., to $[3]$ and the references therein, and for a non-finitely generated invariant ring of a linear action of \mathbf{G}_{a}^{12} on \mathbf{K}^{19} we refer to [1].

2. Nagata's counterexample

We present Nagata's counterexample of 1965, given in [7]. Let G be an algebraic group and $\rho: G \rightarrow G L_{n}(\mathbf{K})$ be a linear representation. A polynomial $f \in \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is invariant w.r.t. G if $f(\rho(\sigma) \cdot \mathbf{x})=f(\mathbf{x})$ for all $\sigma \in G$. The $\operatorname{ring} \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$ consisting of all invariant polynomials w.r.t. G is called the invariant ring of G (ρ will be omitted). The invariant ring is finitely generated if there exist invariants $h_{1}, h_{2}, \ldots, h_{m}$ s.t. the map $\mathbf{K}\left[y_{1}, y_{2}, \ldots, y_{m}\right] \rightarrow \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$, sending y_{i} to h_{i}, is surjective.

For $r \geq s^{2}$, where $s \geq 4$, let $a_{i j}, i=1,2,3$ and $1 \leq j \leq r$, be algebraic independent elements over the the field \mathbf{k} of characteristic 0 (\mathbf{k} is the prime field Π of the algebraic curve defined in Ch. III of (loc. cit.)). Let $\mathbf{k} \subset \mathbf{K}$ be a field extension containing the $a_{i j}$'s and set $n=2 r$. Consider the subgroup

$$
G=\left\{\left(\begin{array}{llll}
B_{1} & 0 & \ldots & 0 \\
0 & B_{2} & \ldots & 0 \\
0 & \ldots & \ddots & \ldots \\
0 & \ldots & 0 & B_{r}
\end{array}\right): B_{i}=\left(\begin{array}{ll}
c_{i} & c_{i} b_{i} \\
0 & c_{i}
\end{array}\right)\right\} \subset G L_{n}(\mathbf{K})
$$

where $\sum_{j=1}^{r} a_{1 j} b_{j}=\sum_{j=1}^{r} a_{2 j} b_{j}=\sum_{j=1}^{r} a_{3 j} b_{j}=0$ and $\prod_{i=1}^{r} c_{i}=1$.
Theorem 1. (Nagata 1965) The invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}$ is not finitely generated. Proof. We refer to Theorem 1, Chapter III in [7].
Remark 1. Actually Nagata proved that the invariant ring is an ideal transform $T(I, R)$ where $I \subset R$ is an ideal and R a Noetherian integral domain. Ideal transforms are inherently non-terminating and provide counterexamples to the (generalized) Zariski problem, but there are several conditions for $T(I, R)$ being finitely generated (cf., e.g., Chapter V of [7]). Serre proved that if R satisfies condition S_{2} then for any ideal $I \subset R$ there exist $f, g \in R$ s.t. $T(I, R)=T(f, R) \cap T(g, R)$ where $T(f, R)$ and $T(g, R)$ are finitely generated (cf. Section 7.1 of [11]).

3. Construction of the invariant rings

Let $a_{i j}, i=1,2,3$ and $1 \leq j \leq r$, be algebraic independent elements over \mathbf{k} and $\mathbf{k} \subset \mathbf{K}$ be a field extension containing the the $a_{i j}$'s (as in the previous section), let $r \geq s^{2}, s \geq 4$, and $n=2 r$. In order to obtain the counterexample we define two groups T and H s.t.

$$
\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H}=\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}
$$

and show that $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H}$ is not finitely generated and that the group H contains subgroups $H^{\prime}, H^{\prime \prime}$ s.t. the invariant rings $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H^{\prime}}$ and $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H^{\prime \prime}}$ are finitely generated, but their intersection is not finitely generated. Consider the groups

$$
T=\left\{\left(\begin{array}{ccccc}
c_{1} & 0 & \ldots & \ldots & 0 \\
0 & c_{1} & 0 & \ldots & 0 \\
\vdots & \ldots & \ddots & \ldots & \vdots \\
0 & \ldots & 0 & c_{r} & 0 \\
0 & \ldots & \ldots & 0 & c_{r}
\end{array}\right): \prod_{i=1}^{r} c_{i}=1\right\} \subset G L_{n}(\mathbf{K})
$$

and

$$
H_{k}=\left\{\left(\begin{array}{llll}
B_{1} & 0 & \ldots & 0 \\
0 & B_{2} & \ldots & 0 \\
\vdots & \ldots & \ddots & \vdots \\
0 & \ldots & 0 & B_{k}
\end{array}\right): B_{i}=\left(\begin{array}{cc}
1 & b_{i} \\
0 & 1
\end{array}\right)\right\} \subset G L_{2 k}(\mathbf{K})
$$

where $k=4, \ldots, r$, and $\sum_{j=1}^{k} a_{1 j} b_{j}=\sum_{j=1}^{k} a_{2 j} b_{j}=\sum_{j=1}^{r} a_{3 j} b_{j}=0$. Note that both groups are closed, but only T is reductive.

Proposition 1. If T acts algebraically on an affine \mathbf{K}-algebra R then R^{T} is finitely generated. In particular, the invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is finitely generated.

Proof. The group T is a closed subgroup of the r-torus $\left(\mathbf{K}^{*}\right)^{r}$, hence T is reductive and the invariant ring is finitely generated, cf. e.g., Chapter II. 3 of [5].

In the sequel we define a linear action of $H_{k} / H_{k-1},(k \geq 4)$, on \mathbf{K}^{n} and we show, by using Weitzenböcks theorem (cf. [10]), that the invariant rings of H_{4} and H_{k} / H_{k-1} are finitely generated. We obtain the desired counterexample from $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}=\mathbf{K}\left[x_{1}, x_{2}\right.$, $\left.\ldots, x_{n}\right]^{H_{k-1}} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$.

Theorem 2. (Weitzenböck 1932) Let \mathbf{K} be a field of characteristic 0 and V be any finitedimensional rational \mathbf{G}_{a}-module. Then the invariant ring $\mathbf{K}[V]^{\mathbf{G}_{a}}$ is finitely generated.

Proof. We refer, e.g., to Theorem 10.1. in [4].
In the sequel we denote the nullspace of the matrix $\left(\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 k} \\ a_{21} & a_{22} & \ldots & a_{2 k} \\ a_{31} & a_{32} & \ldots & a_{3 k}\end{array}\right)$ by N_{k} and note that N_{k} has dimension $k-3$, provided that $k \geq 3$. The embedding of $N_{k} \hookrightarrow \mathbf{K}^{r}$ by setting the additional coordinates to 0 will be omitted. The groups H_{k} can be identified with the nullspace N_{k} of A_{k} via the morphism of additive groups

$$
\psi_{k}: N_{k} \ni\left(\begin{array}{l}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right) \mapsto\left(\begin{array}{llll}
B_{1} & 0 & \ldots & 0 \\
0 & B_{2} & \ldots & 0 \\
0 & \ldots & \ddots & \vdots \\
0 & \ldots & 0 & B_{k}
\end{array}\right), B_{i}=\left(\begin{array}{cc}
1 & b_{i} \\
0 & 1
\end{array}\right) .
$$

We also omit the induced embedding of $H_{k} \hookrightarrow G L_{n}(\mathbf{K})$ for $1 \leq k \leq r$ by the embedding of N_{k} and note that $\psi_{k+1}\left(N_{k}\right)=\psi_{k}\left(N_{k}\right)$. In the sequel fix a basis $\beta_{1}, \beta_{2}, \ldots \beta_{k-3}$ of N_{k} for $4 \leq k \leq r$ s.t. $\beta_{1}, \beta_{2}, \ldots \beta_{k-4}$ is a basis of N_{k-1} and β_{k-3} extends the basis of N_{k-1} to a basis of N_{k}. Note that the groups $N_{1}=N_{2}=N_{3}=\{0\}$ and that N_{k} / N_{k-1} is isomorphic to \mathbf{G}_{a} for $4 \leq k \leq r$ via the mapping $\sum_{i=1}^{k-4} \lambda_{i} \beta_{i}+\lambda \beta_{k-3} \mapsto \lambda$. The map is well defined since $\beta_{1}, \beta_{2}, \ldots, \beta_{k-4}, \beta_{k-3}$ form a basis, and bijective, hence an isomorphism of additive groups.

These isomorphisms are used to define a linear action for each H_{k} / H_{k-1} on $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in such a way that the corresponding invariant rings are finitely generated. Firstly, we define
the representation ρ_{k}^{\prime} of N_{k} by

$$
\begin{aligned}
\rho_{k}^{\prime}: N_{k} & \rightarrow G L_{n}(\mathbf{K}), \\
\sum_{i=1}^{k-4} \lambda_{i} \beta_{i}+\lambda \beta_{k-3} & \mapsto \psi_{k}\left(\lambda \beta_{k-3}\right) .
\end{aligned}
$$

Note that ρ_{k}^{\prime} is well defined since $\beta_{1}, \beta_{2}, \ldots \beta_{k-3}$ form a basis, that ρ_{k}^{\prime} has kernel N_{k-1} and yields a linear representation of N_{k} / N_{k-1} on \mathbf{K}^{n}. By applying Weitzenböck's theorem we obtain the following result.
Proposition 2. For $4 \leq k \leq r$ the invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$ is finitely generated.
Proof. As noted above, the group \mathbf{G}_{a} is isomorphic to N_{k} / N_{k-1} and to H_{k} / H_{k-1} by sending $\lambda \in \mathbf{G}_{a}$ to $\left[\lambda \beta_{k-3}\right]$ or to $\left[\psi_{k}\left(\lambda \beta_{k-3}\right)\right]$ respectively. Let ϕ_{k} be the inverse of the isomorphism ψ_{k} and define the linear representation ρ_{k} of H_{k} / H_{k-1} by $\rho_{k}([\sigma]):=\rho_{k}^{\prime}\left(\phi_{k}(\sigma)\right)$. The representation is well defined because $\operatorname{ker} \rho_{k}^{\prime} \circ \phi_{k}=H_{k-1}$. Since H_{k} / H_{k-1} is isomorphic to \mathbf{G}_{a} and acts linearly on \mathbf{K}^{n} via ρ_{k}, the invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$ is finitely generated by Weitzenböck's theorem.

Proposition 3. For $4 \leq k \leq r$ the invariant ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}$ equals

$$
\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}=\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k-1}} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}
$$

Proof. If $f \in \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k-1}} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$, then f is invariant w.r.t. $\psi_{k}\left(\sum_{i=1}^{k-4} \lambda_{i} \beta_{i}\right)$ and $\psi_{k}\left(\lambda \beta_{k-3}\right)$ for $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k-4}, \lambda \in \mathbf{K}$. In particular, f is invariant w.r.t. $\psi_{k}\left(\sum_{i=1}^{k-4} \lambda_{i} \beta_{i}+\lambda \beta_{k-3}\right)$. Since $\beta_{1}, \beta_{2}, \ldots, \beta_{k-3}$ form a basis of N_{k} and ψ_{k} is an isomorphism, the polynomial f is invariant w.r.t. the group H_{k}. The converse inclusion is obvious.

We obtain the counterexample by showing that some $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}, 5 \leq k \leq r$, cannot be finitely generated.
Theorem 3. There exists $5 \leq k \leq r$ s.t.

$$
\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k-1}} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}
$$

is not finitely generated.
Proof. Firstly, assume that $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}}$ is finitely generated. The group T acts on $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}}$ since it is the normalizer of H_{r}. By Proposition 1, $\left(\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}}\right)^{T}$ is finitely generated and, since

$$
\begin{aligned}
\left(\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}}\right)^{T} & =\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}} \\
& =\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}
\end{aligned}
$$

is a contradiction to Nagata's theorem, the ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{r}}$ cannot be finitely generated. Therefore let $k \leq r$ be the minimal index s.t. $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}$ is not finitely generated. By Proposition $2, k>4$ and $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$ is finitely generated. By assumption, the ring $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k-1}}$ is finitely generated, but the intersection $\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k}}=\mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k-1}} \cap \mathbf{K}\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{H_{k} / H_{k-1}}$ is not finitely generated.

Acknowledgments

The author is grateful to the anonymous referee for the useful comments.

References

[1] A'Campo-Neuen, A.: Note on a counterexample to Hilbert's fourteenth problem given by P. Roberts. Indag. Math., N.S., 5(3) (1994), 253-257. Zbl 0839.13004
[2] Bayer, T.: Computing the Intersection of Invariant Rings. RISC Report 98-06, Johannes Kepler Universität, Linz 1998.
[3] Daigle, D.; Freudenburg, G.: A Counterexample to Hilbert's Fourteenth Problem in Dimension 5. J. Algebra 221 (1999), 528-535.

Zbl 0963.13024
[4] Grosshans, F.: Algebraic Homogeneous Spaces and Invariant Theory. Lecture Notes in Math. 1673, Springer Verlag Berlin, Heidelberg 1997.

Zbl 0886.14020
[5] Kraft, H.: Geometrische Methoden in der Invariantentheorie. 2. Auflage, Vieweg, Braun-schweig-Wiesbaden 1985.

Zbl 0669.14003
[6] Nagata, M.: On the Fourteenth Problem of Hilbert. Amer. J. Math. 81, 766-772 (1958).
Zbl 0127.26302
[7] Nagata, M.: Lectures on the Fourteenth Problem of Hilbert. Tata Institute, Bombay 1965.

Zbl 0182.54101
[8] Roberts, P.: An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth Problem. J. Algebra 132 (1990), 461-473.

Zbl 0716.13013
[9] Steinberg, R.: Nagata's example. Australian Math. Soc. Lecture Series 9, 375-384, Cambridge University Press 1997.

Zbl 0944.13003
[10] Weitzenböck, R.: Über die Invarianten von linearen Gruppen. Acta Math. 58 (1932), 231-293.

Zbl 0004.24301
[11] Vasconcelos, W.: Computational Methods in Commutative Algebra and Algebraic Geometry. Algorithms and Computations in Mathematics 2, Springer-Verlag, Berlin - Heidelberg - New York 1998.

Zbl 0970.00295

