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Abstract. The existence of mixed curvature measures of two sets in Rd with posi-
tive reach introduced in [6] is discussed. An example shows that the non-osculating
condition from [6] does not ensure the locally bounded variation of the mixed cur-
vature measures. Further, some sufficient conditions for the local boundedness of
mixed curvature measures involving absolute curvature measures are presented.

For any two subsets X, Y ⊆ Rd with positive reach and r, s ∈ {0, 1, . . . , d− 1}, r+ s ≥ d, the
mixed curvature measures Cr,s(X, Y ; ·) have been defined in [6] (where a different notation,
Ψr,s(X, Y ; ·), has been used) as integrals of certain (2d − 1)-forms ψr,s over the joint unit
normal bundle

nor (X, Y ) = f(((norX × norY ) ∩R)× [0, 1]),

where norX, norY are the unit normal bundles of X,Y , respectively,

R = {(x,m, y, n) ∈ R4d : m+ n 6= 0}

and

f : (x,m, y, n, t) 7→
(
x, y,

sin(1− t)θ

sin θ
m+

sin tθ

sin θ
n
)
,

θ ≡ ∠(m,n) ∈ [0, π]. Then, a translative integral formula involving these mixed curvature
measures was proved ([6, Theorem 1]) under the ‘non-osculating assumption’

Ld({z ∈ Rd : ∃(x,m) ∈ norX, (x+ z,−m) ∈ norY }) = 0. (1)
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It may, however, occur (as remarked by Joseph Fu in personal communication) that nor (X, Y )
has not finite H2d−1 measure (since f is only locally Lipschitz) and the signed measures
Cr,s(X, Y ; ·) may not be correctly defined (see Example 1 below). Therefore, it has been
assumed additionally in [7] that

|C̄|r,s(X, Y ; ·) is locally finite, 0 ≤ r, s ≤ d− 1, r + s ≥ d, (2)

where the (nonnegative) measures |C̄|r,s(X, Y ; ·) are defined below. Under this assumption,
Cr,s(X, Y ; ·) is well defined for any admissible r, s and |C̄|r,s(X, Y ; ·) is the total variation
measure of its projection C̄r,s(X, Y ; ·) = Cr,s(X, Y ; · × Sd−1) (cf. [6, Theorem 2], [7, Theo-
rem 4.2]).
The functionals C̄r,s(X,Y ; ·) were studied more extensively for convex bodies X, Y (or

sets from the convex ring), see e.g. [9, 10]. Note that in [3], the notion ‘mixed curvature
measure’ has been used for a different functional.
Let κi ≡ κi(x,m) (λi ≡ λi(y, n)) be the (generalized) principal curvatures and ai ≡

ai(x,m) (bi ≡ bi(y, n)) the corresponding (generalized) principal directions of X (Y ) defined
at Hd−1-almost all (x,m) ∈ norX ((y, n) ∈ norY , respectively). We set for any bounded
Borel subset A ⊆ R2d

|C̄|r,s(X,Y ;A) =∫

(norX×norY )∩R

1A(x, y)Fr,s(θ)|W
X,Y
r,s (x,m, y, n)|H

2d−2(d(x,m, y, n)), (3)

where

Fr,s(θ) = O
−1
2d−1−r−s

θ

sin θ

∫ 1

0

(
sin(1− t)θ

sin θ

)d−1−r (
sin tθ

sin θ

)d−1−s
dt,

WX,Y
r,s =

∑

|I|=r

∑

|J |=s

∏
i6∈I κi

∏
j 6∈J λj

[ ∧
i∈I ai,

∧
j∈J bj

]2

∏d−1
i=1

√
1 + κ2i

∏d−1
j=1

√
1 + λ2j

(the summation is taken over all subsets I, J ⊆ {1, . . . , d− 1} of given cardinality), Ok is the

k-dimensional measure of the unit sphere in Rk+1 and
[ ∧
i∈I ai,

∧
j∈J bj

]
is the Jacobian of

the orthogonal projection of the linear subspace spanned by {ai : i ∈ I} onto the orthogonal
complement of that spanned by {bj : j ∈ J}. Note that the measure C̄r,s(X,Y ;A) can be
represented as in (3) with the difference that the absolute value in the integrand is missing
(see [7, Theorem 4.2]).

Example 1. There exists a compact set X ⊆ R4 with positive reach and m ∈ S3 such that

L1({x ·m : (x,m) ∈ norX or (x,−m) ∈ norX}) = 0 (4)

and the positive part of the mixed curvature measure C̄1,3(X,m
⊥; ·) is infinite on a compact

set.

Remark 1. (4) is the particular form of (1) for X and Y = m⊥ (cf. [5, Assumption (3.1)]).



J. Rataj, M. Zähle: A Remark on Mixed Curvature Measures . . . 173

Proof. Let m ∈ S3 be given and let Z ⊆ R4 be a four-dimensional cube of edge length
a > 0 and two facets F1, F2 perpendicular to m. Let there be in F1 a disjoint family of
three-dimensional balls Ci of radii ri > 0, i = 1, 2, . . .. Note that we have

∑
i r
3
i < ∞.

Then, for each i, a unit four-dimensional ball Bi is placed so that its centre lies outside of
Z and Bi ∩ F1 = Ci. The compact set X = Z \

⋃
i(intBi) has reach greater than 3/4. Let

ai ≡ ai(x, n) be the (generalized) principal directions and κi ≡ κi(x, n) the corresponding
(generalized) principal curvatures of X at (x, n), i = 1, 2, 3. Using [5, Theorem 3.1] (or,
equivalently, applying directly [6, Theorem 2]), one gets the formula

C̄1,3(X,m
⊥;A×B)

=
1

4π

∫

norX

1A(x)
κ1κ2(a3 ·m)2 + κ1κ3(a2 ·m)2 + κ2κ3(a1 ·m)2

| sin∠(m,n)|3
√
1 + κ21

√
1 + κ22

√
1 + κ23

H3(d(x, n))

valid for any bounded Borel subsets A ⊆ R4 and B ⊆ m⊥ with L3(B) = 1. If x ∈ Ai =
intZ∩∂Bi (Ai is the surface of the spherical hole digged by Bi in X) then κ1 = κ2 = κ3 = −1
and the principal directions can be chosen so that a1, a2 ⊥ m and a3 ·m = sin∠(m,n). We
thus obtain

C̄1,3(X,m
⊥;Ai ×B) =

1

8
√
2π

∫

norX
1Ai(x)

1

| sin∠(m,n)|
H3(d(x, n)).

Consider the projection ψ : (x, n) 7→ m · n restricted to norX ∩ (Ai × S3), with Jacobian
J1ψ(x, n) =

1√
2
sin∠(m,n). Applying the co-area formula, we get

C̄1,3(X,m
⊥;Ai ×B) =

1

8π

∫ 1
√
1−r2i

1

1− u2
H2(ψ−1u)du

=
1

8π

∫ 1
√
1−r2i

1

1− u2
8π(1− u2)du

= 1−
√
1− r2i .

Thus, choosing the ri’s so that
∑
i r
2
i =∞ (to see that this is possible, consider a partition of

the cube Z into infinitely many parallel slices and fill a constant volume proportion of each
slice by balls of diameters equal to the slice height), the positive part of C̄1,3(X,m

⊥;X×B×
S3) will be greater or equal to

∑

i

C̄+1,3(X,m
⊥;Ai ×B) =

∑

i

(1−
√
1− r2i ) =∞.

To see that (1) is satisfied, note that the set {x ·m : (x,m) ∈ norX or (x,−m) ∈ norX} \
(F1 ∪ F2) is countable. 2

Remark 2. The construction from the proof can be easily adapted to R5, yielding a set
X̃ with positive reach and m ∈ S4 with locally unbounded negative part of C̄1,4(X̃,m⊥; ·).
Embedding then the set X from the example into a hyperplane in R5 containing m, we get
the positive part of C̄1,4(X,m

⊥; ·) locally unbounded (note that the intersection of X with a
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translate of m⊥ is the same set, whether in R4, or embedded in R5, and its zeroth curvature
measure - which is obviously connected with the mixed curvature measures in question -
does not depend on the embedding space). Thus, the union of disjoint translates of X and X̃
presents an example of a set with positive reach in R5 which has locally unbounded positive
and negative parts of the mixed curvature measure with the hyperplane m⊥.

Theorem 1. If for any compact subset K ⊆ R4d
∫

K∩(norX×norY )×R

( sin∠(m,n))3−dH2d−2(d(x,m, y, n)) <∞,

then (2) holds. Consequently, (2) is satisfied automatically in dimensions d ≤ 3. Moreover,
for any X, Y ⊆ Rd with positive reach, (2) is satisfied by X, ρY for ϑd-almost all rotations
ρ ∈ SO(d), where ϑd is the rotation invariant probability measure on SO(d).

Proof. Note that Fr,s(θ) ≤ (sin θ)−(2d−1−r−s) for any θ ∈ [0, π] and

[
∧

i∈I

ai,
∧

j∈J

bj] ≤ sin∠(m,n)

for all I, J ⊆ {1, . . . , d − 1}. Thus, the first statement follows directly from (3). The last
statement follows from the first one by integration over SO(d) since

∫

SO(d)
( sin∠(m, ρn))3−dϑd(dρ)

is a finite constant depending on d only (see [7, Proposition 4.6] for a more detailed expla-
nation). 2

In the sequel, let G(d, k) denote the Grassmannian of k-dimensional linear subspaces in Rd
endowed with the rotational invariant probability measure νdk . For X ⊆ Rd with positive
reach, 0 ≤ k ≤ d− 1 and W ∈ G(d, k + 1), we define the mapping

tW : norX ∩ (Rd ×W )→ W ×W, (x,m) 7→ (pWx,m),

where pW is the orthogonal projection from Rd onto W . Further, let πW : (z,m) 7→ z
denote the first coordinate projection defined on the image of tW . The image TWX =
(πW ◦ tW )(norX ∩ (Rd×W )) will be called the tangential projection of X onto W . Note that
TWX is a closed subset of Rd since norX is a closed set. We need the following fact (cf. [8,
p. 230]). Let RWX denote the set of all points z ∈ TWX such that (πW ◦ tW )−1{z} is either
a singleton or a pair of points of the form (x,m), (x,−m) ∈ norX.

Lemma 1. We have

νdk+1({W ∈ G(d, k + 1) : H
k(TWX \RWX) > 0}) = 0.

In other words, for νdk+1-almost all W ∈ G(d, k + 1) and Hk-almost all z ∈ TWX, if
πW (tW (x,m)) = πW (tW (y, n)) = z then x = y and m = ±n.
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Proof. Consider the countably p-rectifiable set

G = {(x,m,W ) ∈ norX ×G(d, k + 1) : m ∈ W},

p = d− 1 + k(d− 1− k) = k + (k + 1)(d− 1− k)

(G corresponds to the (d− 1− k)th Grassmann bundle of X introduced in [8]). The points
(x,m) ∈ norX where Tan(norX, (x,m)) is not a (d − 1)-dimensional linear subspace have
Hd−1-measure zero, thus, their contribution to the tangential projections can be neglected
since the corresponding set G0 ⊆ G has Hp-measure zero. Let G1, G2 be the set of such
points (x,m,W ) ∈ G where

dimTan(norX, (x,m)) ∩ (Rd ×W ) > k,

dimTan(norX, (x,m)) ∩ ({0} ×W ) > 0,

respectively. The co-area formula applied to the projection F : (x,m,W ) 7→ W defined on
G yields ∫

G(d,k+1)
Hk(G1 ∩ F

−1(W ))νdk+1(dW ) =
∫

G1

J(k+1)(d−1−k)F dH
p.

Since the Jacobian J(k+1)(d−1−k)F vanishes on G1 (kerDF (x,m,W ) contains all vectors
(v, w, 0) such that (v, w) ∈ Tan(norX, (x,m)) and w ∈ W and has thus dimension at least
k + 1), the last integral vanishes and the contribution of points from G1 to the tangential
projections can be neglected. Consider further the projection f̄ : (x,m,W ) 7→ (pWx,W )
defined again on G. We have Jpf̄ = 0 on G2 and, consequently, Hp(f̄(G2)) = 0 by the area
formula and the contribution of points from G2 to the tangential projections can be neglected
as well.
Finally, we consider the tangential projection of points from G3 = G \ (G0 ∪ G1 ∪ G2).

Denote

Z = {(x,m, y, n,W ) ∈ norX × norX ×G(d, k + 1) :

(x,m,W ) ∈ G3, (y, n,W ) ∈ G3, 0 6= x− y ⊥ W}.

In fact, Z consists of pairs of ‘regular’ points from the unit normal bundle of X which have
different first coordinates and whose first coordinates of the tangential projections coincide.
(Note that we need not consider pairs with x = y and m,n linearly independent since both of
these points fall into G2 with the corresponding subspaceW .) We shall show thatHp(Z) = 0.
Consequently, the image of Z under the Lipschitz mapping f̃ : (x,m, y, n,W ) 7→ (pWx,W )
has again Hp-measure zero and the assertion follows then when applying the co-area theorem
for the projection on the second coordinate on the set f̃(Z).
Note that the points of Z are zero points of the Lipschitz mapping

h : (x,m, y, n,W ) 7→ (W ∧m,W ∧ n,W⊥ ∧ (x− y)).

Choose any 0 < ε < reachX and let Zε denote the image of Z under the bi-Lipschitz mapping

φε : (x,m, y, n,W ) 7→ (x+ εm, y + εn,W ).
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Zε is a subset of the C1 manifold ∂Xε × ∂Xε ×G(d, k + 1) of dimension

q = 2d− 2 + (k + 1)(d− 1− k)

(here Xε denotes the ε-parallel body to X) and the Lipschitz mapping h ◦ φ−1ε vanishes on
Zε. Further, for any (x,m, y, n,W ) ∈ Z, h ◦φ−1ε is differentiable at z = φε(x,m, y, n,W ) and

rankD(h ◦ φ−1ε )(z) ≥ 2d− 1− k,

since imD(h ◦ φ−1ε )(z) contains the vectors

(W ∧ v, 0, 0), v ∈ W⊥,
(0,W ∧ v, 0), v ∈ W⊥,
((W ∩ u⊥) ∧ (x− y) ∧m, (W ∩ u⊥) ∧ (x− y) ∧ n,W⊥ ∧ u), u ∈ W.

Using [1, Lemma 6.1], we infer that Zε is countably (p−1)-rectifiable, since p−1 = q− (2d−
1− k). Hence, Hp(Zε) = 0 and, consequently, also Hp(Z) = 0, which completes the proof. 2

Remark 3. Using the notation from the proof of Lemma 1, we have that

f̄(G) = {(z,W ) : z ∈ TWX, W ∈ G(d, k + 1)}

is countably p-rectifiable and Hp-mesurable. Consequently, applying [2, §3.2.22] for the
projection (z,W ) 7→ W , we get that TWX is (Hk, k)-rectifiable and Hk-measurable for
H(k+1)(d−1−k)-almost all W ∈ G(d, k + 1) and the function W 7→ Hk(TWX) is measurable.

The absolute curvature measure of X of order k can be defined by
∫
g(x,m)Cabsk (X; d(x,m))

= cd,k

∫

G(d,k+1)

∫
g ◦ t−1W (z,m)Ck(TWX; d(z,m))ν

d
k+1(dW ), (5)

where the measure Ck(TWX; ·) on TWX × Sk is defined by

Ck(TWX; ·) =
∫

TWX
H0(· ∩ π−1W {z})H

k(dz)

and

cd,k =

(
d− 1

k

)
H(k+1)(d−1−k)(G(d, k + 1))

Hd−1−k(Sd−1−k)Hk(d−1−k)(G(d− 1, k))
.

Note that t−1W (z,m) is correctly defined for almost all (z,m) by Lemma 1.

Remark 4. This definition is equivalent to the first equality in [8, Equation (3)]. The second
equality in [8, Equation (3)] holds as well if X is d-dimensional in the sense that there is
no (x,m) ∈ norX with (x,−m) ∈ norX. (For lower dimensional sets, the image points of
the mapping f introduced in [8] have typically two pre-images.) [8, Equation (4)] holds in
general since it has been derived from the first equality.
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We shall say that a set X ⊆ Rd with positive reach has locally bounded tangential projec-
tions if for any compact subset K ⊆ Rd and 0 ≤ k ≤ d− 2,

sup
W∈G(d,k+1)

Hk(TWX ∩ pWK) <∞. (6)

Note that

Ck−1(TWX, pWK × Sk) =
∫

TWX∩pWK
H0(π−1W {z})H

k(dz)

≤ 2Hk(pWK ∩ TWX)

for almost allW ∈ G(d, k+1), sinceH0(π−1W {z}) ≤ 2 forH
k-almost all z ∈ TWX by Lemma 1.

We present now a sufficient condition for (2). As an immediate consequence one obtains
that any two convex sets satisfy (2) (cf. [7, Proposition 4.5]).

Lemma 2. Let X, Y ⊆ Rd have positive reach and assume that X,αY fulfil (1) for each
0 < α ≤ 1 and that for any 0 ≤ k ≤ d− 1 and bounded Borel subsets A,B ⊆ Rd,

sup
α∈I

∫

A
Cabsk (X ∩ (αY + z);B × Sd−1)Ld(dz) <∞

for some subset I ⊆ (0,∞) of cardinality d+ 1. Then X, Y satisfy (2).

Remark 5. Note that, due to the positive homogeneity of mixed curvature measures (see
[6, Proposition 1]), if X, Y satisfy (2) then also X,αY satisfy (2) for any α > 0.

Proof. We shall assume without loss of generality that X, Y are compact. Then we have by
the assumption

c(k) := sup
α∈I

∫

Rd
Cabsk (X ∩ α(Y + z);Rd × Sd−1)Ld(dz) <∞

for any 0 ≤ k ≤ d−1. Since the absolute curvature measures majorize the total variations of
the curvature measures (see [8]), we have for any measurable function h on R2d × Sd−1 with
|h| ≤ 1

|
∫
h(z, x, u)Ck(X ∩ (αY + z); d(x, u))L

d(dz)| ≤ c(k).

Assume, on the contrary, that (2) does not hold, and let s0 be the least natural number such
that |C|r0,s0(X, Y ; ·) is unbounded for some d − s0 ≤ r0 ≤ d − 1. Let A ⊆ R2d × Sd−1 be a
Borel set which supports an unbounded (positive or negative) part of |C|r0,s0(X, Y ; ·). Given
ε > 0, denote

Aε = A ∩ f
(
((norX × norY ) ∩Rε)× [0, 1]

)
,

where Rε = {(x,m, y, n) ∈ (Rd)4 : ∠(m,n) ≤ π− ε}. Then all the mixed curvature measures
are locally bounded on Aε (cf. [7, Definition 4.1]) and the translative integral formula [6,
Theorem 1] can be applied for the function hε(z, x, u) = 1Aε(x, x− z, u) and k = r0+ s0− d,
yielding

∫
hε(z, x, u)Ck(X ∩ (Y + z); d(x, u))L

d(dz) =
d+k∑

s=k

Cd+k−s,s(X, Y ;A
ε).
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Replacing Y with αY and taking into account the positive homogeneity of mixed curvature
measures, we get

∫
hεα(z, x, u)Ck(X ∩ (αY + z); d(x, u))L

d(dz) =
d+k∑

s=k

αsCd+k−s,s(X,Y ;A
ε)

for the function hεα(z, x, u) = 1Aε(x, α
−1(x − z), u) with |hεα| ≤ 1. The left hand side is

bounded by c(k) for any ε > 0 and α ∈ I by the assumption. Since any polynomial in Rd
is uniquely determined by its values at any d + 1 different points, all the coefficients of the
polynomial in α on the right hand side of the last equation have to be uniformly bounded in
ε as well. This contradicts the fact that

lim
ε→0+

|Cr0,s0(X,Y ;A
ε)| = |Cr0,s0(X, Y ;A)| =∞. 2

Finally, we present a sufficient condition for a set with positive reach to satisfy (1) and (2)
with any affine subspace of Rd. Under this condition, the translative formulae from [5] can
be applied.

Theorem 2. Let X ⊆ Rd with positive reach have locally bounded tangential projections.
Then, for any 0 < j ≤ d and L ∈ G(d, j), the pair X,L satisfies (1) and (2).

Proof. First, we shall verify (1). We have to show that the Lebesgue measure of

N = {z ∈ Rd : ∃(x,m) ∈ norX,m ⊥ L, pL⊥x = pL⊥z}

is zero. Note that N = TL⊥X ⊕ L. The Hd−j−1-measure of TL⊥X is locally bounded by
assumption. Hence, the Hd−1-measure of N is locally bounded, which implies Ld(N) = 0.
Note that (1) implies that X ∩ (L + z) has positive reach for Ld−j-almost all shifts z ∈ L⊥

(cf. [1, Theorem 4.10], [6, Proof of Theorem 1]).
To verify (2), we shall assume without loss of generality that X is compact. Due to

Lemma 2, it suffices to show that for any 0 ≤ k ≤ j − 1,
∫
Cabsk (X ∩ (L+ z);Rd × Sd−1)Ld−j(dz) <∞.

Due to the considerations above, it is enough to integrate over the complement of TL⊥X
in L⊥, hence we can neglect the points (x,m) ∈ norX with m ⊥ L. Note that the total
(absolute) curvature measures are independent of the dimension of the embedding space (cf.
[8, Theorem 2]). Hence, we can treat the sets X ∩ (L + z) as subsets of the j-dimensional
space L and we have by definition

Cabsk (X ∩ (L+ z);L× Sj−1)

≤ 2cj,k

∫

G(j,k+1)
Hk(TW (X ∩ (L+ z)))ν

j
k+1(dW )

for Ld−j-almost all z ∈ L⊥ (for the existence of the last integral, see Remark 3). Let W ∈
G(j, k + 1) be fixed and consider the subspace W̃ = W + L⊥ ∈ G(d, d+ k − j + 1). For any
z ∈ L⊥ \ TL⊥X we have

TW (X ∩ (L+ z)) = TW̃X ∩ p
−1
L⊥
{z}.
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Applying [4, §7.7] or [2, §2.10.25] for the set T
W̃
X and projection z 7→ pL⊥z, we get

∫

L⊥
Hk(TW (X ∩ (L+ z)))L

d−j(dz) ≤ const · Hd+k−j(T
W̃
X),

where the last term is bounded uniformly inW by the assumption and the assertion follows. 2

Remark 6. Theorems 1, 2 hold for locally finite unions of sets with positive reach (see [7])
as well. For these sets, an additional multiplicity term iX(x,m)iY (y, n) appears under the
integral in (3), but both index functions iX , iY are locally uniformly bounded.
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