A Classification of Contact Metric 3-Manifolds with Constant $\boldsymbol{\xi}$-sectional and ϕ-sectional Curvatures

F. Gouli-Andreou
Department of Mathematics, Aristotle University of Thessaloniki
Thessaloniki 540 06, Greece
e-mail: fgouli@mailhost.ccf.auth.gr
Mathematics Division - School of Technology, Aristotle University of Thessaloniki Thessaloniki 540 06, Greece
e-mail: fxenos@vergina.eng.auth.gr

Abstract

We study the 3-dimensional contact metric manifolds equipped with constant ξ-sectional curvature and ϕ-sectional curvature or constant norm of the Ricci operator.

MSC 2000: 53D10, 53C25, 53C15

1. Introduction

D. E. Blair in [2], [3] constructed a family of examples of $(3-\tau)$-manifolds which do not satisfy the condition $Q \phi=\phi Q$. The existence of these examples depends on the constancy of the ξ-sectional curvature. After this remark the following question raises:
Question 1: Does every $(3-\tau)$-manifold with constant ξ-sectional curvature satisfy the condition $Q \phi=\phi Q$?
S. Tanno in [16] stated the problem about the existence of ($2 n+1$)-dimensional contact metric manifolds of constant ϕ-sectional curvature, which are not Sasakian. Positive answers have been given by D. E. Blair, Th. Koufogiorgos and R. Sharma in [5], for 3-dimensional contact metric manifolds satisfying $Q \phi=\phi Q$, Th. Koufogiorgos in [14], for ($\kappa, \mu)$-contact metric

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag
manifolds of dimension greater than 3 and D. E. Blair, Th. Koufogiorgos and B. Papantoniou in [4] for (κ, μ)-contact metric manifolds of dimension 3. In [4] the authors, extending the Tanno's problem showed that there exist (κ, μ)-contact metric manifolds of dimension 3 which do not belong to the class of the manifolds satisfying $Q \phi=\phi Q$.

Extending Tanno's problem and the result of [4] we can state the following:
Question 2: Do there exist 3-dimensional contact metric manifolds of constant ϕ-sectional curvature, which do not belong to the class of (κ, μ)-contact metric manifolds?
Combination of the above mentioned questions leads us to the study of 3-dimensional contact metric manifolds of constant ξ-sectional and ϕ-sectional curvature.

The main goal of the present paper (Theorem 15) is the proof of the existence of two new classes of 3 -dimensional contact metric manifolds with constant ξ-sectional and constant ϕ-sectional curvatures, which do not belong to the up to date well known classes ([4], [5]).
D. E. Blair, Th. Koufogiorgos and R. Sharma in [5] proved that a 3-dimensional contact metric manifold satisfying $Q \phi=\phi Q$ is flat or Sasakian or a manifold with constant ϕ sectional curvature k and constant ξ-sectional curvature $-k$. In the present paper we prove the converse and so we can state the argument: A non-flat, non-Sasakian 3-dimensional contact metric manifold satisfies $Q \phi=\phi Q$ if and only if it has constant ϕ-sectional curvature k and constant ξ-sectional curvature $-k$.

Complete, conformally flat Riemannian manifolds with constant scalar curvature and the norm of the Ricci tensor bounded (respectively constant) were classified by Goldberg ([8]) in general dimension (respectively, by Cheng, Ishikawa and Shiohama [7] in dimension 3). On the other hand the first author and R. Sharma in [10] proved that a conformally flat, contact metric 3 -manifold with Ricci curvature vanishing along the characteristic vector field ξ and the norm of its Ricci tensor being constant, is flat. Therefore, it is interesting to study 3 -dimensional contact metric manifolds equipped with more general conditions: constant ξ-sectional curvature and constant norm of the Ricci operator along ξ.

2. Preliminaries

A contact metric manifold $M^{2 n+1} \equiv M^{2 n+1}(\phi, \xi, \eta, g)$ is a $(2 n+1)$-dimensional Riemannian manifold on which has been defined globally a $(1,1)$ tensor field ϕ, a vector field ξ (characteristic vector field), a 1 -form η (contact form) and a Riemannian metric g (associated metric) which satisfy:

$$
\begin{aligned}
\phi^{2} & =-I+\eta \otimes \xi, \quad \eta(\xi)=1, \quad \eta(X)=g(X, \xi) \\
g(\phi X, \phi Y) & =g(X, Y)-\eta(X) \eta(Y), \quad d \eta(X, Y)=g(X, \phi Y)
\end{aligned}
$$

for all vector fields X and Y on $M^{2 n+1}$. The structure (ϕ, ξ, η, g) is called contact metric structure.

Denoting by L and R the Lie derivation and the curvature tensor respectively, we define the operators l and h by

$$
l:=R(., \xi) \xi, \quad \eta:=\frac{1}{2} L_{\xi} \phi .
$$

The tensors l and h are self-adjoint and satisfy

$$
h \xi=l \xi=0, \quad \eta \circ h=0, \quad \operatorname{Tr} h=\operatorname{Tr} h \phi=0, \quad h \phi+\phi h=0
$$

On every contact metric manifold $M^{2 n+1}$ the following formulas hold

$$
\begin{align*}
\eta \circ \phi & =0, \quad \phi \xi=0, \quad d \eta(\xi, X)=0, \quad \nabla_{\xi} \phi=0 \\
\nabla_{X} \xi & =-\phi X-\phi h X \quad\left(\Rightarrow \nabla_{\xi} \xi=0\right), \quad \phi l \phi-l=2\left(\phi^{2}+h^{2}\right) \tag{1}\\
\nabla_{\xi} h & =\phi-\phi l-\phi h^{2}, \quad \operatorname{Trl}=g(Q \xi, \xi)=2 n-t r h^{2}
\end{align*}
$$

where ∇ is the Riemannian connection. On $M^{2 n+1} \times \mathbf{R}$ we can define an almost complex structure J by $J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)$, where f is a real-valued function. If J is integrable, then the contact metric structure is said to be normal and $M^{2 n+1}$ is called Sasakian. A 3-dimensional contact metric manifold is Sasakian if and only if $h=0$, ([1]).

The sectional curvature $K(X, \xi)$ of a plain section spanned by ξ and a vector field X orthogonal to ξ is called ξ-sectional curvature. The sectional curvature $K(X, \phi X)$ of a plain section spanned by the vector field X (orthogonal to ξ) and ϕX is called ϕ-sectional curvature.

It is well known that on every 3-dimensional Riemannian manifold the curvature tensor $R(X, Y) Z$ is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+g(Q Y, Z) X-g(Q X, Z) Y \\
& -\frac{S}{2}[g(Y, Z) X-g(X, Z) Y] \tag{2}
\end{align*}
$$

where Q is the Ricci operator, $S(=\operatorname{Tr} Q)$ is the scalar curvature and X, Y and Z are arbitrary vector fields.

A 3-dimensional contact metric manifold satisfing $\nabla_{\xi} \tau=0,\left(\tau=L_{\xi} g\right)$ is called $(3-\tau)$ manifold, ([11]).

A contact metric manifold $M^{2 n+1}(\phi, \xi, \eta, g)$ is called (κ, μ)-contact metric manifold ([4]) if it satisfies the condition

$$
R(X, Y) \xi=\kappa[\eta(Y) X-\eta(X) Y]+\mu[\eta(Y) h X-\eta(X) h Y]
$$

where κ and μ are real constants and X, Y are vector fields on $M^{2 n+1}$.

3. Auxiliary results

Let M^{3} be a 3 -dimensional contact metric manifold. If $e \in \operatorname{ker}(\eta)$ is a unit eigenvector of h with eigenvalue λ, then ϕe is also an eigenvector of h with eigenvalue $-\lambda$. Hence, $(e, \phi e, \xi)$ is an orthonormal frame on M^{3}.

Since e and ϕe are unit vector fields orthogonal to ξ, we see that

$$
\nabla_{\xi} e=a \phi e, \quad \nabla_{\xi} \phi e=-\alpha e
$$

for some function a on M^{3}. The orthogonality of $e, \phi e$ and ξ implies

$$
\nabla_{e} e=b \phi e, \quad \nabla_{\phi e} \phi e=c e, \quad \nabla_{e} \phi e=-b e+(\lambda+1) \xi, \quad \nabla_{\phi e} e=-c \phi e+(\lambda-1) \xi
$$

where b and c are functions on M^{3}. Finally, from (1) we have

$$
\nabla_{e} \xi=-(1+\lambda) \phi e, \quad \nabla_{\phi e} \xi=(1-\lambda) e .
$$

Therefore, we can state the following
Lemma 1. Let M^{3} be 3-dimensional contact metric manifold. Then, the following formulas hold:

$$
\begin{align*}
\nabla_{\xi} e & =a \phi e, \quad \nabla_{\xi} \phi e=-\alpha e, \quad \nabla_{e} e=b \phi e, \quad \nabla_{\phi e} \phi e=c e, \\
\nabla_{e} \phi e & =-b e+(\lambda+1) \xi, \quad \nabla_{\phi e} e=-c \phi e+(\lambda-1) \xi, \tag{3}\\
\nabla_{e} \xi & =-(1+\lambda) \phi e, \quad \nabla_{\phi e} \xi=(1-\lambda) e,
\end{align*}
$$

where a, b and c are functions on M^{3}.
Proposition 2. Let M^{3} be 3-dimensional contact metric manifold of constant ξ-sectional curvature k. Then, M^{3} is $(3-\tau)$-manifold with constant Trl.

Proof. By straightforward computation using (3) and $\nabla_{\xi} \xi=0$ we obtain

$$
l e=\left(1-\lambda^{2}-2 \alpha \lambda\right) e+(\xi \cdot \lambda) \phi e, \quad l \phi e=\left(1-\lambda^{2}+2 \alpha \lambda\right) \phi e+(\xi \cdot \lambda) e,
$$

and hence

$$
1-\lambda^{2}-2 \alpha \lambda=k, \quad 1-\lambda^{2}+2 \alpha \lambda=k
$$

Adding the above two relations we obtain $2\left(1-\lambda^{2}\right)=2 k$. Because of $\operatorname{Tr} l=2\left(1-\lambda^{2}\right)([5])$ we have $\operatorname{Trl}=$ constant. Subtracting the same relations we obtain $\alpha \lambda=0$, that is $\alpha=0$ or $\lambda=0$.

If $\lambda=0$, then M^{3} is Sasakian, which is trivially $(3-\tau)$-manifold ([5]).
Suppose that $a=0$. Taking into account that $\operatorname{Trl}=$ constant we obtain that $\nabla_{\xi} h=0$.
This relation and ([11]) complete the proof.
Proposition 2 and Theorem 3.2 of [12] imply the following
Corollary 3. Let M^{3} be a 3-dimensional, conformally flat, contact metric manifold of constant ξ-sectional curvature. Then, M^{3} is either flat or a Sasakian space form.

Proposition 2 and Theorem 3.1 of [14] imply the following
Corollary 4. Let M^{3} be a 3-dimensional contact metric manifold of constant ξ-sectional curvature satisfing $R(e, \xi) \cdot R=0$. Then, M^{3} is either flat or a Sasakian manifold.

Proposition 2 and Theorem 3.1 of [13] imply the following
Corollary 5. Let M^{3} be a 3-dimensional contact metric manifold of constant ξ-sectional curvature satisfing $R(e, \xi) \cdot C=0$. Then, M^{3} is either flat or a Sasakian manifold.

Proposition 2 and Theorem 5.1 of [11] imply the following

Corollary 6. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature and η-parallel Ricci tensor. Then, M^{3} is either flat or a Sasakian space form.

Proposition 2 and Theorem 6.2 of [11] imply the following
Corollary 7. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature and cyclic η-parallel Ricci tensor. Then, M^{3} is either flat or a Sasakian manifold with constant scalar curvature or of constant ξ-sectional curvature $k<1$ and constant ϕ sectional curvature $-k$.

Lemma 1, Proposition 2 and [11] imply:
Lemma 8. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature. Then, the following formulas hold:

$$
\begin{align*}
\nabla_{\xi} e & =\nabla_{\xi} \phi e=0, \quad \nabla_{e} e=b \phi e, \quad \nabla_{\phi e} \phi e=c e \\
\nabla_{e} \phi e & =-b e+(\lambda+1) \xi, \quad \nabla_{\phi e} e=-c \phi e+(\lambda-1) \xi, \tag{4}\\
\nabla_{e} \xi & =-(1+\lambda) \phi e, \quad \nabla_{\phi e} \xi=(1-\lambda) e
\end{align*}
$$

where a, b and c are functions on M^{3} and λ is a constant.
Proposition 2 and [6] (relations 2.16) yield
Lemma 9. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature. Then, the following formulas hold:

$$
\begin{gather*}
Q e=\left(\lambda^{2}+\frac{S}{2}-1\right) e+2 \lambda b \xi, \quad \eta(Q e)=2 \lambda b, \\
Q \phi e=\left(\lambda^{2}+\frac{S}{2}-1\right) \phi e+2 \lambda c \xi, \quad \eta(Q \phi e)=2 \lambda c, \tag{5}\\
Q \xi=2 \lambda b e+2 \lambda c \phi e+2\left(1-\lambda^{2}\right) \xi
\end{gather*}
$$

Lemma 10. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature. Then, either $l=0$, or the following relations are equivalent: $b=0, c=0$.

Proof. Suppose that l is not identically equal to zero on M^{3}. Let $\lambda^{2} \neq 1$ on an open neighborhood U at a point $p \in M^{3}$, where $l \neq 0$. Applying the Jacobi's identity for the vector fields $e, \phi e, \xi$ and taking into account the relation (4) we obtain

$$
\begin{equation*}
\xi \cdot b=(\lambda-1) c, \quad \xi \cdot c=(\lambda+1) b . \tag{6}
\end{equation*}
$$

Let $b=0$ (or $c=0$) on M^{3}. Then, from the first (or the second) of (6) we conclude that $c=0($ or $b=0)$ on U. So, $c=0,(b=0)$ on M^{3}.

Remark 11. On a 3-dimensional contact metric manifold M^{3}, we have $b=c=0$ if and only if $Q \phi=\phi Q$, ([11]).

4. Main results

Theorem 12. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature. Then, either M^{3} is Sasakian or

$$
\begin{equation*}
\xi \cdot \xi \cdot \xi \cdot S=4\left(\lambda^{2}-1\right)(\xi \cdot S) \tag{7}
\end{equation*}
$$

Proof. If $l=0$ on M^{3}, then $\lambda^{2}=1$ and $\xi \cdot \xi \cdot \xi \cdot S=0([9])$.
Suppose that M^{3} is not Sasakian and l is not identically equal to zero. So, let $\lambda^{2} \neq 0,1$ on an open neighborhood U of a point $p \in M^{3}$. Applying the second Bianchi's identity for the vector fields $e, \phi e$ and ξ we obtain

$$
\begin{equation*}
e \cdot b+\phi e \cdot c-\frac{1}{4 \lambda} \xi \cdot S=2 b c . \tag{8}
\end{equation*}
$$

Differentiating the above equation along ξ and taking into account (6) we obtain

$$
\xi \cdot e \cdot b+\xi \cdot \phi e \cdot c-\frac{1}{4 \lambda} \xi \cdot \xi \cdot S=2(\lambda-1) c^{2}+2(\lambda+1) b^{2}
$$

Next, differentiating the first and the second equations of (6) with respect to e and ϕe respectively and adding the results we get

$$
e \cdot \xi \cdot b+\phi e \cdot \xi \cdot c=(\lambda-1) e \cdot c+(\lambda+1) \phi e \cdot b
$$

Hence,

$$
[\xi, e] b+[\xi, \phi e] c=\frac{1}{4 \lambda} \xi \cdot \xi \cdot S+2(\lambda-1) c^{2}+2(\lambda+1) b^{2}+(1-\lambda) e \cdot c-(\lambda+1) \phi e \cdot b .
$$

The above equation using (4) yields

$$
\begin{equation*}
(\lambda+1) \phi e \cdot b+(\lambda-1) e \cdot c=\frac{1}{8 \lambda} \xi \cdot \xi \cdot S+\lambda\left(b^{2}+c^{2}\right)+b^{2}-c^{2} \tag{9}
\end{equation*}
$$

Differentiating again (9) along ξ and taking into account (6) and (8) we obtain

$$
\begin{equation*}
(\lambda+1) \xi \cdot \phi e \cdot b+(\lambda-1) \xi \cdot e \cdot c=\frac{1}{8 \lambda} \xi \cdot \xi \cdot \xi \cdot S+4\left(\lambda^{2}-1\right) b c . \tag{10}
\end{equation*}
$$

As $\lambda^{2} \neq 1$ on U we obtain from (6) and (8)

$$
(\lambda+1) \phi e \cdot \xi \cdot b+(\lambda-1) e \cdot \xi \cdot c=\left(\lambda^{2}-1\right)\left[\frac{1}{4 \lambda} \xi \cdot S+2 b c\right] .
$$

Subtracting the above equation from (10) and using (4) the seeking formula follows at once.
Theorem 13. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature. If the norm of the Ricci operator is constant along ξ, then either $Q \phi=\phi Q$ or $l=0$ with constant scalar curvature and $\eta(Q X)=0$ for all eigenvectors $X \in \operatorname{ker}(\eta)$ of h with eigenvalue 1.

Proof. The square of the norm of the Ricci operator Q is $\operatorname{Tr} Q^{2}=g\left(Q^{2} e, e\right)+g\left(Q^{2} \phi e, \phi e\right)+$ $g\left(Q^{2} \xi, \xi\right)$ and is computed using (5) and turns out to be

$$
\begin{equation*}
\left(\lambda^{2}+\frac{S}{2}-1\right)^{2}+4 \lambda^{2}\left(b^{2}+c^{2}\right)+2\left(1-\lambda^{2}\right)^{2}=\psi \tag{11}
\end{equation*}
$$

where ψ is a smooth function on M^{3} being constant along ξ.
Suppose that $l=0$. Then, $\lambda^{2}=1$ and (11) yields

$$
\begin{equation*}
\frac{S^{2}}{4}+4\left(b^{2}+c^{2}\right)=\psi \tag{12}
\end{equation*}
$$

Differentiating three times the equation (12) along ξ and taking into account (6) and (7) for $\lambda=1$ we obtain respectively

$$
\begin{gather*}
S(\xi \cdot S)+32 b c=0 \\
S(\xi \cdot \xi \cdot S)+(\xi \cdot S)^{2}+64 b^{2}=0, \tag{13}\\
(\xi \cdot S)(\xi \cdot \xi \cdot S)=0
\end{gather*}
$$

Therefore, $\xi \cdot S=0$. or $\xi \cdot \xi \cdot S=0$.
Supposing $\xi \cdot S=0$ from the first of (13) we have $b=0$ or $c=0$.
If $b=0$, from (5) we obtain $\eta(Q e)=0$.
If $c=0$ then (6) implies $b=0$ that is $Q \phi=\phi Q$. In this case the manifold is flat.
If $\xi \cdot \xi \cdot S=0$ then from (13) we have $\xi \cdot S=0$ and $b=0$.
If M^{3} is Sasakian then it is known that we have $Q \phi=\phi Q$.
Suppose that M^{3} is not Sasakian with l not identically equal to zero. So, let be $\lambda^{2} \neq 0,1$ on an open neighborhood U of a point $p \in M^{3}$. Hence, we can write the equation (11) in the form

$$
b^{2}+c^{2}=\frac{\psi}{4 \lambda^{2}}+\frac{\left(\lambda^{2}-1\right)^{2}}{2 \lambda^{2}}-\frac{\left(\lambda^{2}+\frac{S}{2}-1\right)^{2}}{4 \lambda^{2}} .
$$

Differentiating the above equation along ξ and taking into account (6) we obtain

$$
\begin{equation*}
b c=-\frac{1}{16 \lambda^{2}}\left(\lambda^{2}+\frac{S}{2}-1\right)(\xi \cdot S) . \tag{14}
\end{equation*}
$$

Differentiating two times the relation (14) with respect to ξ and using (6) and (14) we have

$$
(\xi \cdot S)\left[8\left(1-\lambda^{2}\right)\left(\lambda^{2}+\frac{S}{2}-1\right)-1-\xi \cdot \xi \cdot S\right]=0
$$

Hence,

$$
\begin{equation*}
\xi \cdot S=0 \text { or } \xi \cdot \xi \cdot S=8\left(1-\lambda^{2}\right)\left(\lambda^{2}+\frac{S}{2}-1\right)-1 \tag{15}
\end{equation*}
$$

Supposing $\xi \cdot S=0$, the equation (14) yields $b=0$ or $c=0$ on U and hence $b=0$ or $c=0$ on M^{3}. Both cases using (6) imply $Q \phi=\phi Q$.

If the second of (15) holds on U , differentiating this relation along ξ and using Theorem 12 we obtain $\xi \cdot S=0$ and therefore $Q \phi=\phi Q$.

Proposition 14. Let M^{3} be a 3-dimensional non-Sasakian contact metric manifold with constant ξ-sectional curvature. If l is not identically equal to zero then the following formulas hold:

$$
\begin{gather*}
e \cdot b=\frac{1}{8 \lambda} \xi \cdot S+b c+\Phi \tag{16}\\
\phi e \cdot b=\frac{1}{16 \lambda} \xi \cdot \xi \cdot S+\frac{1}{2}(1-\lambda)\left(\lambda^{2}+\frac{S}{2}-1\right)+b^{2}, \tag{17}\\
e \cdot c=-\frac{1}{16 \lambda} \xi \cdot \xi \cdot S+\frac{1}{2}(1+\lambda)\left(\lambda^{2}+\frac{S}{2}-1\right)+c^{2}, \tag{18}\\
\phi e \cdot c=\frac{1}{8 \lambda} \xi \cdot S+b c-\Phi . \tag{19}
\end{gather*}
$$

where Φ is a smooth function on M^{3} such that

$$
\begin{gather*}
\xi \cdot \Phi=0 \tag{20}\\
e \cdot \Phi=\frac{1}{16 \lambda}[\phi e \cdot \xi \cdot \xi \cdot S-2 b(\xi \cdot \xi \cdot S)+2(e \cdot \xi \cdot S)-4 c(\xi \cdot S)- \\
 \tag{21}\\
-4 \lambda(\lambda+1)(\phi e \cdot S)]+(\lambda+1)\left(\lambda^{2}+\frac{S}{2}-3\right) b+4 c \Phi \\
\phi e \cdot \Phi=\frac{1}{16 \lambda}[e \cdot \xi \cdot \xi \cdot S-2 c(\xi \cdot \xi \cdot S)-2(\phi e \cdot \xi \cdot S)+4 b(\xi \cdot S)+ \tag{22}\\
\\
\\
+4 \lambda(1-\lambda)(e \cdot S)]+(\lambda-1)\left(\lambda^{2}+\frac{S}{2}-3\right) c+4 b \Phi .
\end{gather*}
$$

Proof. Calculating $R(e, \phi e) \xi$ firstly by straightforward computation using Lemma 8 and secondly from the relation (2) we obtain

$$
\begin{equation*}
\phi e \cdot b+e \cdot c=b^{2}+c^{2}+\lambda^{2}-1+\frac{S}{2} . \tag{23}
\end{equation*}
$$

From (23) and (9) the relations (17) and (18) follow at once.
Differentiating (17) first with respect to ξ (respectively with respect to e) and secondly with respect to e (respectively with respect to ξ) and using (6) we have

$$
\begin{equation*}
\xi \cdot e \cdot \phi e \cdot b=\frac{\lambda-1}{4 \lambda} e \cdot \xi \cdot S+2(\lambda-1)[e \cdot(b c)] \tag{24}
\end{equation*}
$$

respectively

$$
\begin{align*}
e \cdot \xi \cdot \phi e \cdot b= & \frac{1}{16 \lambda}(\xi \cdot e \cdot \xi \cdot \xi \cdot S)+\frac{1-\lambda}{4}(\xi \cdot e \cdot S)+ \\
& +2 b(\xi \cdot e \cdot b)+2(\lambda-1) c(e \cdot b) . \tag{25}
\end{align*}
$$

Differentiation of the relation (7) along e implies

$$
\begin{equation*}
\frac{1}{16 \lambda}(e \cdot \xi \cdot \xi \cdot \xi \cdot S)=\frac{\lambda^{2}-1}{4 \lambda}(e \cdot \xi \cdot S) . \tag{26}
\end{equation*}
$$

Adding (25) and (26) and using Lemma 8 we obtain

$$
\begin{align*}
\xi \cdot e \cdot \phi e \cdot b= & \frac{\lambda+1}{16 \lambda}(\phi e \cdot \xi \cdot \xi \cdot S)+\frac{\lambda^{2}-1}{4 \lambda}(e \cdot \xi \cdot S)+ \\
& +\frac{1-\lambda}{4}(\xi \cdot e \cdot S)+2 b(\xi \cdot e \cdot b)+2(\lambda-1) c(e \cdot b) . \tag{27}
\end{align*}
$$

Subtraction of (24) from (27) yields

$$
\begin{align*}
(\lambda+1) \phi e \cdot \phi e \cdot b= & \frac{\lambda+1}{16 \lambda}(\phi e \cdot \xi \cdot \xi \cdot S)+\frac{1-\lambda^{2}}{4}(\phi e \cdot S)+ \\
& +2 b(\xi \cdot e \cdot b)+2(1-\lambda) b(e \cdot c) . \tag{28}
\end{align*}
$$

On the other hand differentiation of (17) with respect to ϕe using $\lambda^{2} \neq 1$ (since $l \neq 0$) implies

$$
(\lambda+1)(\phi e \cdot \phi e \cdot b)=\frac{\lambda+1}{16 \lambda}(\phi e \cdot \xi \cdot \xi \cdot S)+\frac{1-\lambda^{2}}{4}(\phi e \cdot S)+2(\lambda+1) b(\phi e \cdot b) .
$$

Comparing the above relation with (28) we obtain

$$
\begin{equation*}
b=0, \quad \xi \cdot e \cdot b=(\lambda+1) \phi e \cdot b+(\lambda-1) e \cdot c . \tag{29}
\end{equation*}
$$

If $b=0$ Lemma 10 implies $c=0$, therefore from Remark 11 we obtain $Q \phi=\phi Q$. In this case it has been proved ([5]) that $S=$ constant, which means that (16) and (19) are trivial ($\Phi=0$).

Differentiating (18) first with respect to ξ (respectively to ϕe) and secondly with respect to ϕe (respectively to ξ) and following the technique used to prove the relation (29) we can show that either $Q \phi=\phi Q$ or

$$
\begin{equation*}
\xi \cdot \phi e \cdot c=(\lambda+1) \phi e \cdot b+(\lambda-1) e \cdot c . \tag{30}
\end{equation*}
$$

We suppose that the second of (29) and (30) hold on M^{3}.
Using (6), (17) and (18) we obtain

$$
\xi \cdot e \cdot b=\xi \cdot \phi e \cdot c=\frac{1}{8 \lambda}(\xi \cdot \xi \cdot S)+\xi \cdot(b c) .
$$

From the above relation and (23) the relations (16) and (19) follow at once.
Now we compute $[e, \phi e] b$ (respectively $[e, \phi e] c$) in two ways, first using (16) and (17) (respectively (18), (19)) as $e \cdot \phi e \cdot b-\phi e \cdot e \cdot b$ (respectively $e \cdot \phi e \cdot c-\phi e \cdot e \cdot c$), and secondly through (4), (6), (16) and (17) as $\left(\nabla_{e} \phi e-\nabla_{\phi e} e\right) b$ (respectively (4), (6), (18) and (19) as $\left(\nabla_{e} \phi e-\nabla_{\phi e} e\right) c$). Comparing the two resulting expressions we obtain (22) (respectively (21)).

Theorem 15. Let M^{3} be a 3-dimensional contact metric manifold with constant ξ-sectional curvature k and constant ϕ-sectional curvature m. Then, one of the following conditions holds:
(i) M^{3} is Sasakian,
(ii) $Q \phi=\phi Q$, and $m=-k$,
(iii) $l=0$,
(iv) $k+m=\frac{2}{3}$,
(v) $k+m=-2$.

Proof. We suppose that M^{3} is a non-Sasakian manifold with l being not identically equal to zero.

It is known ([5]) that on every 3-dimensional contact metric manifold $K(e, \phi e)=\frac{S}{2}-$ Trl. Hence, this relation and Proposition 2 imply that $S=$ constant. In this case the relations (16), (17), (18), (19), (21) and (22) take the form:

$$
\begin{gather*}
e \cdot b=b c+\Phi \tag{31}\\
\phi e \cdot b=b^{2}+\frac{1-\lambda}{2}\left(\lambda^{2}+\frac{S}{2}-1\right), \tag{32}\\
e \cdot c=c^{2}+\frac{1+\lambda}{2}\left(\lambda^{2}+\frac{S}{2}-1\right), \tag{33}\\
\phi e \cdot c=b c-\Phi \tag{34}\\
e \cdot \Phi=(\lambda+1)\left(\lambda^{2}+\frac{S}{2}-3\right) b+4 c \Phi \tag{35}\\
\phi e \cdot \Phi=(\lambda-1)\left(\lambda^{2}+\frac{S}{2}-3\right) c+4 b \Phi . \tag{36}
\end{gather*}
$$

Computing $[e, \phi e] \Phi$ in two different ways (as in the last part of the proof of Proposition 14), using (4), (20), (35) and (36) we obtain

$$
\begin{equation*}
8 \Phi^{2}=\left(\lambda^{2}+\frac{S}{2}-3\right)\left[-4(\lambda+1) b^{2}+4(\lambda-1) c^{2}+\left(1-\lambda^{2}\right)\left(\lambda^{2}+\frac{S}{2}-1\right)\right] . \tag{37}
\end{equation*}
$$

Differentiating (37) with respect to e (respectively to ϕe) and taking into account (31), (33), (35) and (37) (respectively (32), (34), (36) and (37)) we have

$$
\begin{aligned}
& \left(\lambda^{2}+\frac{S}{2}-3\right)\left[-(\lambda+1) b^{2} c+(\lambda-1) c^{3}+\frac{1-\lambda^{2}}{2}\left(\lambda^{2}+\frac{S}{2}-1\right) c+(\lambda+1) b \Phi\right]=0, \\
& \left(\lambda^{2}+\frac{S}{2}-3\right)\left[-(\lambda+1) b^{3}+(\lambda-1) b c^{2}+\frac{1-\lambda^{2}}{2}\left(\lambda^{2}+\frac{S}{2}-1\right) b+(\lambda-1) c \Phi\right]=0 .
\end{aligned}
$$

Hence, either

$$
\lambda^{2}+\frac{S}{2}-3=0
$$

or

$$
\begin{equation*}
(\lambda+1) b \Phi=c\left[(\lambda+1) b^{2}+(1-\lambda) c^{2}+\frac{\lambda^{2}-1}{2}\left(\lambda^{2}+\frac{S}{2}-1\right)\right]=0 \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
(\lambda-1) c \Phi=b\left[(\lambda+1) b^{2}+(1-\lambda) c^{2}+\frac{\lambda^{2}-1}{2}\left(\lambda^{2}+\frac{S}{2}-1\right)\right]=0 . \tag{39}
\end{equation*}
$$

Suppose that $\lambda^{2}+\frac{S}{2}-3=0$, then using $K(e, \phi e)=\frac{S}{2}-\operatorname{Tr} l, \operatorname{Tr} l=2\left(1-\lambda^{2}\right)$ and $K(e, \xi)=\frac{\operatorname{Trl}}{2}$, we obtain $k+m=-2$.

In this case using [16] we conclude that if $k=-3$ and $m=1$, then M^{3} is Sasakian. Also, for $k+m=-2$ and $m>1$ we obtain a new class of contact metric 3 -manifolds, which does not belong to the (κ, μ)-contact metric manifolds, ([4]).

Suppose now that (38) and (39) hold. If $b=0$ (respectively $c=0$), then (6) implies $c=0$ (respectively $b=0$) and therefore $Q \phi=\phi Q$. In this case using [5] we have $m=-k$. If $b c \neq 0$, multiplying (38) with b and (39) with c we obtain

$$
\Phi\left[(\lambda+1) b^{2}+(1-\lambda) c^{2}\right]=0
$$

Case A: $\quad \Phi=0$.
The relation (37) yields

$$
(\lambda+1) b^{2}+(1-\lambda) c^{2}+\frac{\lambda^{2}-1}{4}\left(\lambda^{2}+\frac{S}{2}-1\right)=0
$$

On the other hand the relation (38) yields

$$
(\lambda+1) b^{2}+(1-\lambda) c^{2}+\frac{\lambda^{2}-1}{2}\left(\lambda^{2}+\frac{S}{2}-1\right)=0 .
$$

Comparing the last two relations we obtain either $\lambda^{2}=1$, a contradiction because of the assumption that l is not identically equal to zero on M^{3}, or

$$
\lambda^{2}+\frac{S}{2}-1=0 .
$$

From $\Phi=0,(31),(32),(33)$ and (34) we obtain

$$
\begin{equation*}
e \cdot b=\phi e \cdot c=b c, \quad \phi e \cdot b=b^{2}, \quad \phi e \cdot c=c^{2} . \tag{40}
\end{equation*}
$$

Computing $[e, \phi e] b$ in two ways (by use of (4) and (40)) and comparing the results we obtain $\xi \cdot b=0$. Hence, from the assumption $\lambda^{2} \neq 1$ and (6) we obtain $b=c=0$, a contradiction.

Case B:

$$
\begin{equation*}
\Phi \neq 0 \quad \text { and } \quad(\lambda+1) b^{2}+(1-\lambda) c^{2}=0 \tag{41}
\end{equation*}
$$

The relations (38), (39) and (41) with the assumption $\lambda^{2} \neq 1$ yield

$$
\begin{align*}
& b \Phi=\frac{\lambda-1}{2}\left(\lambda^{2}+\frac{S}{2}-1\right) c, \tag{42}\\
& c \Phi=\frac{\lambda+1}{2}\left(\lambda^{2}+\frac{S}{2}-1\right) b . \tag{43}
\end{align*}
$$

On the other hand (37) and (41) imply

$$
8 \Phi^{2}=\left(\lambda^{2}+\frac{S}{2}-3\right)\left(1-\lambda^{2}\right)\left(\lambda^{2}+\frac{S}{2}-1\right)
$$

Hence, $\Phi=$ constant. This conclusion and the relations (35) and (36) yield

$$
\begin{gather*}
4 b \Phi=(1-\lambda)\left(\lambda^{2}+\frac{S}{2}-3\right) c \tag{44}\\
4 c \Phi=-(\lambda+1)\left(\lambda^{2}+\frac{S}{2}-3\right) b \tag{45}
\end{gather*}
$$

Comparing (42) with (44) or (43) with (45) we obtain

$$
\lambda^{2}+\frac{S}{2}=\frac{5}{3} .
$$

Taking into account the last relation, $K(e, \phi e)=\frac{S}{2}-\operatorname{Tr} l, \operatorname{Tr} l=2\left(1-\lambda^{2}\right)$ and $K(e, \xi)=\frac{T r l}{2}$, we obtain $k+m=\frac{2}{3}$.

In this case using [16] we conclude that if $k=1$ and $m=-\frac{1}{3}$, then M^{3} is Sasakian. Also, for $k+m=\frac{2}{3}$ and $m>-\frac{1}{3}$ we obtain a new class of contact metric 3 -manifolds, which does not belong to the (κ, μ)-contact metric manifolds, ([4]).

References

[1] Blair, D. E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics 509, Springer-Verlag, Berlin 1976.

Zbl 0319.53026
[2] Blair, D. E.: Special directions on contact metric manifolds of negative ξ-sectional curvature. Ann. Fac. Sc. de Toulouse(6) 7(3) (1998), 365-378.

Zbl 0918.53012
[3] Blair, D. E.: On the class of contact metric manifolds with $(3-\tau)$-structure. Note Mat. 16(1) (1996), 99-104.

Zbl 0918.53013
[4] Blair, D. E.; Koufogiorgos, T.; Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91(1-3) (1995), 189-214.

Zbl 0837.53038
[5] Blair, D. E.; Koufogiorgos, T.; Sharma, R.: A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$. Kodai Math. J. 13(3) (1990), 391-401. Zbl 0716.53041
[6] Calvaruso, G.; Perrone, D.; Vanhecke, L.: Homogeneity on three-dimensional contact metric manifolds. Israel J. Math. 114(1999), 301-321.

Zbl 0957.53017
[7] Cheng, Q., Ishikawa, S.; Shiohama, K.: Conformally flat 3-manifolds with constant scalar curvature. J. Math. Soc. Japan 51(1) (1999), 209-226. Zbl 0949.53023
[8] Goldberg, S. I.: An application of Yau's maximum principle to conformally flat spaces. Proc. Amer. Math. Soc. 79(2) (1980), 268-270.

Zbl 0452.53026
[9] Gouli-Andreou, F.: On contact metric 3-manifolds with $R(X, \xi) \xi=0$. Algebras Groups Geom. 17(4) (2000), 393-400.
[10] Gouli-Andreou, F. ; Sharma, R.: A class of conformally flat contact metric 3-manifolds. Preprint.
[11] Gouli-Andreou, F.; Xenos, Ph. J.: On 3-dimensional contact metric manifolds with $\nabla_{\xi} \tau=0$. J. Geom. 62 (1998), 154-165.

Zbl 0905.53024
[12] Gouli-Andreou, F.; Xenos, Ph. J.: Two classes of conformally flat contact metric 3manifolds. J. Geom. 64 (1999), 80-88.

Zbl 0918.53015
[13] Gouli-Andreou, F.; Xenos, Ph. J.: On a type of contact metric 3-manifolds. Yokohama Math. J. 46 (1999), 109-118.

Zbl 0956.53036
[14] Koufogiorgos, Th.: Contact Riemannian manifolds with constant ϕ-sectional curvature. Tokyo J. Math. 20(1) (1997), 13-22.

Zbl 0882.53032
[15] Perrone, D.: Contact Riemannian manifolds satisfying $R(X, \xi) \cdot R=0$. Yokohama Math. J. 39 (1992), 141-149.

Zbl 0777.53046
[16] Tanno, S.: Ricci curvatures of contact Riemannian manifolds. Tohoku Math. J. 40 (1988), 441-448.

Zbl 0655.53035

Received November 29, 2000

