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1. Introduction

It is well known that there are interesting analogies between the euclidean geometry and the
equiaffine geometry of plane curves. As an example we would like to mention that there exists
an affine rectification for arbitrary convex curves analogous to the euclidean rectification by
inscribing parabola polygons into the (generalized) tangent bundle of the curve (see [7]).
Hereby each parabola arc (with vanishing affine curvature k) connecting its final support
elements replaces a segment (with vanishing euclidean curvature κ) connecting its endpoints.
Now a closed straight polygon Π in the euclidean plane is a convex curve if and only if

the lines carrying the segments are supporting Π. In analogy to this we shall call a closed
convex parabola polygon P affinely convex if and only if the parabolas carrying the segments
of P are supporting P. After a characterization of such affinely convex parabola polygons in
Section 2 we consider in Section 3 as limiting case smooth ovals C in the plane and define
them to be affinely convex if and only if every hyperosculating parabola of C is supporting C.
One main result is now the characterization of affinely convex ovals by the condition k = 0
in analogy to the euclidean characterization of smooth convex curves as simply closed curves
with κ = 0. (We owe partial results in this direction to T. Carleman [3]). Moreover, each
parabola arc connecting two support elements of an affinely convex oval either is a part of
this oval or it does not intersect the latter in its interior, in analogy to the euclidean case.
This fact is an improvement of an old result of K. Reidemeister [11].
Unfortunately ovaloids F in the d-space (d = 3) don’t possess hyperosculating paraboloids

in general. Therefore the notion of affine convexity may be defined for them in Section 4 only
in an analytic way, namely by the claim that their affine curvatures k1, . . . , kd−1 are non-
negative everywhere. But it turns out that this definition (made in analogy to the euclidean
geometry) has interesting consequences: The affine surface area of affinely convex ovaloids
is a strictly monotone increasing (with respect to inclusion) and a continuous (with respect
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to the Hausdorff topology) functional, properties which are not valid for general ovaloids.
But these properties are also valid for affinely convex ovals and parabola polygons. All these
things follow from the fact that the convex domains resp. bodies bounded by these curves
resp. hypersurfaces belong to a special class for which C. Petty [10] had proved the indicated
properties.

2. Affinely convex parabola polygons

We begin with

Definition 2.1. The union of a finite set of parabola arcs Pl−1l in the affine plane R2, situated
on the pairwise different parabolas Pl−1l and determined by their final support elements (points
and tangent lines) (xl−1, tl−1) and (xl, tl) (l = 1, . . . , k) with

xk = x0, tk = t0, (1)

is called a parabola polygon P:

P :=
k⋃

l=1

Pl−1l (2)

if P is a simply closed convex curve.

We say that P is inscribed into a simply closed plane convex curve C if all support elements
(xl, tl) of P belong to the generalized tangent bundle T(C) of C consisting of all support
elements of C (points and support lines) (l = 1, . . . , k).

Definition 2.2. A parabola polygon P is affinely convex if any parabola Pl−1l of P supports the
curve P, i.e. if P is contained in the closed convex halfspace bounded by Pl−1l (l = 1, . . . , k).

For example a regular parabola polygon, inscribed into a circle, is affinely convex as well as
any of its equiaffine images (see Fig. 1 for a regular parabola triangle). Otherwise, if two
adjacent arcs of a parabola polygon P are inscribed into one branch of a hyperbola H then
P cannot be affinely convex (see Fig. 2).

x0

x1x2

P12

P23 P01
P

H

Figure 1 Figure 2
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Now it is possible to characterize affinely convex parabola polygons in the following manner:

Proposition 2.3. A parabola polygon P is affinely convex if and only if the following condi-
tions are fulfilled:
i) The parabolas Pl−1l and Pll+1 of the arcs Pl−1l and Pll+1 of P do not only touch at xl but
also osculate at this point of second order, i.e. they have three infinitesimally neighbouring
points in common there (l = 1, . . . , k).
ii) The direction angles ϕl−1l of the axes of the parabolas Pl−1l of P are ordered by (w.l.o.g.)

0 5 ϕ01 < ϕ12 < · · · < ϕk−1k < 2π (3)

if the arcs Pl−1l of P are ordered in the positive sense (l = 1, . . . , k).

Proof. At first we shall show that the conditions i) and ii) are necessary. Indeed, as by the
affine convexity of P the parabola Pl−1l is supporting in particular the arc Pll+1 of P the
euclidean curvature κ(l−1l)(xl) of Pl−1l at xl cannot exceed the euclidean curvature κ

(ll+1)(xl)
of Pll+1 at xl:

κ(l−1l)(xl) 5 κ
(ll+1)(xl). (4)

In the same way, as Pll+1 is supporting in particular Pl−1l, we find

κ(ll+1)(xl) 5 κ
(l−1l)(xl) (5)

such that by (4) and (5)

κ(l−1l)(xl) = κ
(ll+1)(xl)

or – equivalently –

d2x(l−1l)

dσ2
(σl) =

d2x(ll+1)

dσ2
(σl) (6)

besides

x(l−1l)(σl) = x
(ll+1)(σl),

dx(l−1l)

dσ
(σl) =

dx(ll+1)

dσ
(σl)

which yields property i) (x = x(l−1l)(σ) resp. x = x(ll+1)(σ) are suitable representations of
Pl−1l resp. Pll+1 with the help of the euclidean arclength σ).
Now it is clear that the (different) conics in the projective plane P2 := R2∪{l∞}, resulting

after completion of the parabolas Pl−1l and Pll+1 in R2 by their improper points il−1l and ill+1
(where they touch the improper line l∞), may have only one further point in common besides
the triple point xl (l = 1, . . . , k), not lying on l∞. This additional point of intersection must
exist by topological reasons such that we have the situation as indicated in Fig. 3 where the
axes al−1l resp. all+1 of Pl−1l resp. Pll+1 passing through the point xl with direction angles
ϕl−1l resp. ϕll+1 satisfy

ϕl−1l < ϕll+1 (l = 1, . . . , k).
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A suitable numeration of the parabola arcs then shows the validity of ii).

xltl

il−1l

ill+1

l∞

al−1l

all+1Pll+1

Pl−1l

Figure 3

Conversely, we will assume now that the parabola polygon P fulfils the conditions i) and ii),
and we want to prove that P must be affinely convex. For this reason we fix the parabola Pl−1l
carrying the arc Pl−1l of P and consider at first the part P

+
l−1l of Pl−1l connecting the points

xl and il−1l of Pl−1l in the positive sense. Then P
+
l−1l meets the segment Pll+1 ∪P

+
ll+1 of Pll+1

between xl and ill+1 only at xl since the conics Pl−1l and Pll+1 have except the triple point
xl (see i)) only one further point in common which lies out of P

+
l−1l because of ii) (compare

Fig. 3!).

P−l−1l P+l−1l

xl−1 xl

xl+1

P+ll+1

xl+2

P+l+1l+2

al−1l v+l

Figure 4

Now we consider the point v+l of P with (oriented) tangent line parallel to the axis al−1l of
Pl−1l through xl. If v

+
l lies on Pll+1 we are sure that the arc P

+
l of P from xl to v

+
l (in a

positive sense) does not meet the part P−l−1l of Pl−1l from xl to il−1l (in a negative sense) with
exception of xl because P

+
l and P

−
l−1l are separated by al−1l. Therefore Pl−1l supports the
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part P+l of P. In the other case where v
+
l lies on Pmm+1 with l < m we iterate the preceding

considerations from l to m and see that Pl−1l supports P
+
l too. In the same way we find

that that Pl−1l supports the arc P
−
l of P from xl to the point v

−
l (in a negative sense) with

an oriented line in the opposite direction to the direction of al−1l. Since it is trivial that the
remainder P \

(
P+l ∪ P

−
l

)
of P is also supported by Pl−1l we finally know that Pl−1l supports

P (see Fig. 4). As this is true for l = 1, . . . , k the parabola polygon P must be affinely convex
by Definition 2.2 which completes the proof of Proposition 2.3. �

3. Affinely convex ovals

In this section we consider ovals instead of parabola polygons, so to speak as limiting case
of the latter ones. An oval C is a simply closed plane curve x = x(σ) of class C2 in R2 with
positive curvature

κ :=

(
dx

dσ
,
d2x

dσ2

)
(7)

everywhere (σ euclidean arclength parameter of C). It is well-known that it is possible to
introduce for C an equiaffine arclength parameter s by

s :=

∫ σ

σ0

κ
1
3 dσ (8)

whence by (7) for a curve of class C3
(
dx

ds
,
d2x

ds2

)
= 1. (9)

Supposing now that C be of class C4 with respect to σ the curve C is of class C3 with respect
to s and differentiation of (9) yields

(
dx

ds
,
d3x

ds3

)
= 0. (10)

Thus, after introduction of the so-called affine normal vector

y :=
d2x

ds2
(11)

we may define the coefficient k in the relation

d3x

ds3
=
dy

ds
= −k

dx

ds
(12)

(see (10)) as affine curvature k of the oval C (in analogy to the equation dn
dσ
= −κ dx

dσ
for the

euclidean curvature κ of C where n is the inner unit normal vector).
As limit case we have now to replace the parabola Pl−1l containing the parabola arc from

the support element (x(sl−1), t(sl−1)) of C to the support element (x(sl), t(sl)) with the join
al of t(sl−1) ∩ t(sl) and

1
2
(x(sl−1) + x(sl)) as an axis by the parabola Ps0 hyperosculating C



140 K. Leichtweiß: On the Affine Convexity of Convex Curves and Hypersurfaces

at x(s0) of third order with the axis as0 through x(s0). This is obvious because Ps0 has four
infinitesimally neighbouring points in common with C there. Ps0 may be represented by

x = z(s) := x(s0) + (s− s0)
dx

ds
(s0) +

1

2
(s− s0)

2d
2x

ds2
(s0) (13)

where s is also an affine arclength parameter because of

(
dz

ds
,
d2z

ds2

)
=

(
dx

ds
(s0) + (s− s0)

d2x

ds2
(s0),

d2x

ds2
(s0)

)
=

(
dx

ds
(s0),

d2x

ds2
(s0)

)
= 1 (14)

(see (9)). It has indeed the property of hyperosculation since

z(s0) = x(s0),
dνz

dsν
(s0) =

dνx

dsν
(s0) (ν = 1, 2) (15)

whence by (8),

dx

ds
= κ−

1
3 ·
dx

dσ
,
d2x

ds2
= −
1

3
κ−

5
3
dκ

dσ
·
dx

dσ
+ κ

1
3 · n

and

d2x

dσ2
= κn,

d3x

dσ3
= −κ2 ·

dx

dσ
+
dκ

dσ
· n

(n inner unit normal vector) we get

z(s0) = x(s0),
dµz

dσµ
(s0) =

dµx

dσµ
(s0) (µ = 1, 2, 3) (16)

(compare condition (6) for the osculation of Pl−1l and Pll+1 !). These facts motivate in analogy
to Definition 2.2 the

Definition 3.1. An oval C of class C4 is called affinely convex if any hyperosculating parabola
Ps0 of C supports C (in the same sense as in Definition 2.2).

We have to mention that 1940 T. Carleman [3] made the same definition (in a local sense) for
ovals of class C4 which were called courbes paraboliquement convexes. Using the representation
ξ2 = ξ2(ξ1) for the points x = (ξ1, ξ2) of C this author found as a necessary condition for
such a curve

d2

dξ21

((
d2ξ2

dξ21

)− 2
3

)

5 0. (17)

Since we have

−
1

2

d2

dξ21

((
d2ξ2

dξ21

)− 2
3

)

= k (18)
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(see [1], p. 14 (83)) this condition (17) is equivalent to k = 0 for all points of C. Carleman
even proved in addition that conversely the stronger condition k > 0 for the oval C implies
that all its hyperosculationg parabolas Ps0 have the property

C ∩ Ps0 = {x(s0)}. (19)

We shall now prove the stronger

Theorem 3.2. An oval C of class C4 is affinely convex if and only if the affine curvature k
of C is nonnegative everywhere:

k = 0. (20)

Proof. In the first part we show that the condition (20) is necessary. For this purpose we use
the representation

(z − x(s0),
d2x

ds2
(s0))

2 + 2(z − x(s0),
dx

ds
(s0)) 5 0 (21)

of the closed convex region bounded by Ps0 following from (13) and (9). As C is supported
by Ps0 as an affinely convex oval we have

A(s) := (x(s)− x(s0),
d2x

ds2
(s0))

2 + 2(x(s)− x(s0),
dx

ds
(s0)) 5 0 (22)

for all s whence in particular using (12)

A(s0) =
dA

ds
(s0) =

d2A

ds2
(s0) =

d3A

ds3
(s0) = 0,

d4A

ds4
(s0) = −6k(s0) 1. (23)

We make now the assumption

d4A

ds4
(s0) > 0 (24)

such that because of d
3A
ds3
(s0) = 0 the relation

d3A

ds3
(s) > 0 (s0 < s < s0 + δ) (25)

holds for a suitable δ > 0. On the other hand iterated application of the mean value theorem
together with (22) and (23) yields

dA

ds
(s0 + δ1) 5 0,

d2A

ds2
(s0 + δ2) 5 0 and

d3A

ds3
(s0 + δ3) 5 0

1In order to get d
4A
ds4
(s0) we have used the rule

d
ds
(f · g)(s0) = f(s0) ·

dg
ds
(s0) if f is continuous at s0 and g

is differentiable at s0 with g(s0) = 0.
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for suitable 0 < δ3 < δ2 < δ1 < δ contradicting (25). Thus the assumption (24) is wrong with
the consequence that by (23) indeed k(s0) = 0 is valid for every s0 2.
Now we prove that (20) is also sufficient for the oval C to be affinely convex. Therefore

we introduce at first the affine evolvents Eτ of C with the representation

w(s, τ) := x(s) + (τ − s)
dx

ds
(s) +

1

2
(τ − s)2

d2x

ds2
(s) (s0 5 s 5 τ) (26)

depending on a parameter τ such that τ − s0 is the affine arclength of the curve which is the
union of the arc of C from x(s0) to x(s) and the arc of Ps from x(s) to w(s, τ). Eτ is a curve
of class C1 with respect to s which joins the points w(s0, τ) and w(τ, τ) = x(τ). Moreover
this curve penetrates each parabola Ps either in a stationary or in a transversal manner, a
consequence of the relation

(
∂w

∂τ
(s, τ),

∂w

∂s
(s, τ))=(

dx

ds
(s)+(τ−s)

d2x

ds2
(s),
1

2
(τ−s)2

d3x

ds3
(s))=

1

2
(τ−s)3k(s) = 0 (27)

P−s0 P+s0

x(s)

P+s

Eτ0
x(s0)

as0

v+(s0)

w(s0, τ)

x(τ)

w(s, τ)

Eτ

C

Figure 5

(see (26) and (20)). Therefore we are sure that the arc C+s0 of C from x(s0) to the point
v+(s0) with (oriented) tangent line parallel to the axis as0 of Ps0 is supported by the part
P+s0 of Ps0 from x(s0) to its improper point is0 on the “convex side”. Moreover C

+
s0
does not

meet the part P−s0 of Ps0 from is0 to x(s0) with exception of x(s0) because C
+
s0
and P−s0 are

separated by as0 . Thus Ps0 supports the part C
+
s0
of C. In the same way we find that Ps0 also

supports the arc C−s0 of C from x(s0) to the point v
−(s0) with (oriented) tangent line in the

opposite direction to that of as0 . Finally Ps0 supports trivially the arc C \ (C
+
s0
∪ C−s0) of C

2This can also be seen after application of a formula of J. Merza ([8], théorème 2): k(s0) = lims→s0
8d̄(s)
(s−s0)4

where the (nonnegative) affine distance d̄(s) of x(s) from Ps0 is given by x(s) = z(s1)+ d̄(s)y(s0) if the curve
C : x = x(s) is sufficiently smooth.
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and these facts altogether complete the proof of Theorem 3.2 if x(s0) is arbitrarily chosen on
C (see Fig. 5 and compare it with Fig. 4). �

Corollary 3.3. An oval C of class C4 is affinely convex if and only if the direction angles
ϕ(s) of the axes as of the hyperosculating parabolas Ps of C have the property

dϕ

ds
(s) = 0 (28)

(compare Proposition 2.3 ii)).

This is an immediate consequence of the known fact that the direction of the axes of a
parabola Ps equals the direction of the (constant) affine normal vectors of Ps which by (13)
and (15) equals the direction of the affine normal vector y(s) of C at x(s). This remark
namely yields

dϕ

ds
=
d

ds

(
arctan

η2

η1

)
=
(y, dy

ds
)

η21 + η
2
2

=
k

η21 + η
2
2

= 0

for all s (see (12)) for y = (η1, η2) 6= 0.
For example every ellipse (with affine normals intersecting in its midpoint lying on its

convex side) is affinely convex, and every arc of a branch of a hyperbola (with affine normals
intersecting in its midpoint lying on its concave side) cannot be part of an affinely convex oval.
Now affinely convex ovals have the following “convexity property” which was an important
tool in the early considerations of P. Böhmer [2] and H. Mohrmann [9] for (closed and open)
ovals with k > 0 or k < 0 everywhere (see also W. Blaschke [1], p. 47–49):

Theorem 3.4. If Ps0s1 is the parabola arc with the support elements (x(s0), t(s0)) and
(x(s1), t(s1)) of an affinely convex oval C of class C4 as final support elements
(s0 < s1, ](t(s0), t(s1)) < π) then either
i) Ps0s1 ∩ C = {x(s0), x(s1)} or
ii) Ps0s1 is a part of C.

Proof. For the proof of Theorem 3.4 we carry out a slight modification together with an
improvement of a proof of K. Reidemeister [11]. For this purpose we introduce in the plane R2
an affine coordinate system {ξ1, ξ2} in such a manner that we get x(s0) = (0, 1), x(s1) = (1, 0)
and t(s0) : ξ1 = 0, t(s1) : ξ2 = 0. Then Ps0s1 may be represented by

ξ1 = ζ1(τ) := τ
2, ξ2 = ζ2(τ) := (1− τ)

2 (0 5 τ 5 1), (29)

and its affine arclength parameter equals 4
1
3 τ . Furthermore the arc C of C between x(s0)

and x(s1) may be represented by x = x(s) with s0 5 s1 or

ξ1 = ξ1(τ), ξ2 = ξ2(τ) (0 5 τ 5 1) (30)

with

τ :=
s− s0
L(C)

(s0 5 s 5 s1, L(C) := s1 − s0). (31)
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Here ξ1 and ξ2 are functions of τ of class C3 on [0, 1] having the properties

ξ1(0) = 0, ξ2(0) = 1, ξ1(1) = 1, ξ2(1) = 0 (32)

and

dξ1

dτ
(0) = 0,

dξ2

dτ
(1) = 0. (33)

After introduction of f1 := ξ1 − ζ1, f2 := ξ2 − ζ2, two functions of class C3 on [0, 1], we get
using (29), (32) and (33)

f1(0) = f1(1) =
df1

dτ
(0) = 0, (34)

f2(0) = f2(1) =
df2

dτ
(1) = 0 (35)

as well as by (12), (20) and (31)

d3f1

dτ 3
(τ) =

d3ξ1

dτ 3
(τ) = −k(τ)L(C)2

dξ1

dτ
(τ) 5 0, (36)

d3f2

dτ 3
(τ) =

d3ξ2

dτ 3
(τ) = −k(τ)L(C)2

dξ2

dτ
(τ) = 0 (0 5 τ 5 1). (37)

But (36) means that d
2f1
dτ2
is a monotone decreasing function, either positive on [0, 1] or

positive on [0, α), zero on [α, β] and negative on (β, 1] (0 5 α 5 β 5 1) or negative on [0, 1].
Therefore the function f1 itself is either strictly convex or strictly convex on [0, α), linear on
[α, β] and strictly concave on (β, 1] or strictly concave. But such a function only fits into the
boundary conditions (34) if it is either positive in (0, 1) such that

ξ1(τ) > τ
2 (0 < τ < 1) (38)

or if it vanishes identically such that

ξ1(τ) ≡ τ
2 (39)

(see (29)). In the same way we find that the function f̄2(τ) := f2(1− τ) (0 5 τ 5 1) which
fulfils the same inequality and boundary conditions as f1 because of (37) and (35) either has
the property f̄2(τ) > 0 (0 < τ < 1) or f̄2(τ) ≡ 0 such that by (29) either

ξ2(τ) > (1− τ)
2 (0 < τ < 1) or (40)

ξ2(τ) ≡ (1− τ)
2 (41)

holds.
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Geometrically the results (38),(39) and (40),(41) may be interpreted as follows: In the
case ξ1(τ) > τ

2 and ξ2(τ) > (1− τ)2 (0 < τ < 1) every point (ξ1(τ ′), ξ2(τ ′)) (τ ′ =
s′−s0
s1−s0

with
s0 < s

′ < s1, see (31)) of C lies in the open quadrant

Qτ ′ := {(ξ1, ξ2) ∈ R2| ξ1 > τ ′2, ξ2 > (1− τ ′)2} (42)

of R2 for which we have Ps0s1 ∩Qτ ′ = ∅ whence

Ps0s1 ∩ C = {x(s0), x(s1)} (43)

follows. As trivially Ps0s1 ∩ (C \ C) = ∅ indeed i) holds. The same fact is true in the cases
ξ1(τ) > τ

2 and ξ2(τ) ≡ (1 − τ)2 as well as ξ1(τ) ≡ τ 2 and ξ2(τ) > (1 − τ)2 for 0 < τ < 1.
Since in the last case ξ1(τ) ≡ τ 2 and ξ2(τ) ≡ (1 − τ)2 the parabola arc Ps0s1 is a part of C
such that ii) holds the proof of Theorem 3.4 is complete. �

Remark 3.5. We have proved more than claimed in i) or ii) of Theorem 3.4, namely:

The arc C of C between x(s0) and x(s1) lies in the closed (convex) region bounded by the
segment x(s0)x(s1) and the parabola arc Ps0s1 .

Moreover it should be mentioned that in this theorem C may be replaced by an affinely
convex oval arc from x(s0) to x(s1) with tangent lines at the endpoints intersecting within
the closed triangle with the vertices x(s0), x(s1) and t(s0) ∩ t(s1) (i.e. (33) may be replaced
by the inequalities dξ1

dτ
(0) = 0, dξ2

dτ
(1) 5 0) (compare [1], p. 47–48).

4. Affinely convex ovaloids

Unfortunately it is not possible to extend Definition 3.1 of affinely convex ovals to ovaloids
F (compact orientable hypersurfaces in Rd (d > 2) of class C2 with positive Gauss curvature
Hd−1 everywhere and bijective Gauss map F → Sd−1 because a hyperosculating paraboloid
for F at a point x of F only exists in the case where the so-called cubic form A(x) of F at x
vanishes (see [1], p. 107 (29) and p. 114 (78) for d = 3). Moreover the (elliptic) paraboloids are
not the only equiaffine analogues for the hyperplanes in the euclidean differential geometry,
the same role are playing more generally all the improper affine hyperspheres (see [1], p. 209–
210 for d = 3). For these reasons we shall define affinely convex ovaloids in a purely analytical
manner keeping the consistency with the case d = 2 (see Theorem 3.2) by generalization of
(20) to the case d > 2. Before doing so we note some basic facts of the equiaffine differential
geometry of ovaloids F : x = x(u1, . . . , ud−1) in Rd of class C5 with positive Gauss curvature

Hd−1 :=
(− ∂n
∂u1
, . . . ,− ∂n

∂ud−1
, n)

( ∂x
∂u1
, . . . , ∂x

∂ud−1
, n)

=
det(<n, ∂

2x
∂ui∂uj

>)

det(< ∂x
∂ui
, ∂x
∂uj
>)

(44)

(n inner unit normal vector of F , compare (7)). On F there exists the equiaffinely invariant
(positive definite) Blaschke metric tensor field with (symmetric) coefficients

Gij :=
( ∂x
∂u1
, . . . , ∂x

∂ud−1
, ∂

2x
∂ui∂uj

)

(det(( ∂x
∂u1
, . . . , ∂x

∂ud−1
, ∂

2x
∂ui∂uj

)))
1
d+1

=
<n, ∂

2x
∂ui∂uj

>

H
1
d+1

d−1

(i, j = 1, . . . , d− 1), (45)
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and it is possible to define there a typical (twice differentiable) affine normal vector field y
by

y :=
1

d− 1
∆x (46)

(∆ Beltrami operator with respect to Gij, compare (11)). For this vector field we have the
affine Weingarten equations

∂y

∂ui
= −Bji

∂x

∂uj
(i = 1, . . . , d− 1) (47)

with the integrability conditions of Ricci

Bik := B
j
iGjk = B

j
kGji = Bki (i, k = 1, . . . , d− 1) (48)

such that the affine shape operator with the coefficients Bji (i, j = 1, . . . , d − 1) has d − 1
real eigenvalues called the affine principal curvatures k1, . . . , kd−1 of F (compare (12)).
After these preparations we may make

Definition 4.1. An ovaloid F of class C5 is called affinely convex if its affine principal
curvatures satisfy the conditions

k1 = 0, . . . , kd−1 = 0. (49)

Now we have at first to study the properties of the so-called (negative) curvature image
F̂ : x = −y(u1, . . . , ud−1) of F with the convex hull convF̂ in the case that F is affinely
convex. We find

Proposition 4.2. Let F be an affinely convex ovaloid of class C5 with the curvature image
F̂ . Then:
i) F̂ is a part of the boundary of K̂ := convF̂ .
ii) The support function hK̂ of K̂ equals the

1
d+1
-th power of the Gauss curvature of the ovaloid

F :

hK̂(−n) = H
1
d+1

d−1 (x(n)) (n ∈ S
d−1) (50)

(see (44)) 3.

Proof. i) It suffices to show that for any point −y0 = −y(u1(0), . . . , u
d−1
(0) ) of F̂ the whole

set F̂ and a fortiori K̂ lies in the (convex) halfspace <n0, z + y0> = 0 of Rd where n0 :=
n(u1(0), . . . , u

d−1
(0) ) such that −y0 cannot be a point in the interior of K̂. For this purpose we

choose an arbitrary point −y1 = −y(u1(1), . . . , u
d−1
(1) ) ∈ F̂ and join n1 := n(u

1
(1), . . . , u

d−1
(1) ) with

n0 by the arc n(σ) = n(u
1(σ), . . . , ud−1(σ)) of a great circle of Sd−1 where σ is an (euclidean)

arclength parameter (0 5 σ 5 σ1 := ](n0, n1) 5 π) and ui(σ) are functions of σ of class C4.

3In the special case
a

Hd−1:= k1 · · · kd−1 > 0, i.e. k1 > 0, . . . , kd−1 > 0 this was previously proved in [4],
p. 265–266.
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To this arc there corresponds a curve x(σ) = x(u1(σ), . . . , ud−1(σ)) on F (with this spherical
image) of class C4 as well as a curve −y(σ) = −y(u1(σ), . . . , ud−1(σ)) on F̂ of class C2. By
construction we have

n0 = <n(σ), n0>n(σ) +<
dn

dσ
(σ), n0>

dn

dσ
(σ) (51)

with

<
dn

dσ
(σ), n0> 5 0 (0 5 σ 5 σ1). (52)

Hence by (51), (47), (45), (48), (52) and (49)

d

dσ
<n0,−y(σ) + y0> = <n0,−

∂y

∂ui
dui

dσ
> = <

dn

dσ
, n0><

∂n

∂uk
duk

dσ
,Bji
∂x

∂uj
dui

dσ
>

= −<
dn

dσ
, n0>B

j
iGjkH

1
d+1

d−1

dui

dσ

duk

dσ
= −<

dn

dσ
, n0>H

1
d+1

d−1 Bik
dui

dσ

duk

dσ
= 0

(0 5 σ 5 σ1) whence because of <n0,−y(0) + y0> = 0 after integration indeed
<n0,−y(σ1) + y0> = <n0,−y1 + y0> = 0 follows.

ii) In order to see (50) we choose an arbitrary direction given by the unit vector n0 ∈ Sd−1

which may be considered as image of the Gauss map of a point x0 ∈ F with the corresponding
point −y0 ∈ F̂ . As we have seen in the proof of i) the hyperplane <n0, z+ y0> = 0 through
−y0 with normal direction n0 supports K̂ such that the (positive) distance <− n0,−y0> of
this hyperplane from the origin yields the value of the support function hK̂ of K̂ for −n0 :

hK̂(−n0) = <n0, y0>. (53)

But from the well-known affine Gauss equations

∂2x

∂ui∂uj
= Γkij

∂x

∂uk
+ Akij

∂x

∂uk
+Gij y (i, j = 1, . . . , d− 1) (54)

where Γkij resp. A
k
ij are the Christoffel symbols for the metric (45) resp. the coefficients of

the cubic form of F (i, j, k = 1, . . . , d− 1) we may conclude after scalar multiplication by n

<n,
∂2x

∂ui∂uj
> = Gij<n, y>. (55)

Now the comparison of (55) and (45) yields

<n, y> = H
1
d+1

d−1 (56)

which together with (53) provides the relation (50), claimed in ii). �

One important consequence of Proposition 4.2 is the fact that the convex body K bounded
by an affinely convex ovaloid F is of elliptic type in the sense of
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Definition 4.3. A convex body K of dimension d in Rd is called to be of elliptic type if there
exists a positive and continuous “curvature function” ρ for K on Sd−1, characterized by the
equation

d V (K, . . . ,K, L) =

∫

Sd−1
hL · ρ dω (57)

for every convex “test body” L in Rd, with the property

ρ−
1
d+1 = hM (58)

for a suitable convex body M in Rd (V (K, . . . ,K, L) mixed volume, dω surface area element
of Sd−1).

Namely if K is bounded by an ovaloid F then

ρ = H−1d−1 (59)

because of d V (K, . . . ,K, L) =
∫
F
hL dH

d−1 =
∫
Sd−1
hLH

−1
d−1 dω (see (44), H

d−1 Hausdorff
measure on F ) for all convex bodies L (see (50) and (58)).

Now it is our aim to prove interesting results for the so-called affine surface area A(F ) of an
ovaloid F in Rd of class C5:

A(F ) =:

∫

F

(
∂x

∂u1
, . . . ,

∂x

∂ud−1
, y) du1 · · · dud−1 =

∫

F

H
1
d+1

d−1 dH
d−1 =

∫

Sd−1
H
− d
d+1

d−1 dω (60)

(compare (8)) in the special case where the ovaloids are affinely convex. In this case the
enclosed convex bodies are of elliptic type and the application of results of C. Petty (see [10],
Theorem 3.21 and Theorems 3.12, 2.6) for bodies of elliptic type provides:

Theorem 4.4. Let A be the functional, defined by F 7→ A(F ) for each affinely convex ovaloid
F of class C5 in Rd. Then
i) A is strictly monotone increasing, i.e.

F ′ j conv F = K, F ′ 6= F ⇒ A(F ′) < A(F ), and (61)

ii) A is continuous, i.e.

F = lim
ν→∞
Fν ⇒ A(F ) = lim

ν→∞
A(Fν). (62)

We have to mention that (61) is not true in general just as (62) where we have only upper
semicontinuity:

F = lim
ν→∞
Fν ⇒ A(F ) = lim sup

ν→∞
A(Fν) (63)

(see [6], Proposition 9.2). For the sake of completeness we shall outline the
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Proof of Theorem 4.4. i) We use the so-called “reflected Hölder inequality”

∫

Sd−1
f · g dω =

(∫

Sd−1
f−d dω

)− 1
d

·

(∫

Sd−1
g
d
d+1 dω

) d+1
d

(64)

for positive and continuous functions f, g on Sd−1 with equality if and only if

g
d
d+1 = c · f−d (c constant with c > 0). (65)

Then the application of (65), (50), (64), (59) and (57) together with the monotoneity of the
mixed volume yields

(∫

sd−1
h−d
K̂
dω

)− 1
d
(∫

Sd−1
H
− d
d+1

d−1 dω

) d+1
d

=

∫

Sd−1
hK̂H

−1
d−1 dω = d V (K, . . . ,K, K̂) =

d V (K ′, . . . , K ′, K̂) =

∫

Sd−1
hK̂H

′−1
d−1 dω =

(∫

Sd−1
h−d
K̂
dω

)− 1
d
(∫

Sd−1
H ′
− d
d+1

d−1 dω

) d+1
d

(66)

(K ′ := conv F ′) whence by (60) indeed A(F ) = A(F ′). Equality here implies equality in the

second inequality of (66) whence by (65) and (50) H ′−1d−1 = c
d+1
d h

−(d+1)

K̂
= c

d+1
d H−1d−1 and then

by the equality in the first inequality of (66) c = 1 and

H ′d−1 = Hd−1 (67)

follows. But an old theorem of Minkowski says that (67) implies the relation K ′ = K + a
(a constant with a ∈ Rd) and thus indeed K ′ = K because of K ′ j K.
For this proof of i) the assumption of the affine convexity of the smaller ovaloid F ′ may

be omitted. Modifications of part i) of Theorem 4.4 may be found in [5].

ii) The second part of Theorem 4.4 may also be proved by reduction to the corresponding
property of the mixed volume. Because of the validity of (63) we have only to show the lower
semicontinuity of the functional A:

F = lim
ν→∞
Fν ⇒ A(F ) 5 lim inf

ν→∞
A(Fν). (68)

Instead of (66) we use for this purpose the inequality

d V (K, . . . ,K, L∗) =

∫

Sd−1
hL∗H

−1
d−1 dω =

(∫

Sd−1
h−dL∗ dω

)− 1
d
(∫

Sd−1
H
− d
d+1

d−1 dω

) d+1
d

= (d V (L))−
1
dA(F )

d+1
d = (d κd)

− 1
dA(F )

d+1
d (69)

for any convex body L in Rd whose centroid lies in the origin:

c(L) = 0 (70)
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and whose volume equals the volume of the d-dimensional unit ball:

V (L) = κd (71)

(L∗ polar body of L with respect to the origin). Equality holds in (69) for the body

LK :=

(
dκd

A(F )

) 1
d

K̂∗ (72)

since by (50)

h−dL∗K
=
dκd

A(F )
h−d
K̂
=
dκd

A(F )
H
− d
d+1

d−1 (73)

(see (65)), and by (73)

V (LK) =
1

d

∫

Sd−1
h−dL∗K
dω =

κd

A(F )

∫

Sd−1
H
− d
d+1

d−1 dω = κd. (74)

Hereby we also have by (50) and a theorem of Minkowski

c(LK) =

(
dκd

A(F )

) 1
d 1

V (K̂∗)

∫

Sd−1

h
−(d+1)

K̂

d+ 1
(−n) dω = (· · · )

∫

Sd−1
(−n)H−1d−1 dω = 0. (75)

Now let be F = limν→∞ Fν (in the Hausdorff sense) with the convex bodies Kν := conv Fν
of elliptic type. Then we have likewise the equalities

d V (Kν , . . . , Kν , L
∗
Kν
) = (dκd)

− 1
dA(Fν)

d+1
d (76)

with

V (LKν ) = κd, c(LKν ) = 0 (ν = 1, 2, . . . ) (77)

as for K (see (69), (73), (74) and (75)). We consider the sequence {A(Fν)}ν∈N which has a
convergent subsequence {A(Fν′}ν′∈N with

lim inf
ν→∞

A(Fν) = lim
ν′→∞

A(Fν′). (78)

The application of Blaschke’s selection theorem to the bodies LKν′ which is possible because
of the normalization (77) (for details see [6], proof of Lemma 6.3) yields the convergence of
a subsequence of {LKν′}ν′∈N such that we may assume, without changing the notation,

lim
ν′→∞

L∗Kν′ =: L
∗
0 with V (L0) = κd, c(L0) = 0. (79)

Now we are passing to a limit for ν ′ →∞ in the equation (76) from which we may conclude
using (78), (79), (69) and the continuity of the mixed volume:

(d κd)
− 1
d (lim inf
ν→∞

(A(Fν))
d+1
d = d V ( lim

ν′→∞
Kν′ , . . . , lim

ν′→∞
Kν′ , lim

ν′→∞
L∗Kν′ ) =
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= d V (K, . . . ,K, L∗0) = (d κd)
− 1
dA(F )

d+1
d

(compare (66)) which indeed equals the claim (68) of ii). �

We end with the final

Remark 4.5. i) Proposition 4.2 and its consequence, Theorem 4.4, may be proved exactly
in the same way for affinely convex ovals C in R2 with the affine perimeter

L(C) =

∫

C

κ
1
3 dσ =

∫

S1
κ−

2
3 dω (80)

(see (8)).
ii) Theorem 4.4 is also valid for affinely convex parabola polygons P (see Definition 2.2) in
R2 with the affine perimeter (80) since their enclosed convex domains K are of elliptic type
(see Definition 4.3).

The reason of this behaviour is the fact that P possesses the positive and continuous curvature
function ρ with

ρ |
Pl−1l

=
1

κ(l−1l)
(81)

(see (6)) and with

<n(xl), y
(l−1l)> = <n(xl), y

(ll+1)> = ρ(xl)
− 1
3 (l = 1, . . . , k) (82)

(see (56)) such that ρ−
1
3 must be the support function of the solid convex polygon

K̂ := conv {−y(01), . . . ,−y(k−1k)} (83)

with the vertices −y(01), . . . ,−y(k−1k), the endpoints of the negative affine normal vectors of
the parabola arcs P01, . . . ,Pk−1k.
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