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1. Introduction

Let K2 be a geometric simplicial 2-complex in Euclidean 3-space E3 and let |K2| denote
the carrier (or underlying space) of K2. Throughout this paper, we will assume that |K2| is
homeomorphic to a closed, compact, orientable 2-manifold of a given genus g ≥ 0.
By a polyhedron (or polyhedral surface) P we will mean a simplexwise linear continuous

mapping P : |K2| → E3. Especially, a spherical polyhedron is one of genus g = 0, a torus
polyhedron has genus g = 1. The image P (|K2|) in E3 is often also called a polyhedron,
with combinatorial structure K2. The images of the 0-, 1- and 2-simplices of K2 are called
the vertices, edges and faces of P , respectively. A cycle formed by some three edges of a
polyhedron P is called a 3-cycle. A 3-cycle of a polyhedron P is called empty (or nonfacial)
if it does not bound a face of the polyhedron.
In this paper we prove that the combinatorial structure of any polyhedron P homeomor-

phic to the 2-sphere belongs to the class K0 introduced in [7, 8]. That class consists of the
triangulations containing at least one vertex which is not incident with any empty 3-cycle.
In reality our Theorem 2 affirms even more: P in fact contains at least two such vertices.
As matter of language, a vertex v not incident with an empty 3-cycle will be called a clean
vertex; otherwise v will be unclean.
A (simplicial) triangulation T of a given 2-manifold M2 is defined to be the space of M2

with the structure of a simplicial 2-complex, induced by a homeomorphism η from the carrier
of a simplicial 2-complex K2 to M2. The images of the 0-, 1-, and 2-simplices of K2 are
called the vertices, edges, and faces of T , respectively. The graph G(T ) of T is the graph
defined by the vertices and edges of T . Since T has the structure of a simplicial 2-complex,
loops and multiple edges are disallowed in G(T ).
If v is a vertex of T , then the star of v, st(v), is the family of all simplices in T of which v

is a vertex. If σ is a simplex, the open simplex o(σ) associated with σ consists of those points
of σ all of whose barycentric coordinates are positive (in some geometric representation of
σ). The open star of v, ost(v), is the union of all the open simplices o(σ) for which v is a
vertex of σ. Note that v /∈ ost(v).
With each polyhedron P having combinatorial structureK2 and homeomorphic to a given

2-manifold M2, we associate the triangulation induced by a homeomorphism η : |K2| →
M2. Two polyhedra have the same combinatorial structure if and only if the corresponding
triangulations are isomorphic – that is, there exists a bijection between their vertex sets which
preserves edges and faces. The concepts of an empty 3-cycle and a clean vertex are defined
for a triangulation in the same way as for a polyhedron. Strictly speaking, being clean (or
unclean) is a combinatorial property of a vertex in the triangulation T (or its combinatorial
structure K2) rather than a geometric property in a particular polyhedron realizing T .
The degree of a vertex v in a triangulation T is the number of edges of T incident with

v. Especially, 3-valent vertices (that is, vertices of degree 3) are needed when applying our
construction. Note that 3-valent vertices are clean.
The article is organized as follows. In Section 2 we simplify the original construction

[7, 8] of volume polynomials for a given spherical polyhedron. Our construction requires the
existence of at least one clean vertex. In Section 3 we justify that construction, establishing
the existence of a clean vertex in any triangulation of the 2-sphere. In that section we
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also obtain some sufficient conditions for the existence of 3-valent vertices. In general there
exist many volume polynomials and the question about the minimum possible degree of such
polynomials is not a straightforward problem. In Section 4 we outline some approach to
this problem – more precisely, we characterize the triangulations of the 2-sphere reducible
to a tetrahedron by repeatedly removing 3-valent vertices (together with their open stars)
and estimate below the maximum value among the minimum possible degrees of volume
polynomials for spherical polyhedra with a given number of vertices as parameter.
Sections 2–4 have been written by the first and third authors. Section 5, written by the

first and second authors, deals with triangulations of the torus along these lines.

2. Construction of a volume polynomial

The third author [7, 8] previously generalized Heron’s formula from the area of a triangle to
the volume of an orientable polyhedron (Theorem 1 below). Since a given polyhedron P need
not be embedded, or even immersed, in E3, we will have to use the concept of generalized
volume instead of the usual volume of P . The generalized volume of an oriented polyhedron
P in 3-space E3 is defined to be the sum of the oriented volumes of the tetrahedra spanned
by a fixed point O and the coherently oriented faces of P (thus the volume may be negative
or equal 0). Note that the so defined volume does not depend on the choice of O and that,
when P is embedded in E3, it coincides with the usual oriented volume of P .
For a given polyhedron P with q edges, denote by L= {lk} = {l1, l2,. . . , lq} the sequence

of the lengths of its edges, in an arbitrarily fixed order. Then, denote by P(P,K2, L) the
family of polyhedra in E3 with a given combinatorial structure K2, whose edges have the
same lengths as the corresponding edges of P .

Theorem 1. (Sabitov [7, 8]) Let P be an oriented polyhedron in E3 with a given combina-
torial structure K2 and given lengths {lk} of the edges. Then there exists a polynomial,

Q(V ) = V 2N + a1(L)V
2N−2 + · · · + aN(L),

so that the generalized volume of any polyhedron in P(P,K2, L) is a root of this polynomial.
Furthermore, the coefficients ai(L) are themselves polynomials in {l21, l

2
2, . . . , l

2
q} with rational

coefficients depending on K2.

The proof [7, 8] of this theorem is constructive. That construction heavily depends on the
existence, or nonexistence, of a clean vertex. In the next section we shall establish a crucial
result, Theorem 2, stating that at least two clean vertices always can be found, once we
restrict our attention to spherical polyhedra. This result allows a significant simplification
of the proof [7, 8] of Theorem 1. More precisely, in the spherical case, Lemma 1 (“Main
Lemma”) of [7, 8] is always applicable. That lemma states that if Theorem 1 holds for each
n-vertex polyhedron Pn then it also holds for any (n + 1)-vertex polyhedron Pn+1 of the
same genus as Pn provided Pn+1 has a clean vertex. Fortunately, for genus g = 0, thanks
to Theorem 2, Pn+1 always has even two clean vertices! Furthermore, the determination of
polynomial Q(V ) is now much simpler: there is no need to cut the polyhedra around some
empty 3-cycle as required in the above cited works.
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We now describe our construction of a volume polynomial for a given spherical n-vertex
polyhedron P = Pn. Choose a clean vertex of minimum degree, remove it together with its
open star, and close the hole with a collection of triangles determined by the diagonals and
the sides of the hole. Observe that no multiple edges can be produced while closing the hole
because the chosen vertex was clean. Denote by Pn−1 the resulting polyhedron; it has n− 1
vertices. Repeat this process to obtain an (n − 2)-vertex polyhedron Pn−2, and so forth.
Finally, we will come to a tetrahedron P4. Now, starting from that P4, we can successively
write volume polynomials Q4(V ), Q5(V ), . . . , Qn−1(V ) and Qn(V ) satisfying Theorem 1, for
the volumes of P4, P5, . . . , Pn−1 and P = Pn, respectively. The method for writing those
polynomials is elaborated in [7, 8] and we omit the details here.
The method is especially efficient in the particular case in which the removed vertices

are 3-valent. In that case, we can write the volume polynomials Qi(V ) (for i = 5, . . . , n) by
repeatedly adding the volume of the tetrahedron removed to the volume of Pi−1 with plus or
minus sign. Then the degree of the resulting polynomial Qn(V ) is minimum possible.
In the general case, the proposed construction does not necessarily lead to a minimum-

degree volume polynomial. But in the spherical case, Astrelin and the third author have
proved [1] that a minimum-degree volume polynomial Q0 is unique and is a divisor of any
volume polynomial Qn(V ). Therefore, Q0 is a common divisor of all such polynomials.

3. Existence of clean vertices

The primary purpose of this section is to justify our construction, namely: establish the
existence of a clean vertex in any spherical polyhedron.

Theorem 2. Any triangulation T of the 2-sphere has at least two clean vertices. Moreover,
if the number of vertices of T is greater than 4, then among the clean vertices there are at
least two which are not adjacent.

Proof. Note that a tetrahedron has all the four vertices clean and pairwise adjacent. For the
general case we proceed by induction on the number of vertices of T . We begin with the case
of 5-vertex triangulations. In fact we have only one such triangulation, up to isomorphism
– namely, an embedding of the complete graph K5 with one edge deleted in the 2-sphere.
For this triangulation the statement is obvious. Assume that the statement is true for all
triangulations having less than n vertices (n ≥ 5), and let T be a triangulation of the 2-sphere
with n vertices. If T does not have an empty 3-cycle, the statement obviously holds. If T
has such a cycle, denote it by C, cut the 2-sphere open around it and close the two resulting
triangular holes with faces. As a result of such a surgery, we obtain a pair of triangulations,
T1 and T2, of the 2-sphere, both having less than n vertices.
Firstly, assume T1 and T2 both have more than four vertices. Then apply the induction

assumption to find, in both triangulations, a pair of nonadjacent clean vertices. Obviously
these vertices cannot be both on C. Thus we can find a pair of vertices, one in T1 and the
other in T2, so that both are clean in T and not incident with C. Clearly, then, such a pair
of vertices (in T ) are as desired.
Secondly, assume T1 has four vertices, that is, is a tetrahedron. Denote by u1 the vertex

of T1 not incident with C. If T2 has at least five vertices, we can find in it, by the induction
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assumption, a clean vertex u2 not incident with C and not adjacent with u1. If T2 has four
vertices, T has five vertices and the statement is true by the base of induction.

As we have seen in Section 2, it is advantageous to have 3-valent vertices for our construction.

Theorem 3. If a triangulation T of the 2-sphere with at least five vertices has exactly two
clean vertices, then both are 3-valent.

Proof. Denote by u and v the two clean vertices of T . Observe firstly that any empty 3-cycle
of T separates u and v, for otherwise we could not find two nonadjacent clean vertices in
the part missing u and v (with the hole closed with a triangular face), which contradicts
Theorem 2. Note that that part would have to have at least five vertices, since otherwise a
third clean vertex would be found in T . Denote by C(u) the empty 3-cycle in T so that the
part of T separated by C(u) and containing u does not have an empty 3-cycle inside itself.
The existence of C(u) follows from the following construction: Pick any empty 3-cycle of T
as C(u), then repeatedly proceed to a smaller 3-cycle around u, in the sense that the part
separated by a previous 3-cycle contains the next one. This process is obviously finite, and
we denote by C(u) the smallest 3-cycle in the sense that C(u) separates a part containing
u but no more empty 3-cycle. Then C(u) has the property that it separates a part of T
having u as the sole interior vertex, for otherwise a second interior vertex would be obviously
unclean and we could find another empty 3-cycle in that part. It follows that u is 3-valent
in T . Similarly, v is 3-valent.

One might expect that if a triangulation of the 2-sphere has all its clean vertices pairwise
nonadjacent, then each clean vertex is 3-valent. However, this is not generally true.

Example 1. Consider a cube with a pyramid attached to its upper and lower faces (the
bases of those pyramids are supposed to be removed so that we have a spherical polyhedron
again), dissect the four quadrilateral faces by diagonals, and attach a triangular pyramid to
each of the resulting triangles. Then, in the resulting triangulation, the eight original vertices
of the cube are unclean, while the ten newly added vertices are clean. This triangulation has
all clean vertices pairwise nonadjacent, but two of them have degree four.

Sphere Conjecture. If the stars of the clean vertices of a triangulation of the 2-sphere are
pairwise vertex-disjoint, then each clean vertex is 3-valent.

4. Decomposition of a polyhedron into tetrahedra

In the light of our construction (Section 2), it is an important combinatorial problem to
characterize triangulations T of the 2-sphere reducible to a triangulation with four vertices
(“tetrahedron”) by repeatedly removing a 3-valent vertex, always together with its open star,
followed by closing the hole with a single triangular face. Observe that such an operation
does not alter the genus. We will say, then, that triangulation T is stellarly reducible. This
term is motivated as follows. Recall that a stellar subdivision applied to a triangulation
consists of adding a vertex in some face f and joining it to the three vertices in the boundary
of f . Therefore the replacement of the three faces incident with a 3-valent vertex by a single
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triangular face can be regarded as an operation inverse to the stellar subdivision: it decreases
the number of vertices by one.
Let B be a convex 3-polytope in E3 which contains a 3-valent vertex, v. Cut B by the

plane passing through the three boundary edges of st(v) and discard the part that contains
v. The result, B′, is again a convex 3-polytope, with one less vertex. If B′ also contains a
3-valent vertex, we can repeat the operation and cut B′. If, proceeding in this fashion, we
can reduce B to a single solid tetrahedron, we will say that B is decomposable into tetrahedra
or, more briefly, 3-decomposable.
This geometric construction can be interpreted in combinatorial terms. Let T be a trian-

gulation of the 2-sphere. By well-known Steinitz’s Theorem, T can be realized in E3 as
the boundary 2-complex of a convex 3-polytope B. Suppose T is stellarly reducible. Then
the removal of a 3-valent vertex of T corresponds to some cutting of B as described in the
preceding paragraph; the converse is also true. Therefore T is stellarly reducible if and only
if B is 3-decomposable.
The process of decomposition of B into solid tetrahedra can be also regarded as a decom-

position of some abstract simplicial 3-complex K3 into 3-simplices where a 3-simplex is re-
movable if, and only if, it shares precisely one of its 2-faces with another 3-simplex of K3.

Example 2. It is easy to verify that any solid pyramid with its base arbitrarily triangulated
is decomposable into tetrahedra.

The following is a more sophisticated example.

Example 3. If we cut the triangulation T 1 (Figure 1 on page 270) around the 3-cycle
(3, 1, 2, 3) and close the two holes with triangular faces, we obtain the triangulation T 1′ of
the 2-sphere depicted in Figure 2(a). The vertices of the face corresponding to the upper
side of the rectangle (Figure 1) are denoted by 1′, 2′, 3′, and the corresponding vertices of
the lower face by 1′′, 2′′, 3′′, respectively. We assume that the 3-cycle (3′′, 1′′, 2′′, 3′′) bounds
a face (“outer face”). Then, T 1′ is stellarly reducible by removing the 3-valent vertices 1′,
2′, 3′, 4, 5, and 6, one by one in this order. This process is illustrated in Figure 2.

It is an open combinatorial problem to characterize triangulations of a given genus g reducible
by successively removing 3-valent vertices to a vertex-minimum triangulation admissible by
the (orientable or nonorientable) 2-manifold of genus g. In this section we settle this problem
for g = 0. Our first criterion (Theorem 4) is rather theoretical, but the second (Theorem 5)
is readily checkable and therefore is more useful on the practical side.
For a given simplicial 3-complex K3, we define the dual graph, G∗(K3), to be the graph

whose vertices correspond to the 3-simplices of K3 and two vertices are adjacent if and only
if the corresponding 3-simplices share a 2-face.

Theorem 4. A convex 3-polytope B is 3-decomposable if and only if B is the carrier of some
3-complex K3 having a tree as its dual graph G∗(K3).

Proof. Sufficiency: Since G∗(K3) is a tree, it has a vertex of degree one. The 3-simplex of K3

corresponding to that vertex is removable. Furthermore, after the removal of that 3-simplex,
the dual of the resulting 3-complex is also a tree and we can repeat this process as many
times as needed to obtain a single tetrahedron.
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Fig. 2. 3-decomposition of T 1 cut around (3, 1, 2, 3).
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Necessity: Assume to the contrary that G∗(K3) is not a tree. Hence, G∗(K3) has a cycle
C. Consider the simplicial 3-complex determined by the 3-simplices of K3 corresponding
to the vertices of C. This 3-complex bears resemblance to a “cycle” made up of tetrahe-
dra. Then, however, none of its 3-simplices would be ever removable. This contradicts the
hypothesis that B can be 3-decomposed.

Remark 1. Theorem 4 obviously extends to a 3-polytope B which is not necessarily convex
if by a 3-polytope we mean a simplexwise linear continuous mapping to E3 from the carrier
of some 3-complex K3, homeomorphic to the unit 3-ball, under the condition that all vertices
of K3 are mapped onto the vertices of B.

Theorem 5. An n-vertex triangulation T of the 2-sphere is stellarly reducible if and only if
it has at least n− 4 empty 3-cycles.

To prove this theorem, we need to develop two lemmas.

Lemma 1. Any n-vertex triangulation T of the 2-sphere can have at most n − 4 empty
3-cycles.

Proof. This proceeds by induction on the number of vertices of T . For n = 5, the only
5-vertex triangulation has exactly one empty 3-cycle and the statement is true. Assume that
the statement is true for all triangulations having less than n vertices (n ≥ 5), and let T be
an n-vertex triangulation of the 2-sphere. Suppose for a contradiction that some n−3 empty
3-cycles are found in T . Cut T around one of those 3-cycles into two pieces. Denote by T1
and T2 the two triangulations obtained by closing the holes of the pieces by triangular faces.
By Jordan curve theorem, any other empty 3-cycle lies entirely in T1 or T2. Denote by k and
m the numbers of vertices and empty 3-cycles in T1, respectively. Then T2 has n − k + 3
vertices and at least n − m − 4 empty 3-cycles. The case m > k − 4 is impossible by the
induction assumption for T1, so that m ≤ k − 4, so that n −m − 4 ≥ n − k > n − k − 1,
which contradicts the induction assumption applied to T2.

Lemma 2. If an n-vertex triangulation T of the 2-sphere has n− 4 empty 3-cycles, then T
has at least two nonadjacent 3-valent vertices.

Proof. This proceeds by induction on the number of vertices of T . For the 5-vertex triangu-
lation the statement is true. Assume that the statement is true for all triangulations having
less than n vertices, and let T be an n-vertex triangulation of the 2-sphere having n − 4
empty 3-cycles. We apply the same surgery as in the proof of Lemma 1, using the same
notation. The k-vertex triangulation T1 has exactly k−4 empty 3-cycles. For, it cannot have
more, by Lemma 1, but if it had less, we would have a contradiction with Lemma 1 for the
triangulation T2.
Suppose first that k > 4 and n− k > 1. Denote by C1 and C2 the two banks of the cut

of T . Then, after closing the holes, T1 has face C1, and T2 has face C2. By the induction
assumption, T1 has two nonadjacent 3-valent vertices. At least one of them, designate it by
v1, is not in C1. Similarly, T2 has two nonadjacent 3-valent vertices, and at least one of them,
v2, is not in C2. The vertices v1 and v2 are nonadjacent 3-valent vertices in T , as desired.
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Suppose now that k = 4 or n − k = 1. Both possibilities are treated similarly and we
assume the former. The sole vertex of T1 not in C1, designate it by v1, has degree 3 in T .
Now, if n − k = 1, the sole vertex v2 of T2 not in C2 is 3-valent in T . If n − k > 1, take as
v2 any 3-valent vertex of T2 not in C2. Such a vertex exists by the induction assumption. In
both cases the pair {v1, v2} is as desired. The lemma has been proved.

Proof of Theorem 5. Sufficiency: By induction on the number of vertices of T . Assume that
an n-vertex triangulation T has at least n − 4 empty 3-cycles. Then, by Lemma 1, T has
exactly n−4 empty 3-cycles. By Lemma 2, T has two nonadjacent 3-valent vertices. Remove
one of those vertices together with its open star and close the hole with a single triangular
face. The resulting (n − 1)-vertex triangulation has n − 5 empty 3-cycles. Applying the
induction assumption finishes the proof of the “if” part.
Necessity: Observe first that no edge is added under the removal of a 3-valent vertex.

Assume T is stellarly reducible. The removal of each 3-valent vertex v destroys one empty
3-cycle – namely, the one on the boundary of st(v). Therefore, to arrive at a tetrahedron, we
have to destroy some n− 4 empty 3-cycles.

Recall that a minimum-degree volume polynomial for a given spherical polyhedron is unique.

Theorem 6. There exists an n-vertex spherical polyhedron so that any of its volume poly-
nomials has degree at least 2n−3 and this bound is attained by some volume polynomial.

Proof. Let P be an n-vertex stellarly reducible spherical polyhedron. By Theorem 5 and
Lemma 1, it has exactly n−4 empty 3-cycles and, by Lemma 2, there are exactly 2n−4 different
sequences of tetrahedron deletions transforming P into a single tetrahedron. Recall that when
constructing a volume polynomial for P as described in Section 2, we successively remove
tetrahedra from P , and for each tetrahedron removed we add its volume to, or subtracted
from, the volume of the preceding polyhedron. The statement is now obvious.

It follows from this proof that the statement of Theorem 6 holds for any pyramid with n
vertices; see Example 2.

Corollary 1. The maximum degree of the minimum-degree volume polynomials over n-vertex
spherical polyhedra is at least 2n−3.

5. The torus case

In [7, 8], a detailed description is given as how to write a volume polynomial by way of
surgery – that is, cutting the polyhedron. It is important to keep in mind the allowance of
self-intersections in a polyhedron; those can be of two kinds: self-crossings and self-touchings.
That means that by cutting a torus polyhedron around some empty 3-cycle and closing the
holes with triangles f1 and f2, one obtains a spherical polyhedron with an obvious self-
touching – namely, f1 = f2 as point sets in E

3. Thus, by way of surgery, a torus polyhedron
can be reduced to a spherical one. We are interested in whether this process can produce
clean (especially 3-valent) vertices, since such vertices are playing an important role in the
spherical case. The purpose of this section is to study torus polyhedra along these lines.
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By straightforward algebraic manipulations involving Euler’s equation and the fact that
the sum of vertex degrees in any graph is twice the number of edges, it can be easily seen
that for each triangulation T of the torus the mean degree of a vertex is equal to 6. It follows
that any triangulation of the torus has a vertex of degree 5, 4, or 3 unless it is 6-regular –
that is, each vertex has degree 6. Therefore, 7 is the minimum number of vertices that a
triangulation of the torus can have. Such a vertex-minimum torus triangulation indeed exists
and is known [5, 6] to be unique up to isomorphism. This triangulation is shown in Figure 1
and will be denoted by T1; identify the opposite sides of the rectangle to obtain a torus.

3 1 2 3

3 1 2 3

7

6

7

6

4 5

Fig. 1. 7-vertex triangulation T 1 of a torus.

Czászár has established [4] the existence of an embedding of T 1 in E3. In [3], the reader
may find instructions on how to make a cardboard model of this remarkable minimum torus
polyhedron without diagonals (with a photograph) realizing T 1. Bokowski and Eggert have
suggested a method for constructing all embeddings of T 1 in E3.
Observe that T 1 (as well as any polyhedron realizing this triangulation) has the property

that all its vertices are unclean. Furthermore, any vertex-minimum triangulation of each
nonspherical 2-manifold has this property, for otherwise we could decrease the number of
vertices by removing a clean vertex together with its open star and closing the hole with a
collection of triangular faces.
All 6-regular triangulations of the torus have been classified [6] by the second author.

We reproduce that classification shortly, but first we address a byproduct of it: there exist
infinitely many 6-regular torus triangulations without clean vertices. Whence, there does
not exist a constant N so that any torus polyhedron with at least N vertices has a clean
vertex. Therefore, for a torus polyhedron and, in general, for a polyhedron of genus g > 0 it
is hopeless to avoid surgery in constructing a volume polynomial.
We now proceed to classify 6-regular triangulations of the torus. Let T be a 6-regular

torus triangulation. For a given vertex v of T , denote by v1, v2, v3, v4, v5, and v6 the adjacent
vertices in cyclic order as they occur around v in T . We say that the three pairs of edges
{vv1, vv4}, {vv2, vv5}, and {vv3, vv6} are the “diagonals” of st(v). A cycle C in T is straight
at vertex v when the two edges of C incident with v form a diagonal of st(v). A cycle is
geodesic if it is straight at each vertex.
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According to the classification [6], every 6-regular torus triangulation can be written in a
standard form as T (p, q, r). Such a form is not well-defined. The set of admissible triples of
integers (p, q, r) breaks into orbits by the action of some translation group, where the triples
in one orbit represent isomorphic triangulations.
Let (p, q, r) be a given triple of integers satisfying the inequalities,

p > 0, r > 0, and 0 ≤ q < p.

We now describe the construction for T (p, q, r). Consider the 6-regular (infinite) triangulation
of the xy-plane E2(x, y), defined by the three families of lines: x = k, y = l, and y = x+m,
where k, l, and m are arbitrary integers. We suppose that a vertex is placed in each point
at which the lines cross. In the so-triangulated plane consider the rectangle,

{(x, y) : 0 ≤ x ≤ r, 0 ≤ y ≤ p}.

Identify the opposite sides of this rectangle so that vertex (0, k) merges with (r, k−q (mod p))
for each k = 0, . . . , p, and (l, 0) merges with (l, p) for l = 0, . . . , r. It is a simple matter to
verify that we thus obtain a triangular embedding of a pseudograph (that is, a graph with
loops and multiple edges possible) in the torus. That embedding is in a standard form,
denoted by T (p, q, r). The second author has characterized [6] all triples (p, q, r) for which
T (p, q, r) is a triangulation (in the sense of the definition given in the Introduction). Its graph
is free from loops and multiple edges.

Example 4. The vertex-minimum triangulation T 1 of Figure 1 can be written as T (7, 2, 1)
or T (7, 4, 1).

Lemma 3. A 6-regular torus triangulation T satisfies the following two conditions,
(a) every vertex belongs to some empty 3-cycle, and
(b) every empty 3-cycle is geodesic,

if and only if T is either T (3, 0, 3) or T (3, s, t) for some s ∈ {0, 1, 2} and t ≥ 4.

Proof. Necessity: Conditions (a) and (b) ensure the existence of a geodesic 3-cycle and this
implies that T can be written in a standard form as T (3, q, r). Since pr is equal to the number
of vertices in T (p, q, r) and the smallest triangulation of the torus has 7 vertices, it follows
that r ≥ 3. For r = 3 we obtain a triangulation T (3, q, 3) with 9 vertices. It is a result of [6]
that this triangulation is one of the following two types:

Type 1: T (9, 2, 1) = T (9, 3, 1) = T (9, 5, 1) = T (9, 6, 1) = T (3, 1, 3) = T (3, 2, 3);
Type 2: T (3, 0, 3).

The first type admits six standard forms while the second admits only one such form. They
both satisfy condition (a) since they have a geodesic 3-cycle. It is straightforward to inspect
which of them satisfy condition (b): T (3, 0, 3) does, but T (3, 1, 3) does not because it contains
an empty 3-cycle not geodesic.
Sufficiency: We already know that T (3, 0, 3) satisfies conditions (a) and (b). If r > 3,

there is no empty 3-cycle in T (3, q, r) other than the geodesic cycles of length p. Therefore
each T (3, q, r) with r > 3 satisfies both conditions (a) and (b). The proof is complete.
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Theorem 7. Let T be a triangulation of the torus without a clean vertex. Then T can be
cut open around some empty 3-cycle C of T so that the resulting triangulation T ′, with the
holes closed with triangular faces, is a triangulation of the 2-sphere with at least two clean
vertices. Furthermore, if T is not one of T (3, 0, 3), or T (3, s, t) where s ∈ {0, 1, 2} and t ≥ 4,
C can be chosen so that at least one of the clean vertices of T ′ is a 3-valent vertex. If T is
one of the above exceptions, it is impossible to cut T around an empty 3-cycle with producing
a 3-valent vertex.

Torus Conjecture. The exceptional triangulations can be cut producing at least two clean
vertices of degree 4.

Proof of Theorem 7. By the hypothesis, each vertex of T is incident with an empty 3-cycle.
Take as C any empty 3-cycle of T , cut T open around C and close the holes with triangular
faces. The resulting space is still connected. To see this, assume the contrary. Then one
of the components, P ′, would be necessarily homeomorphic to the 2-sphere. If P ′ had 4
vertices, T would have a 3-valent, and thereby clean, vertex. This case is excluded by the
hypothesis. If P ′ had at least 5 vertices, it would contain at least two nonadjacent clean
vertices, by Theorem 2. One of those vertices, v, would not lie on the bank of C in P ′ and
thereby would be a clean vertex of T . This, however, contradicts our hypothesis. Therefore,
by way of cutting T around C followed by closing the holes with triangular faces, we obtain
a triangulation T ′ as desired, by Theorem 2.
Let us now prove the second statement. If T is not 6-regular, we can choose as C an

empty 3-cycle incident with a vertex of degree 5 or 4. Furthermore, if T is 6-regular, but has
an empty 3-cycle not geodesic, we can again cut T into an annulus with a vertex of degree 3
on the boundary. Then we will obviously have a desired 3-valent vertex in T ′. Therefore it
only remains to consider the case in which every empty 3-cycle of T is geodesic. In that case,
Lemma 3 applies to T , since all vertices of T are unclean, by the hypothesis, and T is one
of the exceptions. The last statement also follows immediately from Lemma 3. The proof is
complete.

Presently, little is known about nonorientable polyhedra of low genus in regard to the exis-
tence of clean vertices.
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