Natural Projectors in Tensor Spaces^{*}

Demeter Krupka

Institute of Mathematics, Silesian University in Opava Bezrucovo nam. 13, 746 01 Opava, Czech Republic e-mail: Demeter.Krupka@math.slu.cz

Abstract. The aim of this paper is to introduce a method of invariant decompositions of the tensor space $T_s^r \mathbf{R}^n = \mathbf{R}^n \otimes \mathbf{R}^n \otimes \cdots \otimes \mathbf{R}^n \otimes \mathbf{R}^{n*} \otimes \mathbf{R}^{n*} \otimes \cdots \otimes \mathbf{R}^{n*}$ (r factors \mathbf{R}^n , s factors the dual vector space \mathbf{R}^{n*}), endowed with the tensor representation of the general linear group $GL_n(\mathbf{R})$. The method is elementary, and is based on the concept of a natural ($GL_n(\mathbf{R})$ -equivariant) projector in $T_s^r \mathbf{R}^n$. The case r = 0 corresponds with the Young-Kronecker decompositions of $T_s^0 \mathbf{R}^n$ into its primitive components. If $r, s \neq 0$, a new, unified invariant decomposition theory is obtained, including as a special case the decomposition theory of tensor spaces by the trace operation.

As an example we find the complete list of natural projectors in $T_2^1 \mathbf{R}^n$. We show that there exist families of natural projectors, depending on real parameters, defining new representations of the group $GL_n(\mathbf{R})$ in certain vector subspaces of $T_2^1 \mathbf{R}^n$. MSC 2000: 15A72, 20C33, 20G05, 53A55

Keywords: tensor space of type (r, s), symmetrization, alternation, trace operation, natural projector, tensor space decomposition

1. Introduction

In this paper we give basic definitions and prove basic results of natural projector theory in tensor spaces over the field or real numbers **R**. The tensor space of type (r, s) over the

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

^{*}Research supported by Grants CEZ:J10/98:192400002 and VS 96003 Global Analysis of the Czech Ministry of Education, Youth and Sports, Grant 201/98/0853 of the Czech Grant Agency, and by the Silesian University in Opava.

vector space $\mathbf{R}^n = \mathbf{R} \times \mathbf{R} \times \cdots \times \mathbf{R}$ (*n* factors \mathbf{R}) is denoted by $T_s^r \mathbf{R}^n = \mathbf{R}^n \otimes \mathbf{R}^n \otimes \cdots \otimes \mathbf{R}^n \otimes$

We wish to describe a method allowing us to find all $GL_n(\mathbf{R})$ -invariant vector subspaces of the vector space $T_s^r \mathbf{R}^n$; indeed, this is equivalent to finding all $GL_n(\mathbf{R})$ -equivariant projectors $P: T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$. In accordance with the terminology of the differential invariant theory, $GL_n(\mathbf{R})$ -equivariant projectors are also called *natural*.

This method complements our previous results on decompositions of tensor spaces, which are not based on the group representation theory (see [4, 5]). It can be applied effectively for any concrete r and s. However, a general formula for the decomposition has not been found.

It seems that the idea to apply the theory of projectors to the problem of decomposing a tensor space of type (r, 0), or (0, s) into its primitive components belongs to H. Weyl [7]. However, this idea has never been developed to a complete theory, or used to an analysis of concrete cases. Later, the same author gives preference of the group representation theory over the ideas of the pure projector theory [6]; a standard restrictive assumption in this approach is usually applied from the very beginning, namely the assumption that the representation space is a vector space over an algebraically closed field.

For basic ideas and generalities on natural projectors in tensor spaces we refer to Krupka (see [3], Sections 4.4 and 7.3).

Let us now recall briefly main concepts. A tensor $t \in T_s^r \mathbf{R}^n$ is said to be *invariant*, if $g \cdot t = t$ for all $g \in GL_n(\mathbf{R})$. A theorem of Gurevich says that an invariant tensor of type (r, s), where $r \neq s$, is always the zero tensor, and, if r = s, an invariant tensor is always a linear combination $\sum c_{\sigma} \delta_{i_{\sigma(1)}}^{j_1} \delta_{i_{\sigma(2)}}^{j_2} \cdots \delta_{i_{\sigma(N)}}^{j_N}$ of products of r factors of the Kronecker δ -tensor, where $c_{\sigma} \in \mathbf{R}$, and σ runs through all permutations of the set $\{1, 2, \ldots, r\}$ (see [1]). Consider a real, N-dimensional vector space E endowed with a left action of $GL_n(\mathbf{R})$. A linear mapping $F : E \to E$ is called $GL_n(\mathbf{R})$ -equivariant, or natural, if $F(g \cdot x) = g \cdot F(x)$ for all $x \in E$ and all $g \in GL_n(\mathbf{R})$. It is a simple observation that F is natural if and only if its components form an invariant tensor [3]. A natural linear mapping $P : E \to E$ which is a projector, i.e., satisfies the projector equation $P^2 = P$, is called a *natural projector*.

In Section 2 we collect standard definitions and facts of the theory of projectors in a vector space (see e.g. [2]). Section 3 is devoted to natural linear operators in a vector space endowed with a left action of $GL_n(\mathbf{R})$. In Section 4 we introduce natural projectors in tensor spaces and related concepts such as natural projector equations, decomposability, reducibility, and primitivity. Section 5 is concerned with the trace decomposition theory; it is shown that the trace decomposition of a tensor is related to a natural projector determined uniquely by certain conditions. Finally, in Section 6 we describe all natural projectors in the tensor space $T_2^1 \mathbf{R}^n$.

It should be pointed out that the method of natural projectors allows us to treat in a unique way the case of tensors of type (r, s), where not necessarily r=0, or s=0. In this sense the natural projector theory represents a generalization of the classical Young–Kronecker decomposition theory (see e.g. [6]), as well as of the trace decomposition theory [4, 5].

2. Projectors

This introductory section contains a brief formulation of standard results of the projector theory in a finite-dimensional, real vector space E (see e.g. [2]).

Let E^* be the dual of E, and let $E \times E^* \ni (x, y) \to y(x) = \langle x, y \rangle \in \mathbf{R}$ be the natural pairing. The dual $A^* : E^* \to E^*$ of a linear mapping $A : E \to E$ is defined by the condition $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x \in E, y \in E^*$. If $A, B : E \to E$ are two linear mappings, then $(AB)^* = B^*A^*$,

A linear operator $P: E \to E$ is said to be a *projector*, if $P^2 = P$. Clearly, the zero mapping 0, and the identity mapping id_E , are projectors.

Lemma 1. Let E be a finite-dimensional, real vector space.

- (a) A projector $P: E \to E$ defines the direct sum decomposition $E = \ker P \oplus \operatorname{im} P$.
- (b) A linear mapping $P: E \to E$ is a projector if and only if $id_E P$ is a projector.
- (c) If $P: E \to E$ is a projector, then $Q = \alpha P$, where $\alpha \in \mathbf{R}$, is a projector if and only if $\alpha = 0, 1$.
- (d) Let $P, Q: E \to E$ be two projectors such that im P = im Q = F. Then there exists a unique linear isomorphism $U: F \to F$ such that $P = U \circ Q$.

Let $u^*: E^* \to E^*$ denote the dual of a linear mapping $u: E \to E$. We say that two projectors $P, Q: E \to E$ are orthogonal, if $\langle Px, Q^*y \rangle = 0$ and $\langle Qx, P^*y \rangle = 0$ for all $x \in E, y \in E^*$. Obviously, P and Q are orthogonal if and only if QP = 0 and PQ = 0. For every projector P, the projectors P and $\mathrm{id}_E - P$ are orthogonal.

Lemma 2. Let $P, Q : E \to E$ be projectors.

- (a) P + Q is a projector if and only if P and Q are orthogonal.
- (b) P Q is a projector if and only if PQ = QP = Q.
- (c) If P and Q commute, PQ QP = 0, then R = PQ = QP is a projector, and im $R = im P \cap im Q$.
- (d) ker $P = \operatorname{im}(\operatorname{id} P)$.

Remark 1. If P + Q is a projector, then condition (a) implies PQ = QP = 0 hence by (c), im $P \cap \text{im } Q = \{0\}$. Thus im (P + Q) = im P + im Q is the direct sum of its subspaces im P and im Q.

Remark 2. If P - Q is a projector, condition (b) together with (c) imply that im $Q \subset \operatorname{im} P$.

3. Natural linear operators in tensor spaces

Let E be a finite-dimensional, real vector space, endowed with a left action of the general linear group $GL_n(\mathbf{R})$, denoted multiplicatively. A linear operator $F : E \to E$ is said to be $GL_n(\mathbf{R})$ -equivariant, or natural, if $F(A \cdot x) = A \cdot F(x)$ for every $x \in E$ and every $A \in GL_n(\mathbf{R})$. The vector space of natural linear operators on E is denoted $\mathcal{N}E$.

The kernel and the image of a natural linear operator $F: E \to E$ are $GL_n(\mathbf{R})$ -invariant vector subspaces of E.

Our aim in this section is to study natural linear operators in the tensor space $T_s^r \mathbf{R}^n$. If the canonical basis of \mathbf{R}^n is denoted by e_i , and e^i is the dual basis of \mathbf{R}^{n*} , then any tensor $t \in T_s^r \mathbf{R}^n$ is uniquely expressible in the form

$$t = t_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r} e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r} \otimes e^{j_1} \otimes e^{j_2} \otimes \cdots \otimes e^{j_s},$$
(3.1)

where the real numbers $t = t_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}$ are the components of t. We usually write $t = t_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}$.

Let $(A, x) \to \bar{x} = A \cdot x$ be the canonical left action of $GL_n(\mathbf{R})$ on \mathbf{R}^n ; in the canonical basis of \mathbf{R}^n , $\bar{x}^i = A_j^i x^j$, where $A = A_j^i$. If $B = A^{-1}$, $B = B_j^i$, the tensor action of $GL_n(\mathbf{R})$ on $T_s^r \mathbf{R}^n$ is given by

$$\bar{t} = A \cdot t = \bar{t}_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r} e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r} \otimes e^{j_1} \otimes e^{j_2} \otimes \cdots \otimes e^{j_s},$$
(3.2)

where

$$\bar{t}_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r} = A_{k_1}^{i_1} A_{k_2}^{i_2} \cdots A_{k_r}^{i_r} B_{j_1}^{l_1} B_{j_2}^{l_2} \cdots B_{j_s}^{l_s} t_{l_1 l_2 \cdots l_s}^{k_1 k_2 \cdots k_r}.$$
(3.3)

A tensor $t \in T_s^r \mathbf{R}^n$ is said to be *invariant*, if $A \cdot t = t$ for all $A \in GL_n(\mathbf{R})$. The following theorem describes all invariant tensors (see [1], and [3]).

Let S_r denote the group of permutations σ of the set $\{1, 2, \ldots, r\}$.

Lemma 3. Let $t \in T_s^r \mathbf{R}^n$.

- (a) Assume that $r \neq s$. Then t is invariant if and only if t = 0.
- (b) Assume that r = s. Then t is invariant if and only if

$$t_{j_1j_2\cdots j_r}^{i_1i_2\cdots i_r} = \sum_{\sigma\in S_r} a^{\sigma} \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(r)}}^{i_r}$$
(3.4)

for some $a^{\sigma} \in \mathbf{R}$.

Invariant tensors in $T_r^r \mathbf{R}^n$ form a real vector space. This vector space is spanned by the invariant tensors

$$E_{\sigma} = \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(r)}}^{i_r} e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_r} \otimes e^{j_1} \otimes e^{j_2} \otimes \cdots \otimes e^{j_r}$$

$$= e_{j_{\sigma(1)}} \otimes e_{j_{\sigma(2)}} \otimes \cdots \otimes e_{j_{\sigma(r)}} \otimes e^{j_1} \otimes e^{j_2} \otimes \cdots \otimes e^{j_r}.$$

$$(3.5)$$

Note that any invariant tensor can be expressed, instead of (3.4), by

$$t = \sum_{\sigma \in S_r} a^{\sigma} E_{\sigma}.$$
 (3.6)

Now we apply Lemma 3 to natural linear mappings $F : T_s^r \mathbf{R}^n \to T_q^p \mathbf{R}^n$. We have the following simple observation ([3], Section 4.4).

Lemma 4. Let $F: T_s^r \mathbf{R}^n \to T_q^p \mathbf{R}^n$ be a linear mapping,

$$\bar{t}_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} = F_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} {}_{l_1l_2\cdots l_p}^{i_1k_2\cdots k_q} t_{k_1k_2\cdots k_q}^{l_1l_2\cdots l_p}$$
(3.7)

its expression relative to the canonical basis of \mathbb{R}^n . F is natural if and only if its components $F_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r}{}_{l_1l_2\cdots l_p}^{k_1k_2\cdots k_q}$ are components of an invariant tensor.

If F is identified with a tensor, F becomes an element of the tensor space $T_{s+p}^{r+q} \mathbf{R}^n$. Thus by Lemma 3, a nontrivial natural linear mapping $F : T_s^r \mathbf{R}^n \to T_q^p \mathbf{R}^n$ exists if and only if r+q=s+p.

Let us discuss the case p = r, q = s. Then by Lemma 3 (b), F has an expression

$$F_{j_1j_2\cdots j_s \ j_{s+1}j_{s+2}\cdots j_{s+r}}^{i_1i_2\cdots i_r+i_r+2\cdots i_{r+s}} = \sum_{\sigma\in S_{r+s}} a_{\sigma} \delta_{j_{\sigma(1)}}^{i_1} \delta_{j_{\sigma(2)}}^{i_2} \cdots \delta_{j_{\sigma(r)}}^{i_r} \delta_{j_{\sigma(r+1)}}^{i_{r+1}} \delta_{j_{\sigma(r+2)}}^{i_{r+2}} \cdots \delta_{j_{\sigma(r+s)}}^{i_{r+s}},$$
(3.8)

where $a_{\sigma} \in \mathbf{R}$. Clearly, the same is expressed by the equation

$$\bar{t}_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r} = \sum_{\mu \in S_r, \, \nu \in S_s} a_\sigma t_{k_{\nu(1)} k_{\nu(2)} \cdots k_{\nu(s)}}^{l_{\mu(1)} l_{\mu(2)} \cdots l_{\mu(r)}} + \tau_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}, \tag{3.9}$$

where the summation takes place through $\sigma \in S_{r+s}$ of the form of the product of two permutations $\sigma = \mu \nu$, $\nu \in S_r$, $\mu \in S_s$ and $\tau_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}$ contains all the remaining terms. Note that each term in $\tau_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}$ contains at least as one factor the Kronecker δ -tensor multiplied by an expression obtained from $t_{j_1 j_2 \cdots j_s}^{i_1 i_2 \cdots i_r}$ by the trace operation in one superscript and one subscript.

Since $F_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} {}_{l_1l_2\cdots l_p}^{k_1k_2\cdots k_q}$ are components of an invariant tensor, F can also be expressed by means of (3.6) as

$$F = \sum_{\sigma \in S_{r+s}} a^{\sigma} E_{\sigma}.$$
(3.10)

If $F, G: T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$ are two natural linear operators, given in components by

$$\bar{t}_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} = F_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} \frac{k_1k_2\cdots k_s}{l_1l_2\cdots l_r} t_{k_1k_2\cdots k_s}^{l_1l_2\cdots l_r}, \quad \bar{t}_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} = G_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} \frac{k_1k_2\cdots k_s}{l_1l_2\cdots l_r} t_{k_1k_2\cdots k_s}^{l_1l_2\cdots l_r}$$
(3.11)

then the composed natural linear operator is given by

$$\overline{\overline{t}}_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} = G_{j_1j_2\cdots j_s}^{i_1i_2\cdots i_r} {}_{l_1l_2\cdots l_r}^{k_1k_2\cdots k_s} F_{k_1k_2\cdots k_s}^{l_1l_2\cdots l_r} {}_{p_1p_2\cdots p_s}^{p_1p_2\cdots p_s} t_{p_1p_2\cdots p_s}^{q_1q_2\cdots q_r}.$$
(3.12)

To obtain an explicit formula, one should substitute from (3.8) into (3.12); indeed, this cannot be done effectively in general, but in every concrete case.

4. Natural projectors in tensor spaces

Let E be a finite-dimensional, real vector space, endowed with a left action of the general linear group $GL_n(\mathbf{R})$. By a *natural projector* on E we mean a natural linear operator F: $E \to E$ which is a projector. A natural linear operator F is a natural projector if and only if it satisfies the *projector equation* $F^2 = F$. The projector equation represents a system of quadratic equations for the components of F.

If $P: E \to E$ is a natural projector, then both vector subspaces im P, ker P of E are $GL_n(\mathbf{R})$ -invariant ([2], § 43).

A natural projector $P : E \to E$ is said to be *decomposable*, if there exist a natural projector $Q \neq 0, P$ and a natural projector R, such that P = Q + R. In this case Q and R are orthogonal (Lemma 2 (a)). A natural projector which is not decomposable is called *indecomposable*.

P is said to be *reducible*, if there exists a natural projector $Q \neq 0$ such that im $Q \subset \text{im } P$ and im $Q \neq \text{im } P$. If *P* is not reducible, it is called *irreducible*, or *primitive*.

Remark 3. Examples show that there exist reducible natural projectors which are not decomposable. Consider the family P_{λ} of natural linear operators in $T_2^1 \mathbf{R}^n$ defined by the equations

$$\bar{t}_{jk}^{i} = \delta_{k}^{i} t_{pj}^{p} + \lambda \delta_{k}^{i} (-n t_{pj}^{p} + t_{jp}^{p}).$$
(4.1)

One can easily verify that (4.1) consists of natural projectors. Indeed, contracting (4.1) we obtain $\bar{t}_{pj}^p = t_{pj}^p + \lambda(-nt_{pj}^p + t_{jp}^p), \ \bar{t}_{jp}^p = nt_{pj}^p + \lambda n(-nt_{pj}^p + t_{jp}^p)$, and then

$$\begin{split} \bar{t}_{jk}^{i} &= \delta_{k}^{i} \bar{t}_{pj}^{p} + \lambda \delta_{k}^{i} (-n \bar{t}_{pj}^{p} + \bar{t}_{jp}^{p}) \\ &= \delta_{k}^{i} (t_{pj}^{p} + \lambda (-n t_{pj}^{p} + t_{jp}^{p})) - \lambda n \delta_{k}^{i} (t_{pj}^{p} + \lambda (-n t_{pj}^{p} + t_{jp}^{p})) \\ &+ \lambda \delta_{k}^{i} (n t_{pj}^{p} + \lambda n (-n t_{pj}^{p} + t_{jp}^{p})) \\ &= \delta_{k}^{i} t_{pj}^{p} - \delta_{k}^{i} \lambda n t_{pj}^{p} + \delta_{k}^{i} \lambda t_{jp}^{p} = \delta_{k}^{i} t_{pj}^{p} + \lambda \delta_{k}^{i} (-n t_{pj}^{p} + t_{jp}^{p}) = \bar{t}_{jk}^{i} \end{split}$$

verifying the projector equations $P_{\lambda}^2 = P_{\lambda}$. Note that the family (4.1) includes the natural projector $\bar{t}_{jk}^i = \delta_k^i t_{pj}^p$, and the natural projector $\bar{t}_{jk}^i = (1/n)\delta_k^i t_{jp}^p$ defined by taking $\lambda = 1/n$. The family $\lambda \delta_k^i (-nt_{pj}^p + t_{jp}^p)$ in (4.1) does not consist of projectors, because λ serves as a multiplicative parameter, and two non-zero projectors cannot differ by a factor different from 1. Indeed, writing $\bar{t}_{qr}^p = \lambda \delta_r^p (-nt_{sq}^s + t_{qs}^s)$, we get $\bar{t}_{pj}^p = \lambda (-nt_{sj}^s + t_{js}^s), \bar{t}_{jp}^p = \lambda n (-nt_{sj}^s + t_{js}^s)$ hence $\bar{t}_{jk}^i = \lambda \delta_k^i (-n\bar{t}_{pj}^p + \bar{t}_{jp}^p) = -ln\delta_k^i \bar{t}_{jp}^p + \lambda \delta_k^i \bar{t}_{jp}^p = -\lambda^2 n \delta_k^i (-nt_{sj}^s + t_{js}^s) + \lambda^2 n \delta_k^i (-nt_{sj}^s + t_{js}^s) = 0 \neq \bar{t}_{jk}^i$.

From now on we consider natural projectors on a tensor space $T_s^r \mathbf{R}^n$.

Theorem 1. Let $P : T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$ be a natural projector.

(a) P is decomposable if and only if there exists a natural projector $Q \neq 0, P$ such that

$$PQ = Q, \quad QP = Q. \tag{4.2}$$

(b) P is reducible if and only if there exists a natural projector $Q \neq 0, P$ such that

$$PQ = Q, \quad \text{im} Q \neq \text{im} P.$$
 (4.3)

Proof. (a) If P is decomposable, we have two natural projectors Q and R such that R = P - Q and QR = 0, RQ = 0 (Lemma 2 (a)). Thus, Q(P-Q) = (P-Q)Q = 0, i.e., QP = PQ = Q. Conversely, assume that we have a natural projector Q satisfying (4.2). Define R = P - Q; R is a natural linear operator (Lemma 3, Lemma 4), and $R^2 = P - PQ - QP + Q = P - Q - Q + Q = P - Q = R$ as required.

(b) Let P be reducible. Then there exists a natural projector $Q \neq 0$ such that im $Q \subset \text{im } P$ and im $Q \neq \text{im } P$. Thus, to any $t \in T_s^r \mathbf{R}^n$ there exists $t' \in T_s^r \mathbf{R}^n$ such that Qt = Pt' = P(Pt') = PQt hence PQ = Q. Conversely, assume that we have a natural projector $Q \neq 0$ satisfying (4.3). Then im $Q = Q(T_s^r \mathbf{R}^n) = P(Q(T_s^r \mathbf{R}^n)) \subset P(T_s^r \mathbf{R}^n) = \text{im } P$ as required. Equations from Theorem 1 (a) for a projector Q

$$PQ = Q, \quad QP = Q, \quad Q^2 = Q \tag{4.4}$$

are equivalent with the equations

$$PQP = Q, \quad Q^2 = Q. \tag{4.5}$$

Indeed, (4.4) implies (4.5), and vice versa: QP = PQPP = PQP = Q, PQ = PPQP = PQP = QQP = QQ

Now we study indecomposability, and primitivity.

Theorem 2. Let $P : T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$ be a natural projector.

- (a) P is indecomposable if and only if the decomposability equation of P has exactly one nontrivial solution, Q = P.
- (b) P is primitive if and only if the reducibility equation of P has no nontrivial solution.

Proof. Both assertions are immediate consequences of Theorem 1.

(a) If P is indecomposable, there is no $Q \neq 0$, P such that PQ = Q, QP = Q, which means that the decomposability equations have only one nontrivial solution, Q = P. The converse is obvious.

(b) If P is primitive, then by definition, (4.3) has only the trivial solution, and vice versa.

Now we consider properties of primitive natural projectors.

Theorem 3.

- (a) Any two different primitive natural projectors in $T_s^r \mathbf{R}^n$ are orthogonal.
- (b) The number of different nontrivial natural projectors in $T_s^r \mathbf{R}^n$ is finite.
- (c) The sum of any two primitive natural projectors is a natural projector.
- (d) Let M be the number of different nontrivial primitive natural projectors in $T_s^r \mathbf{R}^n$. If a natural projector in $T_s^r \mathbf{R}^n$ admits a decomposition $P = p_1 + p_2 + \cdots + p_K$, where p_1, p_2, \ldots, p_K are primitive natural projectors, then $K \leq M$, the primitive natural projectors p_1, p_2, \ldots, p_K are mutually different, and this decomposition is unique.
- (e) The identity natural projector $\operatorname{id}: T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$ admits the decomposition

$$id = p_1 + p_2 + \dots + p_M \tag{4.6}$$

where $\{p_1, p_2, \ldots, p_M\}$ is the set of nonzero primitive natural projectors.

Proof. (a) If P_1 , P_2 are two different primitive natural projectors, then im $P_1P_2 = \text{im } P_2P_1 = 0$ hence $P_1P_2 = P_2P_1 = 0$.

(b) Since dim $T_s^r \mathbf{R}^n$ is finite, this assertion follows from (a).

(c) By (a), any two different primitive natural projectors p_1 , p_2 are orthogonal. Thus, by Lemma 2 (a), $p_1 + p_2$ is always a projector; $p_1 + p_2$ is obviously a natural projector (Lemma 4). (d) Assume that $P = p_1 + p_2 + \cdots + p_K = q_1 + q_2 + \cdots + q_L$. Then by orthogonality, $p_l^2 = p_l = p_l(q_1 + q_2 + \cdots + q_L)$, where at most one term on the right is nonzero. But $p_l \neq 0$ hence exactly one term on the right, say p_lq_k , is nonzero, and is equal to p_l , i.e., $p_l = p_lq_k = q_kp_l$. Since different primitive projectors are orthogonal (see (a)), we have $q_k = p_l$. In particular, the two sums $p_1 + p_2 + \cdots + p_K$, $q_1 + q_2 + \cdots + q_L$ may differ only by the order of the summation.

(e) If $P = p_1 + p_2 + \cdots + p_M \neq id$, we have a nonzero natural projector Q = id - P, which is a contradiction with maximality of the set $\{p_1, p_2, \ldots, p_M\}$.

5. The trace decomposition

For basic notions of the trace decomposition theory as used in this section, we refer to [4], [5]. The following assertion can be used when calculating the trace decomposition of concrete tensor spaces.

Theorem 4. Let $r, s \ge 1$. There exists a unique natural linear operator $Q : T_s^r \mathbf{R}^n \to T_s^r \mathbf{R}^n$ satisfying the following two conditions:

- 1. Qt is traceless for every $t \in T_s^r \mathbf{R}^n$.
- 2. (id Q)t = t Qt is δ -generated for every $t \in T_s^r \mathbf{R}^n$.

Q is a natural projector.

Proof. Existence and uniqueness of Q follows from the decomposition t = Qt + (id - Q)t, and from the trace decomposition theorem. We prove that Q is a projector. By hypothesis, Qt is traceless for every $t \in T_s^r \mathbf{R}^n$, hence $Q^2 t = Q(Qt)$ is also traceless for every t. Similarly, since t - Qt is δ -generated for every $t \in T_s^r \mathbf{R}^n$, the formula

$$(id - Q^2)t = (id - Q + Q - Q^2)t = (id - Q)t + (id - Q)Qt$$
 (5.1)

shows that $(id-Q^2)t$ must also be δ -generated. Since $t = Q^2t + (id-Q^2)t$, then by uniqueness, $Q^2 = Q$.

In a concrete case, the natural projector Q can be determined from the conditions (1) and (2) of Theorem 4. Clearly, given Q, the *trace decomposition* of a tensor $t \in T_s^r \mathbf{R}^n$ is obtained by the formula

$$t = Qt + (\mathrm{id} - Q)t. \tag{5.2}$$

6. Natural projectors in $\mathbb{R}^n \otimes \mathbb{R}^{n*} \otimes \mathbb{R}^{n*}$

As an application of the natural projector theory, we find the complete list of natural projectors in the space of tensors of type (1,2) $T_2^1 \mathbf{R}^n$. Since our discussions are $GL_n(\mathbf{R})$ -invariant, the results apply in the well-known sense to any real, finite-dimensional vector space E, and to the tensor space of type (1,2) over E.

First let us describe natural linear operators in $T_2^1 \mathbf{R}^n$. Using the canonical basis e_i of \mathbf{R}^n and the dual basis e^j of \mathbf{R}^{n*} , we usually express a tensor $t \in T_2^1 \mathbf{R}^n$ in terms of its components as $t = t_{jk}^i e_i \otimes e^j \otimes e^k$, and we write $t = t_{jk}^i$. If $P : T_2^1 \mathbf{R}^n \to T_2^1 \mathbf{R}^n$ is a linear operator, we write $P = P_{jk}^i \frac{qr}{p}$, where $P_{jk}^i \frac{qr}{p}$ are the components of P, and the indices i, j, k, p, q, r run through the set $\{1, 2, \ldots, n\}$. The equations of P are usually written in the form $\overline{t}_{jk}^i = P_{jk}^i \frac{qr}{p} t_{qr}^p$. P is natural if and only if

$$P^{i}_{jk}{}^{qr}_{p} = a\delta^{i}_{j}\delta^{q}_{k}\delta^{r}_{p} + b\delta^{i}_{j}\delta^{q}_{p}\delta^{r}_{k} + c\delta^{i}_{k}\delta^{q}_{p}\delta^{r}_{j} + d\delta^{i}_{k}\delta^{q}_{j}\delta^{r}_{p} + e\delta^{i}_{p}\delta^{q}_{j}\delta^{r}_{k} + f\delta^{i}_{p}\delta^{q}_{k}\delta^{r}_{j},$$
(6.1)

where a, b, c, d, e, f are some real numbers. In view of (6.1), we also write

$$P = (a, b, c, d, e, f).$$
(6.2)

We denote by $\mathcal{N}(T_2^1 \mathbf{R}^n)$ the real vector space of natural linear operators $P: T_2^1 \mathbf{R}^n \to T_2^1 \mathbf{R}^n$; by (6.1), dim $\mathcal{N}(T_2^1 \mathbf{R}^n) = 6$. We find the composition law for the natural linear operators. Consider a natural linear operator (6.1), and another natural linear operator $Q = Q_{bc}^{a} \frac{qr}{p}$, where

$$Q_{bc\ p}^{a\ qr} = a'\delta_b^a\delta_c^q\delta_p^r + b'\delta_b^a\delta_p^q\delta_c^r + c'\delta_c^a\delta_p^q\delta_b^r + d'\delta_c^a\delta_b^q\delta_p^r + e'\delta_p^a\delta_b^q\delta_c^r + f'\delta_p^a\delta_c^q\delta_b^r.$$
(6.3)

Lemma 6. The composed natural linear operator $R = PQ = R_{jk}^{i} \frac{qr}{p}$ is expressed by

$$R^{i}_{jk}{}^{qr}_{p} = a''\delta^{i}_{j}\delta^{q}_{k}\delta^{r}_{p} + b''\delta^{i}_{j}\delta^{q}_{p}\delta^{r}_{k} + c''\delta^{i}_{k}\delta^{q}_{p}\delta^{r}_{j} + d''\delta^{i}_{k}\delta^{q}_{j}\delta^{r}_{p} + e''\delta^{i}_{p}\delta^{q}_{j}\delta^{r}_{k} + f''\delta^{i}_{p}\delta^{q}_{k}\delta^{r}_{j},$$
(6.4)

where

$$\begin{aligned}
a'' &= a'a + nd'a + e'a + na'b + f'b + d'b + a'e + d'f, \\
b'' &= b'a + nc'a + f'a + nb'b + c'b + e'b + b'e + c'f, \\
c'' &= nb'c + c'c + e'c + b'd + nc'd + f'd + c'e + b'f, \\
d'' &= na'c + d'c + f'c + a'd + nd'd + e'd + d'e + a'f, \\
e'' &= e'e + f'f, \\
f'' &= f'e + e'f.
\end{aligned}$$
(6.5)

Proof. Since for any $t \in T_2^1 \mathbf{R}^n$, $t = t_{qr}^p$, $Rt = \overline{t}_{jk}^i = P_{jk}^i {}_{a}^{bc} \overline{t}_{bc}^a = P_{jk}^i {}_{a}^{bc} Q_{bc}^a {}_{p}^{qr} t_{qr}^p = R_{jk}^i {}_{p}^{qr} t_{qr}^p$, the coefficients $R_{jk}^i {}_{p}^{qr}$ are obtained from the formula

$$R_{jk}^{i} {}_{p}^{qr} = P_{jk}^{i} {}_{a}^{bc} Q_{bc}^{a} {}_{p}^{qr}.$$
(6.6)

Now we derive the equations for natural projectors in $T_2^1 \mathbf{R}^n$.

Lemma 7. A natural linear operator $P : T_2^1 \mathbf{R}^n \to T_2^1 \mathbf{R}^n$ expressed by (6.1), is a natural projector if and only if

$$a^{2} + (nb + nd + 2e - 1) a + bd + (b + d)f = 0,$$

$$nb^{2} + (a + c + 2e - 1) b + nca + (a + c)f = 0,$$

$$c^{2} + (nb + nd + 2e - 1) c + bd + (b + d)f = 0,$$

$$nd^{2} + (a + c + 2e - 1) d + nac + (a + c)f = 0,$$

$$e = e^{2} + f^{2},$$

$$f = 2ef.$$

(6.7)

Proof. The components of P satisfy the projector equation $P_{jk}^i {}^{vw}_{u} P_{vw}^u {}^{qr}_{p} = P_{jk}^i {}^{qr}_{p}$, which can be obtained by substituting Q = P and R = P in (6.5).

Equations (6.7) are referred to as the *natural projector equations*. These equations represent a system of six quadratic equations for six unknowns (a, b, c, d, e, f).

Remark 4. If P is a natural projector, then the complementary projector id - P is also natural. Thus, if P (6.1) satisfies (6.7), then id - P also satisfies (6.7). Indeed,

$$\mathrm{id} - P = a' \delta^i_j \delta^q_k \delta^r_p + b' \delta^i_j \delta^q_p \delta^r_k + c' \delta^i_k \delta^q_p \delta^r_j + d' \delta^i_k \delta^q_j \delta^r_p + e' \delta^i_p \delta^q_j \delta^r_k + f' \delta^i_p \delta^q_k \delta^r_j, \tag{6.8}$$

where

$$a' = -a, \ b' = -b, \ c' = -c, \ d' = -d, \ e' = 1 - e, \ f' = -f.$$
 (6.9)

The transformation (6.9) leaves invariant the system (6.7).

It is easily seen that the formulas

$$a' = c, \ b' = b, \ c' = a, \ d' = d, \ e' = e, \ f' = f,$$

$$a' = a, \ b' = d, \ c' = c, \ d' = b, \ e' = e, \ f' = f$$
(6.10)

also define invariant transformations of (6.7). Consequently, if (a, b, c, d, e, f) is a natural projector, then also (-a, -b, -c, -d, 1 - e, -f), (c, b, a, d, e, f), (a, d, c, b, e, f), are natural projectors.

We are now in a position to find all solutions of the natural projector equations (6.7). We write these solutions in the form of their equations $\bar{t}^i_{jk} = P^i_{jk} {}^{qr}_{p} t^p_{qr}$, i.e., as

$$\bar{t}^{i}_{jk} = a\delta^{i}_{j}t^{s}_{ks} + b\delta^{i}_{j}t^{s}_{sk} + c\delta^{i}_{k}t^{s}_{sj} + d\delta^{i}_{k}t^{s}_{js} + et^{i}_{jk} + ft^{i}_{kj}.$$
(6.11)

Here (a, b, c, d, e, f) are the components (6.2) of a natural projector, expressed by (6.1). Note that the list (A1), (A2), ..., (D4) below includes one-, and two-parameter families of natural projectors.

We define

$$A_{1} = nd + d^{2} - n^{2}d^{2}, \qquad A_{2} = -nd + d^{2} - n^{2}d^{2}, A_{3} = n^{2}d^{2} - d^{2} - d, \qquad A_{4} = n^{2}d^{2} - d^{2} + d, B_{1} = n^{2}c^{2} - c^{2} + c, \qquad B_{2} = n^{2}c^{2} - c^{2} - c, C_{1} = 4d + 4d^{2} - 4n^{2}d^{2} + 1, \qquad C_{2} = -4d + 4d^{2} - 4n^{2}d^{2} + 1.$$

$$(6.12)$$

Theorem 5. The following list contains all natural projectors $P: T_2^1 \mathbf{R}^n \to T_2^1 \mathbf{R}^n$:

$$\begin{aligned} t_{jk}^{i} &= 0, \\ \bar{t}_{jk}^{i} &= \frac{1}{2(n-1)} \left(-\delta_{j}^{i} t_{ks}^{s} + \delta_{j}^{i} t_{sk}^{s} - \delta_{k}^{i} t_{sj}^{s} + \delta_{k}^{i} t_{js}^{s} \right), \\ \bar{t}_{jk}^{i} &= \frac{1}{2(n-1)} \left(\delta_{j}^{i} t_{ks}^{s} + \delta_{j}^{i} t_{sk}^{s} + \delta_{k}^{i} t_{sj}^{s} + \delta_{k}^{i} t_{js}^{s} \right), \\ \bar{t}_{jk}^{i} &= -\frac{1}{n^{2}-1} \delta_{j}^{i} t_{ks}^{s} + \frac{n}{n^{2}-1} \delta_{j}^{i} t_{sk}^{s} - \frac{1}{n^{2}-1} \delta_{k}^{i} t_{sj}^{s} + \frac{n}{n^{2}-1} \delta_{k}^{i} t_{js}^{s}, \end{aligned}$$
(A1)

$$\overline{t}_{jk}^{i} = \frac{-d + \sqrt{A_{1}}}{n} \delta_{j}^{i} t_{ks}^{s} + \frac{n + 2d - n^{2}d - 2\sqrt{A_{1}}}{n^{2}} \delta_{j}^{i} t_{sk}^{s} + \frac{-d + \sqrt{A_{1}}}{n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s},
\overline{t}_{jk}^{i} = -\frac{d + \sqrt{A_{1}}}{n} \delta_{j}^{i} t_{ks}^{s} + \frac{n + 2d - n^{2}d + 2\sqrt{A_{1}}}{n^{2}} \delta_{j}^{i} t_{sk}^{s} - \frac{d + \sqrt{A_{1}}}{n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s},
d \in [0, n/(n^{2} - 1)],$$
(A2)

$$\overline{t}_{jk}^{i} = \left(1 - c - 2n\left(-nc + \sqrt{B_{1}}\right)\right) \delta_{j}^{i} t_{ks}^{s} + \left(-nc + \sqrt{B_{1}}\right) \delta_{j}^{i} t_{sk}^{s} + c \delta_{k}^{i} t_{sj}^{s}
+ \left(-nc + \sqrt{B_{1}}\right) \delta_{k}^{i} t_{js}^{s},
\overline{t}_{jk}^{i} = \left(1 - c + 2n\left(nc + \sqrt{B_{1}}\right)\right) \delta_{j}^{i} t_{ks}^{s} - \left(nc + \sqrt{B_{1}}\right) \delta_{j}^{i} t_{sk}^{s} + c \delta_{k}^{i} t_{sj}^{s}
- \left(nc + \sqrt{B_{1}}\right) \delta_{k}^{i} t_{js}^{s},
c \in (-\infty, -1/(n^{2} - 1)] \cup [0, \infty),$$
(A3)

$$\overline{t}_{jk}^{i} = (1 - nb)\delta_{j}^{i}t_{ks}^{s} + b\delta_{j}^{i}t_{sk}^{s},
\overline{t}_{jk}^{i} = \frac{d - nd^{2} - cd}{d + nc}\delta_{j}^{i}t_{ks}^{s} + \frac{c - c^{2} - ncd}{d + nc}\delta_{j}^{i}t_{sk}^{s} + c\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s}, \quad d + nc \neq 0,$$
(A4)
$$\overline{t}_{jk}^{i} = -nb\delta_{j}^{i}t_{ks}^{s} + b\delta_{j}^{i}t_{sk}^{s} - \frac{1}{n^{2} - 1}\delta_{k}^{i}t_{sj}^{s} + \frac{n}{n^{2} - 1}\delta_{k}^{i}t_{js}^{s},$$

$$\overline{t}_{jk}^{i} = t_{jk}^{i},
\overline{t}_{jk}^{i} = \frac{1}{2(n-1)} (\delta_{j}^{i} t_{ks}^{s} - \delta_{j}^{i} t_{sk}^{s} + \delta_{k}^{i} t_{sj}^{s} - \delta_{k}^{i} t_{js}^{s}) + t_{jk}^{i},
\overline{t}_{jk}^{i} = -\frac{1}{2(n-1)} (\delta_{j}^{i} t_{ks}^{s} + \delta_{j}^{i} t_{sk}^{s} + \delta_{k}^{i} t_{sj}^{s} + \delta_{k}^{i} t_{js}^{s}) + t_{jk}^{i},
\overline{t}_{jk}^{i} = \frac{1}{n^{2}-1} (\delta_{j}^{i} t_{ks}^{s} - n \delta_{j}^{i} t_{sk}^{s} + \delta_{k}^{i} t_{sj}^{s} - n \delta_{k}^{i} t_{js}^{s}) + t_{jk}^{i},$$
(B1)

$$\overline{t}_{jk}^{i} = \frac{-d + \sqrt{A_2}}{n} \delta_{j}^{i} t_{ks}^{s} + \frac{-n + 2d - n^2 d - 2\sqrt{A_2}}{n^2} \delta_{j}^{i} t_{sk}^{s} + \frac{-d + \sqrt{A_2}}{n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s} + t_{jk}^{i},
\overline{t}_{jk}^{i} = -\frac{d + \sqrt{A_2}}{n} \delta_{j}^{i} t_{ks}^{s} + \frac{-n + 2d - n^2 d + 2\sqrt{A_2}}{n^2} \delta_{j}^{i} t_{sk}^{s} - \frac{d + \sqrt{A_2}}{n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s} + t_{jk}^{i},
d \in [-n/(n^2 - 1), 0],$$
(B2)

$$\overline{t}_{jk}^{i} = \left(1 - c - 2n\left(-nc + \sqrt{B_{2}}\right)\right) \delta_{j}^{i} t_{ks}^{s} + \left(-nc + \sqrt{B_{2}}\right) \delta_{j}^{i} t_{sk}^{s} + c \delta_{k}^{i} t_{sj}^{s} \\
+ \left(-nc + \sqrt{B_{2}}\right) \delta_{k}^{i} t_{js}^{s} + t_{jk}^{i}, \\
\overline{t}_{jk}^{i} = \left(1 - c - 2n\left(-nc - \sqrt{B_{2}}\right)\right) \delta_{j}^{i} t_{ks}^{s} - \left(nc + \sqrt{B_{2}}\right) \delta_{j}^{i} t_{sk}^{s} + c \delta_{k}^{i} t_{sj}^{s} \\
- \left(nc + \sqrt{B_{2}}\right) \delta_{k}^{i} t_{js}^{s} + t_{jk}^{i}, \\
c \in (-\infty, 0] \cup [1/(n^{2} - 1), \infty),$$
(B3)

$$\overline{t}_{jk}^{i} = (1 - nb)\delta_{j}^{i}t_{ks}^{s} + b\delta_{j}^{i}t_{sk}^{s} + t_{jk}^{i},
\overline{t}_{jk}^{i} = -\frac{d + nd^{2} + cd}{d + nc}\delta_{j}^{i}t_{ks}^{s} - \frac{c + c^{2} + ncd}{d + nc}\delta_{j}^{i}t_{sk}^{s} + c\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s} + t_{jk}^{i}, \quad d + nc \neq 0,$$

$$\overline{t}_{jk}^{i} = -nb\delta_{j}^{i}t_{ks}^{s} + b\delta_{j}^{i}t_{sk}^{s} + \frac{1}{n^{2} - 1}\delta_{k}^{i}t_{sj}^{s} - \frac{n}{n^{2} - 1}\delta_{k}^{i}t_{js}^{s} + t_{jk}^{i},$$
(B4)

$$\overline{t}_{jk}^{i} = \frac{1}{2} t_{jk}^{i} + \frac{1}{2} t_{kj}^{i},
\overline{t}_{jk}^{i} = \frac{1}{2(n-1)} \left(-\delta_{j}^{i} t_{ks}^{s} + \delta_{j}^{i} t_{sk}^{s} - \delta_{k}^{i} t_{sj}^{s} + \delta_{k}^{i} t_{js}^{s} \right) + \frac{1}{2} t_{jk}^{i} + \frac{1}{2} t_{kj}^{i},
\overline{t}_{jk}^{i} = -\frac{1}{2(n-1)} \left(\delta_{j}^{i} t_{ks}^{s} + \delta_{j}^{i} t_{sk}^{s} + \delta_{k}^{i} t_{sj}^{s} + \delta_{k}^{i} t_{js}^{s} \right) + \frac{1}{2} t_{jk}^{i} + \frac{1}{2} t_{kj}^{i},
\overline{t}_{jk}^{i} = -\frac{n}{n^{2}-1} \delta_{j}^{i} t_{ks}^{s} + \frac{1}{n^{2}-1} \delta_{j}^{i} t_{sk}^{s} - \frac{n}{n^{2}-1} \delta_{k}^{i} t_{sj}^{s} + \frac{1}{n^{2}-1} \delta_{k}^{i} t_{js}^{s} + \frac{1}{2} t_{jk}^{i} + \frac{1}{2} t_{kj}^{i},$$
(C1)

$$\begin{split} \bar{t}_{jk}^{i} &= -\frac{1+2d+\sqrt{C_{1}}}{2n} \delta_{j}^{i} t_{ks}^{s} + \frac{2d-n^{2}d+1+\sqrt{C_{1}}}{n^{2}} \delta_{j}^{i} t_{sk}^{s} - \frac{1+2d+\sqrt{C_{1}}}{2n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s} + et_{jk}^{i} + ft_{kj}^{i}, \\ \bar{t}_{jk}^{i} &= \frac{-1-2d+\sqrt{C_{1}}}{2n} \delta_{j}^{i} t_{ks}^{s} + \frac{2d-n^{2}d+1-\sqrt{C_{1}}}{n^{2}} \delta_{j}^{i} t_{sk}^{s} + \frac{-1-2d+\sqrt{C_{1}}}{2n} \delta_{k}^{i} t_{sj}^{s} + d\delta_{k}^{i} t_{js}^{s} + \frac{1}{2} t_{jk}^{i} + \frac{1}{2} t_{kj}^{i}, \\ d \in \left[-\frac{1}{2} (n+1), \frac{1}{2} (n+1) \right], \end{split}$$
(C2)

$$\overline{t}_{jk}^{i} = -\left(nd + \sqrt{A_{3}}\right)\delta_{j}^{i}t_{ks}^{s} + d\delta_{j}^{i}t_{sk}^{s} + (-nd + \sqrt{A_{3}})\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s} + \frac{1}{2}t_{jk}^{i} + \frac{1}{2}t_{kj}^{i}, \\
\overline{t}_{jk}^{i} = (-nd + \sqrt{A_{3}})\delta_{j}^{i}t_{ks}^{s} + d\delta_{j}^{i}t_{sk}^{s} - \left(nd + \sqrt{A_{3}}\right)\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s} + \frac{1}{2}t_{jk}^{i} + \frac{1}{2}t_{kj}^{i}, \\
d \in (-\infty, 0] \cup [1/(n^{2} - 1), \infty),$$
(C3)

$$\bar{t}^{i}_{jk} = -\left(\frac{1}{2} + nb\right)\delta^{i}_{j}t^{s}_{ks} + b\delta^{i}_{j}t^{s}_{sk} - \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{sj} + \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} + \frac{1}{2}t^{i}_{kj}, \\
\bar{t}^{i}_{jk} = -\frac{c+2nd^{2}+2cd}{2d+2nc+1}\delta^{i}_{j}t^{s}_{ks} - \frac{d+2ncd+2c^{2}}{2d+2nc+1}\delta^{i}_{j}t^{s}_{sk} + c\delta^{i}_{k}t^{s}_{sj} + d\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} + \frac{1}{2}t^{i}_{kj}, \\
2d + 2nc + 1 \neq 0, \\
\bar{t}^{i}_{jk} = \left(\frac{1}{2} - nb\right)\delta^{i}_{j}t^{s}_{ks} + b\delta^{i}_{j}t^{s}_{sk} - \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{sj} - \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} + \frac{1}{2}t^{i}_{kj}, \\$$
(C4)

$$\begin{aligned}
\bar{t}^{i}_{jk} &= \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj}, \\
\bar{t}^{i}_{jk} &= \frac{1}{2(n-1)} (\delta^{i}_{j} t^{s}_{ks} - \delta^{i}_{j} t^{s}_{sk} + \delta^{i}_{k} t^{s}_{sj} - \delta^{i}_{k} t^{s}_{js}) + \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj}, \\
\bar{t}^{i}_{jk} &= \frac{1}{2(n-1)} (\delta^{i}_{j} t^{s}_{ks} + \delta^{i}_{j} t^{s}_{sk} + \delta^{i}_{k} t^{s}_{sj} + \delta^{i}_{k} t^{s}_{js}) + \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj}, \\
\bar{t}^{i}_{jk} &= \frac{n}{n^{2}-1} \delta^{i}_{j} t^{s}_{ks} - \frac{1}{n^{2}-1} \delta^{i}_{j} t^{s}_{sk} + \frac{n}{n^{2}-1} \delta^{i}_{k} t^{s}_{sj} - \frac{1}{n^{2}-1} \delta^{i}_{k} t^{s}_{js} + \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj},
\end{aligned} \tag{D1}$$

$$\begin{split} \bar{t}^{i}_{jk} &= \frac{1-2d-\sqrt{C_{2}}}{2n} \delta^{i}_{j} t^{s}_{ks} + \frac{2d-n^{2}d-1+\sqrt{C_{2}}}{n^{2}} \delta^{i}_{j} t^{s}_{sk} + \frac{1-2d-\sqrt{C_{2}}}{2n} \delta^{i}_{k} t^{s}_{sj} + d\delta^{i}_{k} t^{s}_{js} + \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj}, \\ \bar{t}^{i}_{jk} &= \frac{1-2d+\sqrt{C_{2}}}{2n} \delta^{i}_{j} t^{s}_{ks} + \frac{2d-n^{2}d-1-\sqrt{C_{2}}}{n^{2}} \delta^{i}_{j} t^{s}_{sk} + \frac{1-2d+\sqrt{C_{2}}}{2n} \delta^{i}_{k} t^{s}_{sj} + d\delta^{i}_{k} t^{s}_{js} + \frac{1}{2} t^{i}_{jk} - \frac{1}{2} t^{i}_{kj}, \\ d \in [-1/(n^{2}-1), 1/(n^{2}-1)], \end{split}$$
(D2)

$$\overline{t}_{jk}^{i} = -\left(nd + \sqrt{A_{4}}\right)\delta_{j}^{i}t_{ks}^{s} + d\delta_{j}^{i}t_{sk}^{s} + \left(-nd + \sqrt{A_{4}}\right)\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s} + \frac{1}{2}t_{jk}^{i} - \frac{1}{2}t_{kj}^{i}, \\
\overline{t}_{jk}^{i} = \left(-nd + \sqrt{A_{4}}\right)\delta_{j}^{i}t_{ks}^{s} + d\delta_{j}^{i}t_{sk}^{s} - \left(nd + \sqrt{A_{4}}\right)\delta_{k}^{i}t_{sj}^{s} + d\delta_{k}^{i}t_{js}^{s} + \frac{1}{2}t_{jk}^{i} - \frac{1}{2}t_{kj}^{i}, \\
d \in (-\infty, -1/(n^{2} - 1)] \cup [0, \infty),$$
(D3)

$$\begin{aligned}
\bar{t}^{i}_{jk} &= -\left(\frac{1}{2} + nb\right)\delta^{i}_{j}t^{s}_{ks} + b\delta^{i}_{j}t^{s}_{sk} + \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{sj} + \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} - \frac{1}{2}t^{i}_{kj}, \\
\bar{t}^{i}_{jk} &= \frac{c-2nd^{2}-2cd}{2d+2nc-1}\delta^{i}_{j}t^{s}_{ks} + \frac{d-2ncd-2c^{2}}{2d+2nc-1}\delta^{i}_{j}t^{s}_{sk} + c\delta^{i}_{k}t^{s}_{sj} + d\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} - \frac{1}{2}ft^{i}_{kj}, \\
2d + 2nc - 1 \neq 0, \\
\bar{t}^{i}_{jk} &= \left(\frac{1}{2} - nb\right)\delta^{i}_{j}t^{s}_{ks} + b\delta^{i}_{j}t^{s}_{sk} + \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{sj} - \frac{1}{2(n-1)}\delta^{i}_{k}t^{s}_{js} + \frac{1}{2}t^{i}_{jk} - \frac{1}{2}ft^{i}_{kj}.
\end{aligned}$$
(D4)

Proof. (6.7) splits into the following 16 cases to be considered separately:

$$(e, f) = (0, 0), \ a = c, \ b = d,$$
 (A1)

$$(e, f) = (0, 0), \ a = c, \ b = -d - \frac{1}{n}(a + c + 2e - 1),$$
 (A2)

$$(e, f) = (0, 0), \ a = -c - nb - nd - 2e + 1, \ b = d,$$
 (A3)

$$(e, f) = (0, 0), \ a = -c - nb - nd - 2e + 1, b = -d - \frac{1}{n}(a + c + 2e - 1),$$
 (A4)

$$(e, f) = (1, 0), \ a = c, \ b = d,$$
 (B1)

$$(e, f) = (1, 0), \ a = c, \ b = -d - \frac{1}{n}(a + c + 2e - 1),$$
 (B2)

$$(e, f) = (1, 0), \ a = -c - nb - nd - 2e + 1, \ b = d,$$
 (B3)

$$(e, f) = (1, 0), a = -c - nb - nd - 2e + 1, b = -d - \frac{1}{n}(a + c + 2e - 1),$$
 (B4)

$$(e, f) = \left(\frac{1}{2}, \frac{1}{2}\right), \ a = c, \ b = d,$$
 (C1)

$$(e,f) = \left(\frac{1}{2}, \frac{1}{2}\right), \ a = c, \ b = -d - \frac{1}{n}(a+c+2e-1),$$
 (C2)

$$(e,f) = \left(\frac{1}{2}, \frac{1}{2}\right), \ a = -c - nb - nd - 2e + 1, \ b = d,$$
 (C3)

$$(e,f) = \left(\frac{1}{2}, \frac{1}{2}\right), \ a = -c - nb - nd - 2e + 1, \ b = -d - \frac{1}{n}(a + c + 2e - 1)$$
(C4)

$$(e, f) = \left(\frac{1}{2}, -\frac{1}{2}\right), \ a = c, \ b = d,$$
 (D1)

$$(e,f) = \left(\frac{1}{2}, -\frac{1}{2}\right), \ a = c, \ b = -d - \frac{1}{n}(a+c+2e-1),$$
 (D2)

$$(e,f) = \left(\frac{1}{2}, -\frac{1}{2}\right), \ a = -c - nb - nd - 2e + 1, \ b = d,$$
 (D3)

$$(e,f) = \left(\frac{1}{2}, -\frac{1}{2}\right), \ a = -c - nb - nd - 2e + 1, \ b = -d - \frac{1}{n}(a + c + 2e - 1).$$
(D4)

Each of these cases is subject to the conditions

$$a^{2} + c^{2} + (nb + nd + 2e - 1)(a + c) + 2bd + 2(b + d)f = 0,$$

$$nb^{2} + nd^{2} + (a + c + 2e - 1)(b + d) + 2nac + 2(a + c)f = 0.$$
(6.13)

To complete the proof, we solve the system (6.13) of two quadratic equations for every of the possibilities (A1), (A2), ..., (D4). We get, using *MAPLE*,

$$\begin{array}{l} (0,0,0,0,0,0), \\ \left(-\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, 0, 0\right), \\ \left(\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, 0, 0\right), \\ \left(-\frac{1}{n^{2}-1}, \frac{n}{n^{2}-1}, -\frac{1}{n^{2}-1}, \frac{n}{n^{2}-1}, 0, 0\right), \end{array}$$

$$(A1)$$

$$\begin{pmatrix} \frac{-d+\sqrt{A_1}}{n}, \frac{n+2d-n^2d-2\sqrt{A_1}}{n^2}, \frac{-d+\sqrt{A_1}}{n}, d, 0, 0 \end{pmatrix}, \begin{pmatrix} -\frac{d+\sqrt{A_1}}{n}, \frac{n+2d-n^2d+2\sqrt{A_1}}{n^2}, -\frac{d+\sqrt{A_1}}{n}, d, 0, 0 \end{pmatrix}, d \in [0, n/(n^2-1)],$$
 (A2)

$$\left(1 - c - 2n\left(-nc + \sqrt{B_1}\right), -nc + \sqrt{B_1}, c, -nc + \sqrt{B_1}, 0, 0\right), \left(1 - c + 2n\left(nc + \sqrt{B_1}\right), -\left(nc + \sqrt{B_1}\right), c, -\left(nc + \sqrt{B_1}\right), 0, 0\right), c \in (-\infty, -1/(n^2 - 1)] \cup [0, \infty),$$
 (A3)

$$(1 - nb, b, 0, 0, 0, 0), \left(\frac{d - nd^2 - cd}{d + nc}, \frac{c - c^2 - ncd}{d + nc}, c, d, 0, 0\right), \quad d + nc \neq 0, \left(-nb, b, -\frac{1}{n^2 - 1}, \frac{n}{n^2 - 1}, 0, 0\right),$$
 (A4)

$$(0, 0, 0, 0, 1, 0), \left(\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, 1, 0\right), \left(-\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, 1, 0\right), \left(\frac{1}{n^{2}-1}, -\frac{n}{n^{2}-1}, \frac{1}{n^{2}-1}, -\frac{n}{n^{2}-1}, 1, 0\right),$$
(B1)

229

$$\begin{pmatrix} \frac{-d+\sqrt{A_2}}{n}, \frac{-n+2d-n^2d-2\sqrt{A_2}}{n^2}, \frac{-d+\sqrt{A_2}}{n}, d, 0, 0 \end{pmatrix}, \begin{pmatrix} -\frac{d+\sqrt{A_2}}{n}, \frac{-n+2d-n^2d+2\sqrt{A_2}}{n^2}, -\frac{d+\sqrt{A_2}}{n}, d, 0, 0 \end{pmatrix}, d \in [-n/(n^2-1), 0],$$
 (B2)

$$\begin{pmatrix} 1 - c - 2n \left(-nc + \sqrt{B_2} \right), -nc + \sqrt{B_2}, c, -nc + \sqrt{B_2}, 1, 0 \end{pmatrix}, \begin{pmatrix} 1 - c - 2n \left(-nc - \sqrt{B_2} \right), -nc - \sqrt{B_2}, c, -nc - \sqrt{B_2}, 1, 0 \end{pmatrix}, c \in (-\infty, 0] \cup [1/(n^2 - 1), \infty),$$
 (B3)

$$(1 - nb, b, 0, 0, 1, 0), \left(-\frac{d + nd^2 + cd}{d + nc}, -\frac{c + c^2 + ncd}{d + nc}, c, d, 1, 0 \right), \quad d + nc \neq 0, \left(-nb, b, \frac{1}{n^2 - 1}, -\frac{n}{n^2 - 1}, 1, 0 \right),$$
 (B4)

$$\begin{pmatrix} 0, 0, 0, 0, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{n}{n^2-1}, \frac{1}{n^2-1}, -\frac{n}{n^2-1}, \frac{1}{n^2-1}, \frac{1}{2}, \frac{1}{2} \end{pmatrix},$$

$$(C1)$$

$$\begin{pmatrix} -\frac{1+2d+\sqrt{C_1}}{2n}, \frac{2d-n^2d+1+\sqrt{C_1}}{n^2}, -\frac{1+2d+\sqrt{C_1}}{2n}, d, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \\ \begin{pmatrix} \frac{-1-2d+\sqrt{C_1}}{2n}, \frac{2d-n^2d+1-\sqrt{C_1}}{n^2}, \frac{-1-2d+\sqrt{C_1}}{2n}, d, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \\ d \in [-\frac{1}{2}(n+1), \frac{1}{2}(n+1)], \end{cases}$$
(C2)

$$\begin{pmatrix} -nd - \sqrt{A_3}, d, -nd + \sqrt{A_3}, d, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -nd + \sqrt{A_3}, d, -nd - \sqrt{A_3}, d, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, d \in (-\infty, 0] \cup [1/(n^2 - 1), \infty),$$
 (C3)

$$\begin{pmatrix} -\frac{1}{2} - nb, b, -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \begin{pmatrix} -\frac{c+2nd^2+2cd}{2d+2nc+1}, -\frac{d+2ncd+2c^2}{2d+2nc+1}, c, d, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \quad 2d+2nc+1 \neq 0, \\ \begin{pmatrix} \frac{1}{2} - nb, b, -\frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2}, \frac{1}{2} \end{pmatrix}, \end{cases}$$
(C4)

$$\begin{pmatrix} 0, 0, 0, 0, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{n}{n^2-1}, -\frac{1}{n^2-1}, \frac{n}{n^2-1}, -\frac{1}{n^2-1}, \frac{1}{2}, -\frac{1}{2} \end{pmatrix},$$
(D1)

$$\begin{pmatrix} \frac{1-2d-\sqrt{C_2}}{2n}, \frac{2d-n^2d-1+\sqrt{C_2}}{n^2}, \frac{1-2d-\sqrt{C_2}}{2n}, d, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \\ \begin{pmatrix} \frac{1-2d+\sqrt{C_2}}{2n}, \frac{2d-n^2d-1-\sqrt{C_2}}{n^2}, \frac{1-2d+\sqrt{C_2}}{2n}, d, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \\ d \in [-1/(n^2-1), 1/(n^2-1)],$$
 (D2)

$$\begin{pmatrix} -nd - \sqrt{A_4}, d, -nd + \sqrt{A_4}, d, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} -nd + \sqrt{A_4}, d, -nd - \sqrt{A_4}, d, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, d \in (-\infty, -1/(n^2 - 1)] \cup [0, \infty),$$
 (D3)

$$\begin{pmatrix} -\frac{1}{2} - nb, b, \frac{1}{2(n-1)}, \frac{1}{2(n-1)}, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \\ \begin{pmatrix} \frac{c-2nd^2 - 2cd}{2d+2nc-1}, \frac{d-2ncd - 2c^2}{2d+2nc-1}, c, d, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}, \ 2d + 2nc - 1 \neq 0, \\ \begin{pmatrix} \frac{1}{2} - nb, b, \frac{1}{2(n-1)}, -\frac{1}{2(n-1)}, \frac{1}{2}, -\frac{1}{2} \end{pmatrix}.$$
 (D4)

Now our assertion follows from (6.11).

Remark 5. Note that Theorem 5 gives us a complete answer to the problem of finding all natural projectors in $T_2^1 \mathbf{R}^n$. Properties of these natural projectors can be obtained from this list (A1), (A2), ..., (D4) by a direct analysis.

References

- Gurevich, G. B.: Foundations of the Theory of Algebraic Invariants. P. Noordhoff LTD, Groningen 1964.
 Zbl 0128.24601
- Halmos, P. R.: Finite-Dimensional Vector Spaces. Russian translation, GIFM, Moscow 1963.
- [3] Krupka, D.; Janyska, J.: Lectures on Differential Invariants. Brno University, Brno, Czech Republic, 1990. Zbl 0752.53004
- [4] Krupka, D.: The trace decomposition problem. Beiträge Algebra Geom. 36 (1995), 303– 315.
 Zbl 0839.15024
- [5] Krupka, D.: The trace decomposition of tensors of type (1,2) and (1,3). In: New Developments in Differential Geometry, L. Tamássy and J. Szenthe (eds.), Proc. Coll. on Diff. Geom., Debrecen, Hungary, 1994; Kluwer, Dordrecht 1996, 243–253. Zbl 0840.15024
- [6] Weyl, H.: The Classical Groups, their Invariants and Representations. Second edition, Princeton University Press, Princeton, New Jersey 1946.
 Zbl 0020.20601
- [7] Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover Publications 1931.
 Zbl 0041.56804

Received February 23, 2000