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Abstract. This paper deals with the characterization of the sums of compact
convex sets with linear subspaces, simplices, sandwiches (convex hulls of pairs of
parallel affine manifolds) and parallelotopes in terms of the so-called internal and
conical representations, topological and geometrical properties. In particular, it is
shown that a closed convex set is a sandwich if and only if its relative boundary
is unconnected. The characterizations of families of closed convex sets can be
useful in different fields of applied mathematics. For instance, it is proved that a
bounded linear semi-infinite programming problem whose feasible set is the sum
of a compact convex set with a linear subspace is necessarily solvable and has zero
duality gap.
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1. Introduction

The characterization of families of closed convex sets can be useful from different perspectives.
A linear semi-infinite programming (LSIP) problem consists of the minimization of a linear
functional on a closed convex set in Rn which is described by means of infinitely many linear
inequalities. If the feasible set is the sum of a compact convex set with a linear subspace, we
shall see that the boundedness of the LSIP problem entails its solvability. On the other hand,
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under suitable assumptions on the constraints system, it is possible to obtain an extreme point
of the feasible set from any feasible solution without loss in the objetive (LSIP purification
algorithms can be found in [2] and [5]) and then, starting at this initial extreme point, it is
possible to construct a polygonal of linked edges along which the optimal functional decreases
(an LSIP simplex method has been proposed in [1]). Obviously, the viability of an algorithm
progressing on the boundary of the feasible region requires its connectivity by arcs. This
paper characterizes the class of closed convex sets whose (relative) boundary is non-empty
and connected by arcs.
On the other hand, typical geometric combinatorial problems are the characterization of

those convex bodies (full dimensional closed convex sets) for which the minimum number of
points (or directions) illuminating them in a certain sense has a given expression (see the
survey in [9]).
This paper deals with the different ways of characterizing families of closed convex sets,

focussing the attention on the sums of compact convex sets with linear subspaces and on
three particular subfamilies of this class: simplices, sandwiches and parallelotopes.
Now, let us introduce some notation. The zero vector in Rn will be represented by 0n and

the Euclidean open ball by Bn. Given a set X, ∅ 6= X ⊂ Rn, we denote by convX, coneX,
spanX, affX and X⊥ the convex hull of X, the conical convex hull of X, the linear subspace
of Rn spanned by X, the affine hull of X and {y ∈ Rn | x′y = 0 for all x ∈ X}, respectively.
Moreover, we define cone ∅ = {0n}.
Given a convex set X, dimX represents its dimension (i.e., the dimension of affX), O+X

the recession cone of X and, given x ∈ X, D (X;x) denotes the (convex) cone of feasible
directions at x.
From the topological side, given X ⊂ Rn, clX, intX, bdX, rintX and rbdX denote the

closure of X, the interior of X, the boundary of X, the relative interior of X and the relative
boundary of X, respectively. We shall use the following result.

Lemma 1.1. (2.1 and 2.5 in [4]) Let ∅ 6= X ⊂ Rn. z ∈ rint coneX if, and only if, there
exist points xi ∈ X, i = 1, . . . , p, and corresponding positive scalars λi, i = 1, . . . , p, such

that span {x1, . . . , xp} = spanX and z =
p∑
i=1

λix
i.

Any non-empty closed convex set C ⊂ Rn admits different representations. First, C can be
decomposed as the sum of its lineality space, L (C), with C∩L (C)⊥ (this is the pointed cone
of C if C is a convex cone). The last set turns out to be the sum of the convex hull of its set
of extreme points, E (C) 6= ∅, with the convex conical hull of its set of extreme directions,
D (C) ([10], Th. 18.5), so that C = L (C)+E (C)+D (C). The triple (L (C) , E (C) , D (C))
constitutes the internal representation of C.
On the other hand, C is the intersection of all the supporting half-spaces to C, so that C

is the solution set of a certain linear system σ = {a′tx ≥ bt, t ∈ T}, where at ∈ Rn and bt ∈ R
for all t ∈ T , the index set T being possibly infinite. Such a system σ is called an external
representation of C. The non-homogeneous Farkas Lemma [15] establishes that a′x ≥ b is a
consequence of the consistent system σ if, and only if,

(
a

b

)
∈ cl cone

{(
at

bt

)
, t ∈ T ;

(
0n
−1

)}
.
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From here, it can be easily shown that the right hand side cone,

K (C) := cl cone

{(
at

bt

)
, t ∈ T ;

(
0n
−1

)}
,

is the same for all the external representations of C 6= ∅, so that, the so-called reference cone,
K (C), can be seen as a conical representation of C. From K (C) it is possible to obtain

different external representations of C (e.g.,

{
a′x ≥ b,

(
a

b

)
∈ I

}
, where the index set I

is an arbitrary dense subset of K (C)). There exists a one-to-one correspondence between

non-empty closed convex sets in Rn and closed convex cones in Rn+1 containing
(
0n
−1

)

but not containing

(
0n
1

)
(their corresponding reference cones). The interest of the conical

representation derives from the fact that K (C) captures all the relevant information on C.
For example, dimC = n−dimL [K (C)] (Theorem 5.8 in [5]) and the value of the optimization

problem P (c) : Min c′x s.t. x ∈ C, where c ∈ Rn, is sup
{
α ∈ R |

(
c

α

)
∈ K (C)

}
(Theorem

8.1 (ii) in [5]), so that the properties of K (C) and P (c) are closely related to each other.
Moreover, two closed convex sets, C1 and C2, can be separated by a hyperplane if, and only
if, K (C1) ∩ [−K (C2)] contains at least one ray.
Uniqueness is a useful feature of both internal and conical representations, so that large

families of non-empty closed convex sets can be characterized by means of the properties of
their corresponding internal and conical representations (see the table below which comes
from Ths. 5.8 and 5.13 in [5]).

C Internal representation Conical representation

affine manifold E (C) singleton, D (C) = {0n}
The pointed cone of

K (C) is cone

{(
0n
−1

)}

polyhedral convex set E (C) polytope, D (C) polyhedral K (C) polyhedral
convex body dimL (C) + dim [E (C) +D (C)] = n K (C) pointed

In Section 6 we shall make use of the following illumination concept which was introduced by
Valentine [14]: given a convex body C and z /∈ C, x ∈ bdC is visible from z if ]x, z[∩C = ∅.
We denote by vis (C; z) the set of boundary points of C visible from z /∈ C. If C is compact,
vis (C; z) 6= bdC [12].

2. Characterizing the sums of compact convex sets with linear subspaces

Proposition 2.1. Given a closed convex set C 6= ∅, the following conditions are equivalent
to each other:

(i) C is the sum of a compact convex set with a linear subspace;

(ii) E (C) is compact and D (C) = {0n} ;

(iii)

(
0n
−1

)
∈ rintK (C); and
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(iv) L (C)⊥ = Π(K (C)), where Π denotes the vertical projection Π(x1, . . . , xn+1) =
(x1, . . . , xn).

Proof. (i) ⇒ (ii) If C = E + L, with E compact convex set and L linear subspace, then
L (C) = L and C ∩L⊥ = (E + L)∩L⊥ is the orthogonal projection of E onto L⊥, so that it
is the continuous image of a compact set. Hence E (C) = C ∩ L⊥ is compact.

(ii) ⇒ (iii) We assume that C = E (C) + L (C), with E (C) compact, E (C) ⊂ L (C)⊥.

If L (C) = Rn, C = Rn and K (C) = cone
{(
0n
−1

)}
, so that (iii) holds.

Let {u1, . . . , up} be an orthonormal basis of L (C)⊥ 6= {0n} and let ρ > 0 such that
‖y‖ ≤ ρ for all y ∈ E (C).
Given x ∈ C, we can write x = y + z, y ∈ E (C) and z ∈ L (C), so that |±x′uj| =

|±y′uj| ≤ ρ and ±x′uj ≥ −ρ. Hence

(
±uj

−ρ

)
∈ K (C), j = 1, . . . , p (Farkas Lemma).

Given

(
a

b

)
∈ K (C), a′x ≥ b for all x ∈ C. If z ∈ L (C), taking an arbitrary point

x ∈ E (C), we have x+ αz ∈ C for all α ∈ R, so that a′ (x+ αz) ≥ b for all α ∈ R, and this

entails a′z = 0. Hence a ∈ L (C)⊥ and we can write a =
p∑
j=1

αju
j for certain scalars αj ∈ R,

j = 1, . . . , p.
Since (

0n
−1

)
= (2pρ)−1

p∑

j=1

[(
uj

−ρ

)
+

(
−uj

−ρ

)]
,

we have

(
a

b

)
=

p∑

j=1

αj

(
uj

−ρ

)
−

(

b+ ρ

p∑

j=1

αj

)(
0n
−1

)
∈ span

{(
±uj

−ρ

)
, j = 1, . . . , p

}
,

and the last set turns out to be spanK (C). Hence we can apply Lemma 1.1 to conclude

that

(
0n
−1

)
∈ rintK (C).

(iii) ⇒ (iv) Since Π : Rn+1 → Rn is linear and
(
0n
−1

)
∈ rintK (C) , we have 0n ∈

rintΠ [K (C)] (Th. 6.6 in [10]), with Π [K (C)] being a convex cone. Then Π [K (C)] is a
linear subspace.

If Π [K (C)] = {0n}, then K (C) = cone

{(
0n
−1

)}
and C = Rn, so that L (C) = Rn and

L (C)⊥ = Π [K (C)]. We can assume without loss of generality that Π [K (C)] 6= {0n}.
Let {v1, . . . , vq} an orthonormal basis of the linear subspace Π [K (C)]. Given k ∈

{1, . . . , q}, there exist scalars αk and βk such that

(
vk

αk

)
∈ K (C) and

(
−vk

−βk

)
∈ K (C),

so that αk ≤ x′vk ≤ βk for all x ∈ C.
Now we shall prove that L (C) = [Π [K (C)]]⊥.
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In fact, if z ∈ L (C), taking an arbitrary x ∈ C, we get, for k ∈ {1, . . . , q}, αk ≤

(x+ αz)′ vk ≤ βk for all α ∈ R, and this entails z′vk = 0. Hence, L (C) ⊂ {v1, . . . , vq}
⊥
=

[Π [K (C)]]⊥.

Conversely, if z ∈ [Π [K (C)]]⊥, then a′z = 0 for all a ∈ Rn such that
(
a

b

)
∈ K (C)

for a certain b ∈ R. Since
{
a′x ≥ b |

(
a

b

)
∈ K (C)

}
is a linear representation of C, ±z is

a solution of the corresponding homogeneous system, so that ±z ∈ O+C and z ∈ L (C).
Hence, [Π [K (C)]]⊥ = L (C), so that (iv) holds.

(iv) ⇒ (i) If Π [K (C)] = {0n}, C = Rn. Assume dimΠ [K (C)] = q, 1 ≤ q ≤ n. Let
{v1, . . . , vq} be an orthonormal basis of Π [K (C)] and let α1, . . . , αq; β1, . . . , βq be scalars
such that αk ≤ x′vk ≤ βk, for all x ∈ C, k = 1, . . . , q. If q = n, C is compact. Otherwise
L (C)⊥ = Π [K (C)] 6= Rn and we can select vectors vk ∈ L (C), k = q + 1, . . . , n, such that
{v1, . . . , vn} is an orthonormal basis of Rn. Given x ∈ C ∩ L (C)⊥, we have αk ≤ x′vk ≤ βk,
k = 1, . . . , q (since x ∈ C) and x′vk = 0, k = q + 1, . . . , n (since x ∈ L (C)⊥). Hence

C ∩ L (C)⊥ is compact and C =
[
C ∩ L (C)⊥

]
+ L (C) is the aimed decomposition. �

Proposition 2.1 provides the next algebraic characterization of the sums of compact convex
sets with linear subspaces from which we shall obtain nice properties of this class of feasible
sets in LSIP.

Corollary 2.1. Let C = {x ∈ Rn | a′tx ≥ bt, t ∈ T} 6= ∅ and let M = cone {at, t ∈ T}.
Then C is the sum of a compact convex set with a linear subspace if and only if M is a linear
subspace.

Proof. Assume that C is the sum of a compact convex set with a linear subspace. According to
Proposition 2.1 we can write C = E (C)+L (C), with E (C) compact and Π [K (C)] = L (C)⊥.
Given t ∈ T , we have at = Π(a′t, bt) ∈ Π [K (C)], so that M ⊂ Π [K (C)]. On the other

hand, if z ∈ Π [K (C)], there exists a sequence

{zr} ⊂ cone

{(
at

bt

)
, t ∈ T ;

(
0n
−1

)}

such that zi = lim
r→∞

zri , i = 1, . . . , n. For each z
r there exist a function λr : T −→ R+ such

that λrt = 0 for all t ∈ T except for a finite number of indices and a non-negative real number
µr such that

zr =
∑

t∈T

λrt

(
at

bt

)
+ µr

(
0n
−1

)
.

Since
∑
t∈T
λrtat ∈M , r = 1, 2, . . . , we have

z = lim
r→∞

(zr1, . . . , z
r
n)
′ = lim
r→∞

∑

t∈T

λrtat ∈ clM .
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We have shown that M ⊂ L (C)⊥ ⊂ clM , so that clM = L (C)⊥. Hence,

L (C)⊥ = rintL (C)⊥ = rint clM = rintM ⊂M ⊂ L (C)⊥ ,

which proves that M = L (C)⊥ is a linear subspace.
Conversely, ifM = Rn, then C is compact (by Th. 9.3 in [5]). So, we assume thatM is a

linear subspace and cone
{
at, t ∈ T ; ±vk, k = 1, . . . , q

}
= Rn, where {v1, . . . , vq} is a basis

of M⊥. Since L (C) = {y ∈ Rn | a′ty = 0, t ∈ T} = {at, t ∈ T}
⊥, L (C)⊥ = {at, t ∈ T}

⊥⊥ =
span {at, t ∈ T} =M (recall that M is a linear subspace). Then the assumption entails that

C ∩ L (C)⊥ =
{
x ∈ Rn | a′tx ≥ bt, t ∈ T ; x′vk = 0, k = 1, . . . , q

}

is compact, so that C =
[
C ∩ L (C)⊥

]
+ L (C) is the sum of a compact convex set with a

linear subspace. �

Now assume that the LSIP problem P (c) has a finite value, v (c) , and its feasible set C is
the sum of a compact convex set with a linear subspace. If c /∈ L (C)⊥, then there exists a
vector y ∈ L (C) such that either c′y < 0 or c′y > 0, so that either y or −y is a recession
direction of C forming an acute angle with c, with v (c) = −∞ (contradiction). Hence
c ∈ L (C)⊥ = M = rintM and this entails the solvability of P (c), its discretizability (an
optimal solution can be obtained as the limit of optimal solutions of a sequence of finite
subproblems) and the zero duality gap for any external representation of C (by Theorems
8.1, part (v), and 8.2 in [5]).

Corollary 2.2. Given a closed convex set C 6= ∅, the following statements are equivalent to
each other:

(i) C is a compact set;

(ii) E (C) is compact and L (C) = D (C) = {0n} ;

(iii)

(
0n
−1

)
∈ intK (C);

(iv) Π (K (C)) = Rn; and
(v) P (c) is solvable for all c ∈ Rn.

Proof. The equivalence between statements from (i) to (iv) is straightforward consequence of
Proposition 2.1 and the arguments therein. Since (i) ⇒ (v) is trivial, we have just to prove
that (v) ⇒ (i). In fact, if (i) fails there exists y ∈ O+C, y 6= 0n, then P (−y) is not even
bounded. Then (v) fails too. �

Hence the compact convex bodies are those closed convex sets for which the reference cone

is pointed and a neighbourdhood of

(
0n
−1

)
. Significant geometric properties of this family

can be proved by means of LSIP theory ([6], [7] and [8]).
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3. Characterization of simplices

C is a k-simplex if it is the convex hull of k + 1 points affinely independent. Obviously, any
k-simplex is compact.

Proposition 3.1. Given a closed convex set C 6= ∅, the following statements are equivalent
to each other:

(i) C is a k-simplex;

(ii) E (C) has k + 1 extreme points, dimE (C) = k and L (C) = D (C) = {0n}; and

(iii)

(
0n
−1

)
∈ intK (C), dimL [K (C)] = n − k and the pointed cone of K (C) has k + 1

extreme rays.

Proof. (i) ⇔ (ii) is trivial.

(i) ⇒ (iii) Since every k-simplex is compact, we have

(
0n
−1

)
∈ intK (C). On the other

hand, according to the dimensional formula,

dimL [K (C)] = n− dimC = n− k. (3.1)

Now, since C is a full-dimensional simplex in the affine manifold V := aff C, with dimV =
k, there exist non-zero vectors {ai, i = 1, . . . , k + 1} ⊂ V − V and corresponding scalars
{bi, i = 1, . . . , k + 1}, such that {x ∈ Rn | a′ix = bi} is a supporting hyperplane at the relative
interior points of the i-th facet, i = 1, . . . , k + 1. We can assume without loss of generality
a′ix ≥ bi for all x ∈ C, i = 1, . . . , k + 1, so that C = {x ∈ V | a

′
ix ≥ bi, i = 1, . . . , k + 1}.

Moreover, since dimV = k, we can write V = {x ∈ Rn | a′ix = bi, i = k + 2, . . . , n+ 1}, with{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
linearly independent (if C is an n-simplex, then V = Rn and

this part of the proof can be simplified).
Then,

K (C) = cone

{(
ai

bi

)
, i = 1, . . . , k + 1;

(
0n
−1

)}
+ span

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
,

and we shall show that

(
0n
−1

)
can be eliminated in this expression. To do this, we shall

appeal to a well-known characterization of the interior points of a convex cone (Lemma 1.1).

Since

(
0n
−1

)
∈ intK (C), we can write

(
0n
−1

)
=
∑

i∈I

λi

(
ai

bi

)
+ µ

(
0n
−1

)
, λi > 0 if i ≤ k + 1, µ ≥ 0, (3.2)

for a certain set I ⊂ {1, . . . , n+ 1}, with

span

{(
ai

bi

)
, i ∈ I

}
= Rn+1 if µ = 0
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and

span

{(
ai

bi

)
, i ∈ I;

(
0n
−1

)}
= Rn+1 if µ > 0.

If 0 ≤ µ < 1, from (3.2) we get

(
0n
−1

)
∈ cone

{(
ai

bi

)
, i = 1, . . . , k + 1

}
+ span

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
. (3.3)

We shall prove that this always happens when µ ≥ 0 by means of the following discussion.

If µ > 1, then (µ− 1)

(
0n
1

)
=
∑
i∈I
λi

(
ai

bi

)
∈ K (C), and this implies C = ∅. Alternatively,

if µ = 1, then we get
∑
i∈I
λi

(
ai

bi

)
= 0n+1 and there will exist a j ≤ k + 1 such that λj > 0

(otherwise I ⊂ {k + 2, . . . , n+ 1} and

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
is linearly dependent).

Then,

−

(
aj

bj

)
=
∑

i∈I\{j}

λ−1j λi

(
ai

bi

)
∈ K (C) ,

so that a′jx = bj for all x ∈ C. Hence aj ∈ (V − V ) ∩ (V − V )
⊥ = {0n}, i.e., aj = 0n. This

is a contradiction.
From (3.3) we get

K (C) = cone

{(
ai

bi

)
, i = 1, . . . , k + 1

}
+ span

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
.

Comparing dim span

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
= n− k with (3.1) we conclude that the

pointed cone of K (C) is

K̂ (C) := cone

{(
ai

bi

)
, i = 1, . . . , k + 1

}
.

If cone

{(
aj

bj

)}
, j ∈ {1, . . . , k + 1}, is not an extreme ray of K̂ (C), then we can write

(
aj

bj

)
=
k+1∑

i=1
i6=j

γi

(
ai

bi

)
, γi ≥ 0, i = 1, . . . , k + 1, i 6= j,

so that K̂ (C) = cone

{(
ai

bi

)
, i = 1, . . . , k + 1, i 6= j

}
and dim K̂ (C)≤k. Then dimK (C)=

dim K̂ (C)+dimL [K (C)] ≤ n and so intK (C)=∅. Hence

{
cone

{(
ai

bi

)}
, i = 1, . . . , k + 1

}

is the set of extreme rays of K̂ (C).
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(iii) ⇒ (i) The assumptions

(
0n
−1

)
∈ intK (C) and dimL [K (C)] = n − k guarantee

that C is compact and dimC = k, respectively. Let

{
cone

{(
ai

bi

)}
, i = 1, . . . , k + 1

}

be the set of extreme rays of K̂ (C). According to the representation theorem, K̂ (C) =

cone

{(
ai

bi

)
, i = 1, . . . , k + 1

}
.

Let

{(
ai

bi

)
, i = k + 2, . . . , n+ 1

}
be a basis of L [K (C)]. Then C = {x ∈ V | a′ix ≥ bi ,

i = 1, . . . , k + 1}, where V = {x ∈ Rn | a′ix = bi, i = k + 2, . . . , n+ 1}. So, the number of
extreme points of C is p ≤

(
k+1
k

)
= k+1. Assume that p < k+1 and let {x1, . . . , xp} be the

set of extreme points of C. The representation theorem yields C = conv {x1, . . . , xp}, so that
dimC ≤ p− 1 < k. Hence p = k + 1 and

{
x1, . . . , xk+1

}
is affinely independent (otherwise,

dimC < k). This completes the proof. �

4. Characterization of sandwiches

Two affine manifolds in Rn (also called flats) of the same dimension, U1 and U2, are parallel
if U1 − U1 = U2 − U2 and U1 ∩ U2 = ∅. We say that a set is a k-sandwich when it is the
convex hull of the union of two parallel affine manifolds of dimension k − 1. The next result
establishes some elementary properties of the k-sandwiches that will be used later.

Proposition 4.1. Let C = conv (U1 ∪ U2), where U1 and U2 are parallel affine manifolds,
with dimUi = k − 1, i = 1, 2. Let V := U1 − U1 = U2 − U2, Ui ∩ V ⊥ = {xi}, i = 1, 2, and
w = x2 − x1. Then the following statements hold:

(i) C = V + [x1, x2] (and so C is the sum of a compact convex set with a linear subspace);

(ii) dimC = k;

(iii) aff C = Ui + span {w}, i = 1, 2;

(iv) Ui = {x ∈ aff C | w′ (x− xi) = 0}, i = 1, 2; and

(v) rintC = V + ]x1, x2[ and rbdC = U1 ∪ U2.

Proof. The assumptions on U1 and U2 guarantee that x
1 and x2 are well defined and w =

x2 − x1 6= 0n. Obviously, Ui = xi + V , i = 1, 2.

(i) It is trivial.

(ii) Obviously, for i = 1, 2, we have

Ui + span {w} = x
i + V + span {w} = V +

(
xi + span {w}

)
= V + aff

([
x1, x2

])
,

the last set being an affine manifold containing U1 and U2. Hence, if {i, j} = {1, 2},

conv
[
Ui ∪

{
xj
}]
⊂ C ⊂ Ui + span {w} . (4.1)

Since xj /∈ Ui and w ∈ V ⊥, we get from (4.1)

k ≤ dim conv
[
Ui ∪

{
xj
}]
≤ dimC ≤ dim [Ui + span {w}] =
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= dim [V + span {w}] = k.

Hence (ii) holds.

(iii) It follows from the second inclusion in (4.1) and the equation dimC = dim [Ui+span {w}]
which has proved above.

(iv) Given x ∈ Ui = xi + V , w′x = w′xi because w ∈ V ⊥. Conversely, if x ∈ aff C satisfies
w′ (x− xi) = 0, then we can write (recall (iii)) x = xi + v + αw, v ∈ V and α ∈ R, with
w′ (v + αw) = α ‖w‖2 = 0. This entails α = 0, i.e., x = xi + v ∈ Ui.

(v) It is a straightforward consequence of Cor. 6.6.2 in [10] applied to (i). �

Next we give three different characterizations of the sandwiches. Another topological char-
acterization will be given in Section 6.

Proposition 4.2. Let C be a non-empty closed convex set and let K (C) be its reference
cone. The following statements are equivalent to each other:

(i) C is a k-sandwich.

(ii) D (C) = {0n}, E (C) is a proper closed segment and dimL (C) = k − 1.

(iii) There exists a linear subspace V ⊂ (aff C)− C with dimV = k − 1, a non-zero vector
w ∈ V ⊥\ [(aff C)− C]⊥ and two real numbers α1 and α2, such that α1 < α2 and

C = {x ∈ aff C | α1 ≤ w
′x ≤ α2} .

(iv) K (C) = K +W , where K is a pointed closed convex cone and W is a linear subspace

such that dimK = 2, dimW = n− k,

(
0n
−1

)
∈ rintK and

K ∩

(
W + span

{(
0n
−1

)})
= cone

{(
0n
−1

)}
. (4.2)

Proof. We shall prove that (ii) ⇔ (i) ⇒ (iii) ⇒ (iv) ⇒ (i).

(ii) ⇒ (i) If E (C) + D (C) = [x1, x2], with x1 6= x2, defining Ui = xi + L (C), it is easy to
prove that C = conv (U1 ∪ U2), U1 and U2 being parallel manifolds, such that dimUi = k−1,
i = 1, 2.

(i) ⇒ (ii) It is straightforward consequence of statement (i) in Proposition 4.1.

(i) ⇒ (iii) Let C = conv (U1 ∪ U2), where U1 and U2 are parallel affine manifolds. Let V ,
x1, x2 and w be defined as in Proposition 4.1, whose statements (ii) and (iii) show that
dimV = dimC − 1 and V ⊂ V + span {w} = (aff C) − C, respectively. Recalling the
definition of w, we have w ∈ V ⊥\ [(aff C)− C]⊥.
Let αi = w

′xi, i = 1, 2. Obviously, α2 − α1 = ‖w‖
2
> 0.

Since Ui = {x ∈ aff C | w′x = αi}, i = 1, 2, according to statement (iv) in Proposition
4.1, we obtain

C = conv (U1 ∪ U2) = {x ∈ aff C | α1 ≤ w
′x ≤ α2} .

(iii) ⇒ (iv) Let d = dimC. We shall distinguish the cases d = n and d < n.
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Assume d = n. Since C = {x ∈ Rn | α1 ≤ w′x ≤ α2}, α1 < α2, we have

K (C) = cone

{(
w

α1

)
,

(
−w

−α2

)
,

(
0n
−1

)}
.

Moreover, (
0n
−1

)
=

1

α2 − α1

[(
w

α1

)
+

(
−w

−α2

)]
,

so that K (C) = cone

{(
w

α1

)
,

(
−w

−α2

)}
and Lemma 1.1 yields

(
0n
−1

)
∈ rintK (C).

Even more, since α1 6= α2,

(
w

α1

)
and

(
−w

−α2

)
are linearly independent and K (C) is a

two-dimensional pointed cone.
We shall finish this part of the proof showing that K (C) = K (C) + {0n+1} is the aimed

decomposition. In fact, if z ∈ K (C) ∩ span

{(
0n
−1

)}
, it is possible to write

z = ρ1

(
w

α1

)
+ ρ2

(
−w

−α2

)
= γ

(
0n
−1

)
, ρ1 ≥ 0, ρ2 ≥ 0, γ ∈ R.

This entails ρ1 = ρ2 and γ = ρ1 (α2 − α1) ≥ 0, so that z ∈ cone

{(
0n
−1

)}
. This proves

that K (C) ∩ span

{(
0n
−1

)}
⊂ cone

{(
0n
−1

)}
, whereas the reverse inclusion holds trivially.

Hence (4.2) holds.

Now assume d < n. Let aff C={x ∈ Rn | a′ix=bi, i=1, . . . , n− d}, with {ai, i=1, . . . , n− d}
a linearly independent subset of Rn and bi ∈ R, i=1, . . . , n− d.
Since C = {x ∈ aff C | α1 ≤ w′x ≤ α2}, we have now

K (C) = cone

{
±

(
ai

bi

)
, i = 1, . . . , n− d;

(
w

α1

)
,

(
−w

−α2

)
,

(
0n
−1

)}
=

= span

{(
ai

bi

)
, i = 1, . . . , n− d

}
+ cone

{(
w

α1

)
,

(
−w

−α2

)
,

(
0n
−1

)}
.

Let W := span

{(
ai

bi

)
, i = 1, . . . , n− d

}
and K := cone

{(
w

α1

)
,

(
−w

−α2

)
,

(
0n
−1

)}
. W is a

linear subspace of Rn+1, with dimW = n− d, and K (the same cone as in the case d = n) is

a pointed closed convex cone, with dimK = 2 and

(
0n
−1

)
∈ rintK. Moreover, it is obvious

that

cone

{(
0n
−1

)}
⊂ K ∩ span

{(
0n
−1

)}
⊂ K ∩

(
W + span

{(
0n
−1

)})
. (4.3)

Now consider an arbitrary z ∈ K ∩

(
W + span

{(
0n
−1

)})
. We can write

z = ρ1

(
w

α1

)
+ ρ2

(
−w

−α2

)
=
n−d∑

i=1

βi

(
ai

bi

)
+ γ

(
0n
−1

)
, (4.4)
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with ρ1 ≥ 0, ρ2 ≥ 0, βi ∈ R, i = 1, . . . , n− d, and γ ∈ R. From (4.4),

(ρ2 − ρ1)w+
n−d∑

i=1

βiai = 0n,

with {w; ai, i = 1, . . . , n− d} being a linearly independent set because w 6= 0n and

w /∈ [(aff C)− C]⊥ = span {ai, i = 1, . . . , n− d} .

Hence ρ1 = ρ2 and βi = 0, i = 1, . . . , n− d, so that (4.4) reads

z = ρ1

(
0n

α1 − α2

)
= γ

(
0n
−1

)

and we get γ = ρ1 (α2 − α1) ≥ 0. Thus z = γ

(
0n
−1

)
∈ cone

{(
0n
−1

)}
.

We have proved that

K ∩

(
W + span

{(
0n
−1

)})
⊂ cone

{(
0n
−1

)}
,

which together with (4.3) shows that (4.2) holds.

(iv)⇒ (i) Any two-dimensional pointed closed convex cone is the conical convex hull of two ex-

treme directions (i.e., a plane acute angle). Let K = cone

{(
a

α

)
,

(
b

β

)}
, where

{(
a

α

)
,

(
b

β

)}

is a linearly independent set in Rn+1. Since we are assuming that
(
0n
−1

)
∈ rintK, we can

write (by Lemma 1.1),
(
0n
−1

)
= ρ1

(
a

α

)
+ ρ2

(
b

β

)
, ρ1 > 0, ρ2 > 0, (4.5)

so that a 6= 0n (otherwise a = b = 0n and

{(
a

α

)
,

(
b

β

)}
is linearly dependent).

Defining w = ρ1a 6= 0n and γ = ρ1α, we get from (4.5)

K = cone

{(
w

γ

)
,

(
−w

−γ − 1

)}
.

Let

{(
ai

αi

)
, i = 1, . . . , n− d

}
a basis of W , with d = dimC. Since we are assuming that

K (C) = K +W , we have

K (C) = cone

{
±

(
ai

αi

)
, i = 1, . . . , n− d;

(
w

γ

)
,

(
−w

−γ − 1

)}
,

so that
C = {x ∈ Rn | a′ix = αi, i = 1, . . . , n− d; γ ≤ w′x ≤ γ + 1} . (4.6)
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Let γ1 = γ, γ2 = γ + 1 and Uj = {x ∈ Rn | a′ix = αi, i = 1, . . . , n− d; w′x = γj}, j = 1, 2.
We shall prove that Uj 6= ∅, j = 1, 2.
If Uj = ∅, (

0n
1

)
∈ K (Uj) = span

{(
ai

αi

)
, i = 1, . . . , n− d;

(
w

γj

)}

and we can write

(
0n
1

)
=
n−d∑

i=1

βi

(
ai

αi

)
+ β0

(
w

γj

)
, βi ∈ R, i = 0, . . . , n− d. (4.7)

From (4.7), β0

(
w

γj

)
∈ W + span

{(
0n
−1

)}
and we shall discuss the sign of β0.

If β0 > 0, then

(
w

γj

)
∈ W + span

{(
0n
−1

)}
. If j = 1,

(
w

γ1

)
∈ K ∩

[
W + span

{(
0n
−1

)}]
= cone

{(
0n
−1

)}
,

according to (4.2), contradicting w 6= 0n. Alternatively, if j = 2, then

−

(
w

γ2

)
∈ K ∩

[
W + span

{(
0n
−1

)}]
= cone

{(
0n
−1

)}
,

and we get again w = 0n.
If β0 < 0 we obtain w = 0n in the same way.
Finally, if β0 = 0, (4.7) entails that {a′ix = αi, i = 1, . . . , n− d} is inconsistent, in con-

tradiction with (4.6) (because C 6= ∅).
We conclude that U1 and U2 are parallel affine manifolds and it can be easily shown that

C = conv (U1 ∪ U2).
This completes the proof. �

5. A topological characterization of k-sandwiches

From statement (v) in Proposition 4.1, it is clear that the relative boundary of any k-sandwich
is not even connected. In order to prove the converse statement we shall use the following
lemma.

Lemma 5.1. Let C be a closed convex set and let u ∈ Rn\O+C. If xi ∈ C and u /∈ D (C;xi),
i = 1, 2, then x1 and x2 can be connected through a certain arc contained in bdC.

Proof. The statement is trivially true when n = 1 because the assumption on x1 and x2

entails x1 = x2, so we assume n ≥ 2.
Since u /∈ O+C and C is closed, for every x ∈ C there exists a unique non-negative real

number ϕ (x) such that
ϕ (x) = max {t ∈ R | x+ tu ∈ C} .
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u /∈ D (C;xi) implies ϕ (xi) = 0, and this for i = 1, 2. On the other hand, if x ∈ C,
x + ϕ (x)u ∈ C whereas x + γu /∈ C for all γ > ϕ (x), so that x + ϕ (x)u ∈ bdC for all
x ∈ C. We shall prove the continuity of ϕ

∣∣
[x1,x2] , so that {x+ ϕ (x)u | x ∈ [x

1, x2]} will be
the aimed arc connecting x1 with x2 and contained in bdC.
In fact, given two points of C, z1 and z2, and a scalar λ ∈ [0, 1], since zi + ϕ (zi)u ∈ C,

i = 1, 2, we have
(1− λ) z1 + λz2 +

[
(1− λ)ϕ

(
z1
)
+ λϕ

(
z2
)]
u =

= (1− λ)
[
z1 + ϕ

(
z1
)
u
]
+ λ

[
z2 + ϕ

(
z2
)
u
]
∈ C.

Hence (1− λ)ϕ (z1) + λϕ (z2) ≤ ϕ [(1− λ) z1 + λz2] and this means that ϕ is concave on C.
In particular ϕ

∣∣
[x1,x2] will be concave and so ϕ

∣∣
[x1,x2] will be continuous on ]x

1, x2[.
It remains to prove the continuity of ϕ at the extreme points of [x1, x2]. We assume the

contrary.
If ϕ

∣∣
[x1,x2] is not continuous at x

i, i ∈ {1, 2}, since ϕ (xi) = 0 and ϕ (x) ≥ 0 for all
x ∈ [x1, x2], there exists ε > 0 and a sequence

{
zk
}∞
k=1
⊂ ]x1, x2[ such that lim

k→∞
zk = xi and

ϕ
(
zk
)
≥ ε for all k ∈ N. Then, for every k ∈ N, we have

zk + εu ∈
[
zk, zk + ϕ

(
zk
)
u
]
⊂ C,

so that xi + εu = lim
k→∞

(
zk + εu

)
∈ C and u ∈ D (C;xi), contradicting the assumption. This

completes the proof. �

Proposition 5.2. Let C be a non-empty closed convex set in Rn that it is not an affine
manifold, with dimC = k. Then the following statements are equivalent to each other:

(i) rbdC is not connected;

(ii) rbdC is not connected by arcs; and

8iii) C is a k-sandwich.

Proof. (i) ⇒ (ii) It is trivial.

(ii)⇒ (iii) First we assume that C is full-dimensional. Thus the hypothesis will be that bdC
is not connected by arcs.
If n = 1, since dimC = 1 and C 6= R, C will be either a closed half-line (and this is

impossible because any singleton set is connected by arcs) or a closed proper segment in R.
Hence C is a sandwich.
So, we can assume without loss of generality that n ≥ 2.
Let xi ∈ bdC, i = 1, 2, points that cannot be connected by means of any curve entirely

contained in bdC.
Let ci 6= 0n, such that c′i (x− x

i) ≥ 0 for all x ∈ C, i = 1, 2. We denote by Hi :=
{x ∈ Rn | c′i (x− xi) = 0}, i = 1, 2, the corresponding supporting hyperplanes to C. We shall
prove that H1 ∩H2 = ∅ by assuming the contrary. So, let z ∈ H1 ∩H2.
For {i, j} = {1, 2}, since z ∈ Hi and xj ∈ C, we have

c′i
(
z − xj

)
= c′i

(
z − xi + xi − xj

)
= c′i

(
xi − xj

)
≤ 0.
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If c′i (z − x
j) = 0 then xj ∈ Hi (because z ∈ Hi), so that [xi, xj] ⊂ C ∩ Hi ⊂ bdC

(because Hi is supporting hyperplane to C), and this contradicts the assumption on x
1 and

x2. Hence,
c′i
(
z − xj

)
< 0 if {i, j} = {1, 2} . (5.1)

Now consider the vector u = 2z − (x1 + x2). From (5.1), we get

c′iu = c
′
i

(
z − xi

)
+ c′i

(
z − xj

)
< 0, if {i, j} = {1, 2} . (5.2)

(5.2) is incompatible with u ∈ O+C because c′i (x− x
i) ≥ 0 for all x ∈ C, i = 1, 2. Even

more, also from (5.2), if t > 0, c′i [(x
i + tu)− xi] = t (c′iu) < 0, so that x

i + tu /∈ C. This
means that u /∈ D (C;xi), i = 1, 2. Then we can apply Lemma 4.1 in order to obtain the
aimed contradiction. Hence we have proved that H1∩H2 = ∅, so that span {c1} = span {c2}.
Next we shall prove that C = conv (H1 ∪H2).
Since x1 /∈ H2 and x2 /∈ H1 (otherwise H1 = H2), c′2 (x

1 − x2) > 0 and c′1 (x
1 − x2) < 0,

so that c2 is a negative multiple of c1 and we can write Hi = {x ∈ Rn | c′x = αi}, i = 1, 2,
where c 6= 0n, c′xi = αi, i = 1, 2, and α1 < α2. Since Hi is a supporting hyperplane to C at
xi, i = 1, 2, we have

C ⊂ {x ∈ Rn | α1 ≤ c′x ≤ α2} = conv (H1 ∪H2) . (5.3)

In order to prove the reverse inclusion, let us consider an arbitrary vector v ∈ V := H1−H1 =
H2 −H2.
If v /∈ O+C, there exist non-negative real numbers

λi := max
{
t ∈ R | xi + tv ∈ C

}
, i = 1, 2.

Then [xi, xi + λiv] ⊂ C ∩ Hi ⊂ bdC, i = 1, 2. On the other hand, there exists an arc
connecting x1 + λ1v with x

2 + λ2v which is completely contained in bdC (because v /∈
D (C;xi + λiv), i = 1, 2, and so Lemma 5.1 applies again), and this means that x

1 can be
connected with x2 by means of an arc contained in bdC, composed by three linked arcs.
This is a contradiction, so that V ⊂ O+C.
Hence Hi = x

i + V ⊂ C +O+C = C, i = 1, 2, and we obtain

conv (H1 ∪H2) ⊂ C. (5.4)

From (5.3) and (5.4), we conclude that C = conv (H1 ∪H2) is a full-dimensional sandwich.
Now we assume that k < n. Then C is a full-dimensional closed convex set, in aff C, such

that its boundary, in the topology of aff C, is not connected by arcs. Applying the previous
argument, C turns out to be a full-dimensional sandwich in aff C, i.e., a k-sandwich.

(iii) ⇒ (i) It is straightforward consequence of statement (v) in Proposition 4.1. �

6. Characterization of n-simplices, n-sandwiches and parallelotopes

In a recent paper of Martini and Soltan [9], it has been proved that, given a compact convex
body C, C is an n-simplex if, and only if, for all z1 /∈ C there exists another point z2 /∈ C
such that vis (C; z1) ∪ vis (C; z2) = bdC, i.e., the whole set C can be seen from {z1, z2}.
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The compactness of C is essential in this characterization, even reinforcing the above
condition with vis (C; z) 6= bdC for all z /∈ C (a consequence of the boundedness of C). In
fact, given an n-sandwich C = {x ∈ Rn | α1 ≤ a′x ≤ α2}, with a 6= 0n and α1 < α2, and
z /∈ C, we have

vis (C; z) =






{x ∈ Rn | a′x = α1} if a′z < α1

{x ∈ Rn | a′x = α2} if a′z > α2
, (6.1)

so that the n-sandwiches satisfy the above conditions. Unfortunately, they are not the only
unbounded convex bodies satisfying these conditions. This is the case of every closed convex
set C such that E (C) is an (n− 1)-simplex, L (C) is a line through the origin and D (C) =
{0n} (e.g., the cartesian product S×R where S is an (n− 1)-simplex in Rn−1). Nevertheless,
the n-sandwiches (the class of convex bodies with non-empty unconnected boundary) can
also be characterized in terms of visibilities.

Proposition 6.1. Let C 6= Rn be a convex body. Then C is an n-sandwich if, and only if,
vis (C; z) is a hyperplane and vis (C; z) 6= bdC for all z /∈ C.

Proof. The direct statement is a straightforward consequence of (6.1). Assume that vis (C; z)
is a hyperplane different of bdC for all z /∈ C. Since {vis (C; z) , z /∈ C} is a covering of
bdC, bdC turns out to be the union of at least two hyperplanes. Assuming that bdC
contains two non-parallel hyperplanes, we shall obtain a contradiction. In fact, let Hi =
{x ∈ Rn | a′ix = bi}, with a′ix ≥ bi for all x ∈ C, i = 1, 2, with span {a1} 6= span {a2}. Since
H1 is not contained in {x ∈ Rn | a′2x ≥ b2}, there exists x1 ∈ Rn such that a′1x1 = b1 and
a′2x

1 < b2. Then x
1 ∈ H1\C, contradicting H1 ⊂ bdC ⊂ C.

Since bdC is the union of at least two parallel hyperplanes, bdC is unconnected, and so
C is an n-sandwich by Proposition 5.2. �

A parallelotope can be defined as the intersection of a family of n “independent” n-sand-

wiches, i.e., a set of the form C =
n
∩
i=1
Ci, with Ci = {x ∈ Rn | αi ≤ a′ix ≤ βi}, αi < βi for

i = 1, . . . , n, and {ai, i = 1, . . . , n} linearly independent. Consequently,

K (C) = cone

{(
ai

αi

)
, i = 1, . . . , n; −

(
ai

βi

)
, i = 1, . . . , n;

(
0n
−1

)}

whereas E (C) is the sum of n segments, [xi, yi], i = 1, . . . , n, such that {yi − xi, i = 1, . . . , n}
is linearly independent, and L (C) = D (C) = {0n}. A parallelotope is a particular class
of n-zonotope (convex body that can be expressed as the sum of finitely many compact
segments). As the n-simplices and the n-sandwiches, the parallelotopes not only can be
characterized by means of their conical and internal representations but also through their
geometric combinatorial properties. In fact, a given n-zonotope C is a parallelotope if, and
only if, the minimum number of smaller homothetic copies of C covering C (or directions, or
points, illuminating C) is exactly 2n ([11] and [13]).
Parallelotopes, n-simplices and n-sandwiches are only some of the families of convex

bodies enjoying nice combinatorial, optimality and separability properties (see, e.g., [9], [5]
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and [3], respectively). The characterization of all these families in terms of their internal and
conical representations and their illumination properties are challenging open problems.

Acknowledgments. The authors are indebted to Dr. S. Segura for his valuable comments
and suggestions.
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