A Classification of Contact Metric 3-Manifolds with Constant ξ -sectional and ϕ -sectional Curvatures

F. Gouli-Andreou Ph. J. Xenos

Department of Mathematics, Aristotle University of Thessaloniki Thessaloniki 540 06, Greece e-mail: fgouli@mailhost.ccf.auth.gr

Mathematics Division - School of Technology, Aristotle University of Thessaloniki Thessaloniki 540 06, Greece e-mail: fxenos@vergina.eng.auth.gr

Abstract. We study the 3-dimensional contact metric manifolds equipped with constant ξ -sectional curvature and ϕ -sectional curvature or constant norm of the Ricci operator.

MSC 2000: 53D10, 53C25, 53C15

1. Introduction

D. E. Blair in [2], [3] constructed a family of examples of $(3 - \tau)$ -manifolds which do not satisfy the condition $Q\phi = \phi Q$. The existence of these examples depends on the constancy of the ξ -sectional curvature. After this remark the following question raises:

Question 1: Does every $(3 - \tau)$ -manifold with constant ξ -sectional curvature satisfy the condition $Q\phi = \phi Q$?

S. Tanno in [16] stated the problem about the existence of (2n+1)-dimensional contact metric manifolds of constant ϕ -sectional curvature, which are not Sasakian. Positive answers have been given by D. E. Blair, Th. Koufogiorgos and R. Sharma in [5], for 3-dimensional contact metric manifolds satisfying $Q\phi = \phi Q$, Th. Koufogiorgos in [14], for (κ, μ) -contact metric

0138-4821/93 2.50 © 2002 Heldermann Verlag

manifolds of dimension greater than 3 and D. E. Blair, Th. Koufogiorgos and B. Papantoniou in [4] for (κ, μ) -contact metric manifolds of dimension 3. In [4] the authors, extending the Tanno's problem showed that there exist (κ, μ) -contact metric manifolds of dimension 3 which do not belong to the class of the manifolds satisfying $Q\phi = \phi Q$.

Extending Tanno's problem and the result of [4] we can state the following:

Question 2: Do there exist 3-dimensional contact metric manifolds of constant ϕ -sectional curvature, which do not belong to the class of (κ, μ) -contact metric manifolds?

Combination of the above mentioned questions leads us to the study of 3-dimensional contact metric manifolds of constant ξ -sectional and ϕ -sectional curvature.

The main goal of the present paper (Theorem 15) is the proof of the existence of two new classes of 3-dimensional contact metric manifolds with constant ξ -sectional and constant ϕ -sectional curvatures, which do not belong to the up to date well known classes ([4], [5]).

D. E. Blair, Th. Koufogiorgos and R. Sharma in [5] proved that a 3-dimensional contact metric manifold satisfying $Q\phi = \phi Q$ is flat or Sasakian or a manifold with constant ϕ -sectional curvature k and constant ξ -sectional curvature -k. In the present paper we prove the converse and so we can state the argument: A non-flat, non-Sasakian 3-dimensional contact metric manifold satisfies $Q\phi = \phi Q$ if and only if it has constant ϕ -sectional curvature k and constant ξ -sectional curvature -k.

Complete, conformally flat Riemannian manifolds with constant scalar curvature and the norm of the Ricci tensor bounded (respectively constant) were classified by Goldberg ([8]) in general dimension (respectively, by Cheng, Ishikawa and Shiohama [7] in dimension 3). On the other hand the first author and R. Sharma in [10] proved that a conformally flat, contact metric 3-manifold with Ricci curvature vanishing along the characteristic vector field ξ and the norm of its Ricci tensor being constant, is flat. Therefore, it is interesting to study 3-dimensional contact metric manifolds equipped with more general conditions: constant ξ -sectional curvature and constant norm of the Ricci operator along ξ .

2. Preliminaries

A contact metric manifold $M^{2n+1} \equiv M^{2n+1}(\phi, \xi, \eta, g)$ is a (2n+1)-dimensional Riemannian manifold on which has been defined globally a (1, 1) tensor field ϕ , a vector field ξ (characteristic vector field), a 1-form η (contact form) and a Riemannian metric g (associated metric) which satisfy:

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \eta(X) = g(X,\xi),$$

$$g(\phi X, \phi Y) = g(X,Y) - \eta(X)\eta(Y), \quad d\eta(X,Y) = g(X,\phi Y)$$

for all vector fields X and Y on M^{2n+1} . The structure (ϕ, ξ, η, g) is called *contact metric structure*.

Denoting by L and R the Lie derivation and the curvature tensor respectively, we define the operators l and h by

$$l := R(.,\xi)\xi, \quad \eta := \frac{1}{2}L_{\xi}\phi.$$

The tensors l and h are self-adjoint and satisfy

$$h\xi = l\xi = 0, \quad \eta \circ h = 0, \quad Trh = Trh\phi = 0, \quad h\phi + \phi h = 0.$$

On every contact metric manifold M^{2n+1} the following formulas hold

$$\eta \circ \phi = 0, \quad \phi \xi = 0, \quad d\eta(\xi, X) = 0, \quad \nabla_{\xi} \phi = 0, \\ \nabla_{X} \xi = -\phi X - \phi h X \quad (\Rightarrow \nabla_{\xi} \xi = 0), \quad \phi l \phi - l = 2(\phi^{2} + h^{2}), \\ \nabla_{\xi} h = \phi - \phi l - \phi h^{2}, \quad Trl = g(Q\xi, \xi) = 2n - trh^{2},$$
(1)

where ∇ is the Riemannian connection. On $M^{2n+1} \times \mathbf{R}$ we can define an almost complex structure J by $J(X, f\frac{d}{dt}) = (\phi X - f\xi, \eta(X)\frac{d}{dt})$, where f is a real-valued function. If Jis integrable, then the contact metric structure is said to be normal and M^{2n+1} is called *Sasakian*. A 3-dimensional contact metric manifold is Sasakian if and only if h = 0, ([1]).

The sectional curvature $K(X,\xi)$ of a plain section spanned by ξ and a vector field X orthogonal to ξ is called ξ -sectional curvature. The sectional curvature $K(X,\phi X)$ of a plain section spanned by the vector field X (orthogonal to ξ) and ϕX is called ϕ -sectional curvature.

It is well known that on every 3-dimensional Riemannian manifold the curvature tensor R(X,Y)Z is given by

$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + g(QY,Z)X - g(QX,Z)Y - \frac{S}{2}[g(Y,Z)X - g(X,Z)Y],$$
(2)

where Q is the Ricci operator, S(=TrQ) is the scalar curvature and X, Y and Z are arbitrary vector fields.

A 3-dimensional contact metric manifold satisfing $\nabla_{\xi} \tau = 0$, $(\tau = L_{\xi}g)$ is called $(3 - \tau)$ -manifold, ([11]).

A contact metric manifold $M^{2n+1}(\phi,\xi,\eta,g)$ is called (κ,μ) -contact metric manifold ([4]) if it satisfies the condition

$$R(X,Y)\xi = \kappa[\eta(Y)X - \eta(X)Y] + \mu[\eta(Y)hX - \eta(X)hY],$$

where κ and μ are real constants and X, Y are vector fields on M^{2n+1} .

3. Auxiliary results

Let M^3 be a 3-dimensional contact metric manifold. If $e \in \ker(\eta)$ is a unit eigenvector of h with eigenvalue λ , then ϕe is also an eigenvector of h with eigenvalue $-\lambda$. Hence, $(e, \phi e, \xi)$ is an orthonormal frame on M^3 .

Since e and ϕe are unit vector fields orthogonal to ξ , we see that

$$\nabla_{\xi} e = a\phi e, \quad \nabla_{\xi} \phi e = -\alpha e,$$

for some function a on M^3 . The orthogonality of $e, \phi e$ and ξ implies

$$\nabla_e e = b\phi e, \quad \nabla_{\phi e} \phi e = ce, \quad \nabla_e \phi e = -be + (\lambda + 1)\xi, \quad \nabla_{\phi e} e = -c\phi e + (\lambda - 1)\xi,$$

184 F. Gouli-Andreou, Ph. J. Xenos: A Classification of Contact Metric 3-Manifolds with ...

where b and c are functions on M^3 . Finally, from (1) we have

$$\nabla_e \xi = -(1+\lambda)\phi e, \quad \nabla_{\phi e} \xi = (1-\lambda)e.$$

Therefore, we can state the following

Lemma 1. Let M^3 be 3-dimensional contact metric manifold. Then, the following formulas hold:

$$\nabla_{\xi}e = a\phi e, \quad \nabla_{\xi}\phi e = -\alpha e, \quad \nabla_{e}e = b\phi e, \quad \nabla_{\phi e}\phi e = ce, \\
\nabla_{e}\phi e = -be + (\lambda + 1)\xi, \quad \nabla_{\phi e}e = -c\phi e + (\lambda - 1)\xi, \\
\nabla_{e}\xi = -(1 + \lambda)\phi e, \quad \nabla_{\phi e}\xi = (1 - \lambda)e,$$
(3)

where a, b and c are functions on M^3 .

Proposition 2. Let M^3 be 3-dimensional contact metric manifold of constant ξ -sectional curvature k. Then, M^3 is $(3 - \tau)$ -manifold with constant Trl.

Proof. By straightforward computation using (3) and $\nabla_{\xi} \xi = 0$ we obtain

$$le = (1 - \lambda^2 - 2\alpha\lambda)e + (\xi \cdot \lambda)\phi e, \quad l\phi e = (1 - \lambda^2 + 2\alpha\lambda)\phi e + (\xi \cdot \lambda)e,$$

and hence

$$1 - \lambda^2 - 2\alpha\lambda = k, \quad 1 - \lambda^2 + 2\alpha\lambda = k.$$

Adding the above two relations we obtain $2(1 - \lambda^2) = 2k$. Because of $Trl = 2(1 - \lambda^2)$ ([5]) we have Trl =constant. Subtracting the same relations we obtain $\alpha \lambda = 0$, that is $\alpha = 0$ or $\lambda = 0$.

If $\lambda = 0$, then M^3 is Sasakian, which is trivially $(3 - \tau)$ -manifold ([5]).

Suppose that a = 0. Taking into account that Trl = constant we obtain that $\nabla_{\xi} h = 0$. This relation and ([11]) complete the proof.

Proposition 2 and Theorem 3.2 of [12] imply the following

Corollary 3. Let M^3 be a 3-dimensional, conformally flat, contact metric manifold of constant ξ -sectional curvature. Then, M^3 is either flat or a Sasakian space form.

Proposition 2 and Theorem 3.1 of [14] imply the following

Corollary 4. Let M^3 be a 3-dimensional contact metric manifold of constant ξ -sectional curvature satisfing $R(e,\xi) \cdot R = 0$. Then, M^3 is either flat or a Sasakian manifold.

Proposition 2 and Theorem 3.1 of [13] imply the following

Corollary 5. Let M^3 be a 3-dimensional contact metric manifold of constant ξ -sectional curvature satisfing $R(e,\xi) \cdot C = 0$. Then, M^3 is either flat or a Sasakian manifold.

Proposition 2 and Theorem 5.1 of [11] imply the following

Corollary 6. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature and η -parallel Ricci tensor. Then, M^3 is either flat or a Sasakian space form.

Proposition 2 and Theorem 6.2 of [11] imply the following

Corollary 7. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature and cyclic η -parallel Ricci tensor. Then, M^3 is either flat or a Sasakian manifold with constant scalar curvature or of constant ξ -sectional curvature k < 1 and constant ϕ -sectional curvature -k.

Lemma 1, Proposition 2 and [11] imply:

Lemma 8. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature. Then, the following formulas hold:

$$\nabla_{\xi}e = \nabla_{\xi}\phi e = 0, \quad \nabla_{e}e = b\phi e, \quad \nabla_{\phi e}\phi e = ce, \\
\nabla_{e}\phi e = -be + (\lambda + 1)\xi, \quad \nabla_{\phi e}e = -c\phi e + (\lambda - 1)\xi, \\
\nabla_{e}\xi = -(1 + \lambda)\phi e, \quad \nabla_{\phi e}\xi = (1 - \lambda)e.$$
(4)

where a, b and c are functions on M^3 and λ is a constant.

Proposition 2 and [6] (relations 2.16) yield

Lemma 9. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature. Then, the following formulas hold:

$$Qe = (\lambda^2 + \frac{S}{2} - 1)e + 2\lambda b\xi, \quad \eta(Qe) = 2\lambda b,$$

$$Q\phi e = (\lambda^2 + \frac{S}{2} - 1)\phi e + 2\lambda c\xi, \quad \eta(Q\phi e) = 2\lambda c,$$

$$Q\xi = 2\lambda be + 2\lambda c\phi e + 2(1 - \lambda^2)\xi.$$
(5)

Lemma 10. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature. Then, either l = 0, or the following relations are equivalent: b = 0, c = 0.

Proof. Suppose that l is not identically equal to zero on M^3 . Let $\lambda^2 \neq 1$ on an open neighborhood U at a point $p \in M^3$, where $l \neq 0$. Applying the Jacobi's identity for the vector fields $e, \phi e, \xi$ and taking into account the relation (4) we obtain

$$\xi \cdot b = (\lambda - 1)c, \quad \xi \cdot c = (\lambda + 1)b. \tag{6}$$

Let b = 0 (or c = 0) on M^3 . Then, from the first (or the second) of (6) we conclude that c = 0 (or b = 0) on U. So, c = 0, (b = 0) on M^3 .

Remark 11. On a 3-dimensional contact metric manifold M^3 , we have b = c = 0 if and only if $Q\phi = \phi Q$, ([11]).

4. Main results

Theorem 12. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature. Then, either M^3 is Sasakian or

$$\xi \cdot \xi \cdot \xi \cdot S = 4(\lambda^2 - 1)(\xi \cdot S). \tag{7}$$

Proof. If l = 0 on M^3 , then $\lambda^2 = 1$ and $\xi \cdot \xi \cdot \xi \cdot S = 0$ ([9]).

Suppose that M^3 is not Sasakian and l is not identically equal to zero. So, let $\lambda^2 \neq 0, 1$ on an open neighborhood U of a point $p \in M^3$. Applying the second Bianchi's identity for the vector fields $e, \phi e$ and ξ we obtain

$$e \cdot b + \phi e \cdot c - \frac{1}{4\lambda} \xi \cdot S = 2bc.$$
(8)

Differentiating the above equation along ξ and taking into account (6) we obtain

$$\xi \cdot e \cdot b + \xi \cdot \phi e \cdot c - \frac{1}{4\lambda} \xi \cdot \xi \cdot S = 2(\lambda - 1)c^2 + 2(\lambda + 1)b^2.$$

Next, differentiating the first and the second equations of (6) with respect to e and ϕe respectively and adding the results we get

$$e \cdot \xi \cdot b + \phi e \cdot \xi \cdot c = (\lambda - 1)e \cdot c + (\lambda + 1)\phi e \cdot b$$

Hence,

$$[\xi, e]b + [\xi, \phi e]c = \frac{1}{4\lambda}\xi \cdot \xi \cdot S + 2(\lambda - 1)c^2 + 2(\lambda + 1)b^2 + (1 - \lambda)e \cdot c - (\lambda + 1)\phi e \cdot b.$$

The above equation using (4) yields

$$(\lambda+1)\phi e \cdot b + (\lambda-1)e \cdot c = \frac{1}{8\lambda}\xi \cdot \xi \cdot S + \lambda(b^2 + c^2) + b^2 - c^2.$$
(9)

Differentiating again (9) along ξ and taking into account (6) and (8) we obtain

$$(\lambda+1)\xi \cdot \phi e \cdot b + (\lambda-1)\xi \cdot e \cdot c = \frac{1}{8\lambda}\xi \cdot \xi \cdot \xi \cdot S + 4(\lambda^2 - 1)bc.$$
(10)

As $\lambda^2 \neq 1$ on U we obtain from (6) and (8)

$$(\lambda+1)\phi e \cdot \xi \cdot b + (\lambda-1)e \cdot \xi \cdot c = (\lambda^2 - 1)\left[\frac{1}{4\lambda}\xi \cdot S + 2bc\right].$$

Subtracting the above equation from (10) and using (4) the seeking formula follows at once. \Box

Theorem 13. Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature. If the norm of the Ricci operator is constant along ξ , then either $Q\phi = \phi Q$ or l = 0 with constant scalar curvature and $\eta(QX) = 0$ for all eigenvectors $X \in \text{ker}(\eta)$ of h with eigenvalue 1.

Proof. The square of the norm of the Ricci operator Q is $TrQ^2 = g(Q^2e, e) + g(Q^2\phi e, \phi e) + g(Q^2\xi, \xi)$ and is computed using (5) and turns out to be

$$(\lambda^2 + \frac{S}{2} - 1)^2 + 4\lambda^2(b^2 + c^2) + 2(1 - \lambda^2)^2 = \psi, \qquad (11)$$

where ψ is a smooth function on M^3 being constant along ξ .

Suppose that l = 0. Then, $\lambda^2 = 1$ and (11) yields

$$\frac{S^2}{4} + 4(b^2 + c^2) = \psi.$$
(12)

Differentiating three times the equation (12) along ξ and taking into account (6) and (7) for $\lambda = 1$ we obtain respectively

$$S(\xi \cdot S) + 32bc = 0,$$

$$S(\xi \cdot \xi \cdot S) + (\xi \cdot S)^2 + 64b^2 = 0,$$

$$(\xi \cdot S)(\xi \cdot \xi \cdot S) = 0.$$
(13)

Therefore, $\xi \cdot S = 0$. or $\xi \cdot \xi \cdot S = 0$.

Supposing $\xi \cdot S = 0$ from the first of (13) we have b = 0 or c = 0.

If b = 0, from (5) we obtain $\eta(Qe) = 0$.

If c = 0 then (6) implies b = 0 that is $Q\phi = \phi Q$. In this case the manifold is flat.

If $\xi \cdot \xi \cdot S = 0$ then from (13) we have $\xi \cdot S = 0$ and b = 0.

If M^3 is Sasakian then it is known that we have $Q\phi = \phi Q$.

Suppose that M^3 is not Sasakian with l not identically equal to zero. So, let be $\lambda^2 \neq 0, 1$ on an open neighborhood U of a point $p \in M^3$. Hence, we can write the equation (11) in the form

$$b^{2} + c^{2} = \frac{\psi}{4\lambda^{2}} + \frac{(\lambda^{2} - 1)^{2}}{2\lambda^{2}} - \frac{(\lambda^{2} + \frac{S}{2} - 1)^{2}}{4\lambda^{2}}$$

Differentiating the above equation along ξ and taking into account (6) we obtain

$$bc = -\frac{1}{16\lambda^2} (\lambda^2 + \frac{S}{2} - 1)(\xi \cdot S).$$
(14)

Differentiating two times the relation (14) with respect to ξ and using (6) and (14) we have

$$(\xi \cdot S)[8(1-\lambda^2)(\lambda^2 + \frac{S}{2} - 1) - 1 - \xi \cdot \xi \cdot S] = 0.$$

Hence,

$$\xi \cdot S = 0 \text{ or } \xi \cdot \xi \cdot S = 8(1 - \lambda^2)(\lambda^2 + \frac{S}{2} - 1) - 1.$$
 (15)

Supposing $\xi \cdot S = 0$, the equation (14) yields b = 0 or c = 0 on U and hence b = 0 or c = 0 on M^3 . Both cases using (6) imply $Q\phi = \phi Q$.

If the second of (15) holds on U, differentiating this relation along ξ and using Theorem 12 we obtain $\xi \cdot S = 0$ and therefore $Q\phi = \phi Q$.

Proposition 14. Let M^3 be a 3-dimensional non-Sasakian contact metric manifold with constant ξ -sectional curvature. If l is not identically equal to zero then the following formulas hold:

$$e \cdot b = \frac{1}{8\lambda} \xi \cdot S + bc + \Phi, \tag{16}$$

$$\phi e \cdot b = \frac{1}{16\lambda} \xi \cdot \xi \cdot S + \frac{1}{2} (1 - \lambda) (\lambda^2 + \frac{S}{2} - 1) + b^2, \tag{17}$$

$$e \cdot c = -\frac{1}{16\lambda} \xi \cdot \xi \cdot S + \frac{1}{2} (1+\lambda)(\lambda^2 + \frac{S}{2} - 1) + c^2, \tag{18}$$

$$\phi e \cdot c = \frac{1}{8\lambda} \xi \cdot S + bc - \Phi. \tag{19}$$

where Φ is a smooth function on M^3 such that

$$\xi \cdot \Phi = 0, \tag{20}$$

$$e \cdot \Phi = \frac{1}{16\lambda} [\phi e \cdot \xi \cdot \xi \cdot S - 2b(\xi \cdot \xi \cdot S) + 2(e \cdot \xi \cdot S) - 4c(\xi \cdot S) - 4c(\xi \cdot S) - 4\lambda(\lambda + 1)(\phi e \cdot S)] + (\lambda + 1)(\lambda^2 + \frac{S}{2} - 3)b + 4c\Phi, \qquad (21)$$

$$\phi e \cdot \Phi = \frac{1}{16\lambda} [e \cdot \xi \cdot \xi \cdot S - 2c(\xi \cdot \xi \cdot S) - 2(\phi e \cdot \xi \cdot S) + 4b(\xi \cdot S) + 4\lambda(1-\lambda)(e \cdot S)] + (\lambda-1)(\lambda^2 + \frac{S}{2} - 3)c + 4b\Phi.$$
(22)

Proof. Calculating $R(e, \phi e)\xi$ firstly by straightforward computation using Lemma 8 and secondly from the relation (2) we obtain

$$\phi e \cdot b + e \cdot c = b^2 + c^2 + \lambda^2 - 1 + \frac{S}{2}.$$
(23)

From (23) and (9) the relations (17) and (18) follow at once.

Differentiating (17) first with respect to ξ (respectively with respect to e) and secondly with respect to e (respectively with respect to ξ) and using (6) we have

$$\xi \cdot e \cdot \phi e \cdot b = \frac{\lambda - 1}{4\lambda} e \cdot \xi \cdot S + 2(\lambda - 1)[e \cdot (bc)]$$
(24)

respectively

$$e \cdot \xi \cdot \phi e \cdot b = \frac{1}{16\lambda} (\xi \cdot e \cdot \xi \cdot \xi \cdot S) + \frac{1-\lambda}{4} (\xi \cdot e \cdot S) + \frac{1-\lambda}{4} (\xi \cdot e \cdot S) + 2b(\xi \cdot e \cdot b) + 2(\lambda - 1)c(e \cdot b).$$
(25)

F. Gouli-Andreou, Ph. J. Xenos: A Classification of Contact Metric 3-Manifolds with ... 189

Differentiation of the relation (7) along e implies

$$\frac{1}{16\lambda}(e \cdot \xi \cdot \xi \cdot \xi \cdot S) = \frac{\lambda^2 - 1}{4\lambda}(e \cdot \xi \cdot S).$$
(26)

Adding (25) and (26) and using Lemma 8 we obtain

$$\xi \cdot e \cdot \phi e \cdot b = \frac{\lambda + 1}{16\lambda} (\phi e \cdot \xi \cdot \xi \cdot S) + \frac{\lambda^2 - 1}{4\lambda} (e \cdot \xi \cdot S) + \frac{1 - \lambda}{4} (\xi \cdot e \cdot S) + 2b(\xi \cdot e \cdot b) + 2(\lambda - 1)c(e \cdot b).$$

$$(27)$$

Subtraction of (24) from (27) yields

$$(\lambda+1)\phi e \cdot \phi e \cdot b = \frac{\lambda+1}{16\lambda}(\phi e \cdot \xi \cdot \xi \cdot S) + \frac{1-\lambda^2}{4}(\phi e \cdot S) + 2b(\xi \cdot e \cdot b) + 2(1-\lambda)b(e \cdot c).$$
(28)

On the other hand differentiation of (17) with respect to ϕe using $\lambda^2 \neq 1$ (since $l \neq 0$) implies

$$(\lambda+1)(\phi e \cdot \phi e \cdot b) = \frac{\lambda+1}{16\lambda}(\phi e \cdot \xi \cdot \xi \cdot S) + \frac{1-\lambda^2}{4}(\phi e \cdot S) + 2(\lambda+1)b(\phi e \cdot b).$$

Comparing the above relation with (28) we obtain

$$b = 0, \quad \xi \cdot e \cdot b = (\lambda + 1)\phi e \cdot b + (\lambda - 1)e \cdot c. \tag{29}$$

If b = 0 Lemma 10 implies c = 0, therefore from Remark 11 we obtain $Q\phi = \phi Q$. In this case it has been proved ([5]) that S = constant, which means that (16) and (19) are trivial $(\Phi = 0)$.

Differentiating (18) first with respect to ξ (respectively to ϕe) and secondly with respect to ϕe (respectively to ξ) and following the technique used to prove the relation (29) we can show that either $Q\phi = \phi Q$ or

$$\xi \cdot \phi e \cdot c = (\lambda + 1)\phi e \cdot b + (\lambda - 1)e \cdot c. \tag{30}$$

We suppose that the second of (29) and (30) hold on M^3 .

Using (6), (17) and (18) we obtain

$$\xi \cdot e \cdot b = \xi \cdot \phi e \cdot c = \frac{1}{8\lambda} (\xi \cdot \xi \cdot S) + \xi \cdot (bc).$$

From the above relation and (23) the relations (16) and (19) follow at once.

Now we compute $[e, \phi e]b$ (respectively $[e, \phi e]c$) in two ways, first using (16) and (17) (respectively (18), (19)) as $e \cdot \phi e \cdot b - \phi e \cdot e \cdot b$ (respectively $e \cdot \phi e \cdot c - \phi e \cdot e \cdot c$), and secondly through (4), (6), (16) and (17) as $(\nabla_e \phi e - \nabla_{\phi e} e)b$ (respectively (4), (6), (18) and (19) as $(\nabla_e \phi e - \nabla_{\phi e} e)c$). Comparing the two resulting expressions we obtain (22) (respectively (21)). **Theorem 15.** Let M^3 be a 3-dimensional contact metric manifold with constant ξ -sectional curvature k and constant ϕ -sectional curvature m. Then, one of the following conditions holds:

(i) M^3 is Sasakian, (ii) $Q\phi = \phi Q$, and m = -k, (iii) l = 0, (iv) $k + m = \frac{2}{3}$, (v) k + m = -2.

Proof. We suppose that M^3 is a non-Sasakian manifold with l being not identically equal to zero.

It is known ([5]) that on every 3-dimensional contact metric manifold $K(e, \phi e) = \frac{S}{2} - Trl$. Hence, this relation and Proposition 2 imply that S = constant. In this case the relations (16), (17), (18), (19), (21) and (22) take the form:

$$e \cdot b = bc + \Phi, \tag{31}$$

$$\phi e \cdot b = b^2 + \frac{1 - \lambda}{2} (\lambda^2 + \frac{S}{2} - 1), \qquad (32)$$

$$e \cdot c = c^2 + \frac{1+\lambda}{2}(\lambda^2 + \frac{S}{2} - 1),$$
(33)

$$\phi e \cdot c = bc - \Phi, \tag{34}$$

$$e \cdot \Phi = (\lambda + 1)(\lambda^2 + \frac{S}{2} - 3)b + 4c\Phi,$$
 (35)

$$\phi e \cdot \Phi = (\lambda - 1)(\lambda^2 + \frac{S}{2} - 3)c + 4b\Phi.$$
 (36)

Computing $[e, \phi e]\Phi$ in two different ways (as in the last part of the proof of Proposition 14), using (4), (20), (35) and (36) we obtain

$$8\Phi^2 = (\lambda^2 + \frac{S}{2} - 3)[-4(\lambda + 1)b^2 + 4(\lambda - 1)c^2 + (1 - \lambda^2)(\lambda^2 + \frac{S}{2} - 1)].$$
 (37)

Differentiating (37) with respect to e (respectively to ϕe) and taking into account (31), (33), (35) and (37) (respectively (32), (34), (36) and (37)) we have

$$\begin{split} &(\lambda^2+\frac{S}{2}-3)[-(\lambda+1)b^2c+(\lambda-1)c^3+\frac{1-\lambda^2}{2}(\lambda^2+\frac{S}{2}-1)c+(\lambda+1)b\Phi]=0,\\ &(\lambda^2+\frac{S}{2}-3)[-(\lambda+1)b^3+(\lambda-1)bc^2+\frac{1-\lambda^2}{2}(\lambda^2+\frac{S}{2}-1)b+(\lambda-1)c\Phi]=0. \end{split}$$

Hence, either

$$\lambda^2 + \frac{S}{2} - 3 = 0,$$

or

$$(\lambda + 1)b\Phi = c[(\lambda + 1)b^{2} + (1 - \lambda)c^{2} + \frac{\lambda^{2} - 1}{2}(\lambda^{2} + \frac{S}{2} - 1)] = 0$$
(38)

and

$$(\lambda - 1)c\Phi = b[(\lambda + 1)b^2 + (1 - \lambda)c^2 + \frac{\lambda^2 - 1}{2}(\lambda^2 + \frac{S}{2} - 1)] = 0.$$
(39)

Suppose that $\lambda^2 + \frac{S}{2} - 3 = 0$, then using $K(e, \phi e) = \frac{S}{2} - Trl$, $Trl = 2(1 - \lambda^2)$ and $K(e, \xi) = \frac{Trl}{2}$, we obtain k + m = -2.

In this case using [16] we conclude that if k = -3 and m = 1, then M^3 is Sasakian. Also, for k + m = -2 and m > 1 we obtain a new class of contact metric 3-manifolds, which does not belong to the (κ, μ) -contact metric manifolds, ([4]).

Suppose now that (38) and (39) hold. If b = 0 (respectively c = 0), then (6) implies c = 0 (respectively b = 0) and therefore $Q\phi = \phi Q$. In this case using [5] we have m = -k. If $bc \neq 0$, multiplying (38) with b and (39) with c we obtain

$$\Phi[(\lambda + 1)b^{2} + (1 - \lambda)c^{2}] = 0.$$

Case A: $\Phi = 0$. The relation (37) yields

$$(\lambda+1)b^2 + (1-\lambda)c^2 + \frac{\lambda^2 - 1}{4}(\lambda^2 + \frac{S}{2} - 1) = 0.$$

On the other hand the relation (38) yields

$$(\lambda+1)b^2 + (1-\lambda)c^2 + \frac{\lambda^2 - 1}{2}(\lambda^2 + \frac{S}{2} - 1) = 0.$$

Comparing the last two relations we obtain either $\lambda^2 = 1$, a contradiction because of the assumption that l is not identically equal to zero on M^3 , or

$$\lambda^2 + \frac{S}{2} - 1 = 0$$

From $\Phi = 0$, (31), (32), (33) and (34) we obtain

$$e \cdot b = \phi e \cdot c = bc, \quad \phi e \cdot b = b^2, \quad \phi e \cdot c = c^2.$$
 (40)

Computing $[e, \phi e]b$ in two ways (by use of (4) and (40)) and comparing the results we obtain $\xi \cdot b = 0$. Hence, from the assumption $\lambda^2 \neq 1$ and (6) we obtain b = c = 0, a contradiction.

192 F. Gouli-Andreou, Ph. J. Xenos: A Classification of Contact Metric 3-Manifolds with ...

Case B:

$$\Phi \neq 0 \quad and \quad (\lambda + 1)b^2 + (1 - \lambda)c^2 = 0.$$
 (41)

The relations (38), (39) and (41) with the assumption $\lambda^2 \neq 1$ yield

$$b\Phi = \frac{\lambda - 1}{2} (\lambda^2 + \frac{S}{2} - 1)c, \qquad (42)$$

$$c\Phi = \frac{\lambda+1}{2}(\lambda^2 + \frac{S}{2} - 1)b.$$
 (43)

On the other hand (37) and (41) imply

$$8\Phi^2 = (\lambda^2 + \frac{S}{2} - 3)(1 - \lambda^2)(\lambda^2 + \frac{S}{2} - 1).$$

Hence, $\Phi = \text{constant}$. This conclusion and the relations (35) and (36) yield

$$4b\Phi = (1 - \lambda)(\lambda^2 + \frac{S}{2} - 3)c,$$
(44)

$$4c\Phi = -(\lambda + 1)(\lambda^2 + \frac{S}{2} - 3)b.$$
(45)

Comparing (42) with (44) or (43) with (45) we obtain

$$\lambda^2 + \frac{S}{2} = \frac{5}{3}$$

Taking into account the last relation, $K(e, \phi e) = \frac{S}{2} - Trl$, $Trl = 2(1 - \lambda^2)$ and $K(e, \xi) = \frac{Trl}{2}$, we obtain $k + m = \frac{2}{3}$.

In this case using [16] we conclude that if k = 1 and $m = -\frac{1}{3}$, then M^3 is Sasakian. Also, for $k + m = \frac{2}{3}$ and $m > -\frac{1}{3}$ we obtain a new class of contact metric 3-manifolds, which does not belong to the (κ, μ) -contact metric manifolds, ([4]).

References

- Blair, D. E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics 509, Springer-Verlag, Berlin 1976.
- [2] Blair, D. E.: Special directions on contact metric manifolds of negative ξ -sectional curvature. Ann. Fac. Sc. de Toulouse(6) **7**(3) (1998), 365–378. Zbl 0918.53012
- [3] Blair, D. E.: On the class of contact metric manifolds with (3τ) -structure. Note Mat. **16**(1) (1996), 99–104. Zbl 0918.53013
- [4] Blair, D. E.; Koufogiorgos, T.; Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91(1-3) (1995), 189–214.
 Zbl 0837.53038

- F. Gouli-Andreou, Ph. J. Xenos: A Classification of Contact Metric 3-Manifolds with ... 193
- [5] Blair, D. E.; Koufogiorgos, T.; Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q\phi = \phi Q$. Kodai Math. J. **13**(3) (1990), 391–401. <u>Zbl 0716.53041</u>
- [6] Calvaruso, G.; Perrone, D.; Vanhecke, L.: Homogeneity on three-dimensional contact metric manifolds. Israel J. Math. 114(1999), 301–321.
 Zbl 0957.53017
- [7] Cheng, Q., Ishikawa, S.; Shiohama, K.: Conformally flat 3-manifolds with constant scalar curvature. J. Math. Soc. Japan 51(1) (1999), 209–226.
 Zbl 0949.53023
- [8] Goldberg, S. I.: An application of Yau's maximum principle to conformally flat spaces. Proc. Amer. Math. Soc. 79(2) (1980), 268–270.
 Zbl 0452.53026
- [9] Gouli-Andreou, F.: On contact metric 3-manifolds with $R(X,\xi)\xi = 0$. Algebras Groups Geom. **17**(4) (2000), 393–400.
- [10] Gouli-Andreou, F.; Sharma, R.: A class of conformally flat contact metric 3-manifolds. Preprint.
- [11] Gouli-Andreou, F.; Xenos, Ph. J.: On 3-dimensional contact metric manifolds with $\nabla_{\xi} \tau = 0.$ J. Geom. 62 (1998), 154–165. Zbl 0905.53024
- [12] Gouli-Andreou, F.; Xenos, Ph. J.: Two classes of conformally flat contact metric 3manifolds. J. Geom. 64 (1999), 80–88.
 Zbl 0918.53015
- [13] Gouli-Andreou, F.; Xenos, Ph. J.: On a type of contact metric 3-manifolds. Yokohama Math. J. 46 (1999), 109–118.
 Zbl 0956.53036
- [14] Koufogiorgos, Th.: Contact Riemannian manifolds with constant φ-sectional curvature. Tokyo J. Math. 20(1) (1997), 13–22.
 Zbl 0882.53032
- [15] Perrone, D.: Contact Riemannian manifolds satisfying $R(X,\xi) \cdot R = 0$. Yokohama Math. J. **39** (1992), 141–149. Zbl 0777.53046
- [16] Tanno, S.: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J. 40 (1988), 441–448.
 Zbl 0655.53035

Received November 29, 2000