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Abstract. We consider rings S, not necessarily with 1, and develop a decomposi-
tion theory for submonoids and subgroups of (S, ◦) where the circle operation ◦ is
defined by x ◦ y = x + y − xy. Decompositions are expressed in terms of internal
semidirect, reverse semidirect and general products, which may be realised exter-
nally in terms of naturally occurring representations and antirepresentations. The
theory is applied to matrix rings over S when S is radical, obtaining group pre-
sentations in terms of (S,+) and (S, ◦). Further details are worked out in special
cases when S = pZpt for p prime and t ≥ 3.

1. Introduction and preliminaries

Groups of units of rings with identity are well studied. However many rings arise naturally
without an identity. For example, nontrivial rings which coincide with their Jacobson radical
never have an identity. Nevertheless, all rings possess groups of quasi-units, that is, elements
which are invertible with respect to the circle operation ◦ defined by

x ◦ y = x+ y − xy .

Consider a ring S, not necessarily with 1, with multiplication denoted by · or juxtaposition.
We refer to (S, ◦) as the circle monoid of S. Denote by S1 the result of adjoining 1 to S,
which may be done in different ways depending on the characteristic (see, for example, [10,
Theorem 2.26]). Then the mapping

̂ : (S, ◦) → (S1, ·) , x 7→ x̂ = 1− x (x ∈ S)
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is a monoid embedding, which is an isomorphism when S = S1. An element x ∈ S is called
quasi-invertible if there is an element y such that

x ◦ y = y ◦ x = 0 ,

in which case we call y the quasi-inverse of x and write

x′ = y and x = 1− x′ ,

so that, in S1,

x x̂ = x̂ x = 1 .

Put

G(S) = {x ∈ S | x is quasi-invertible } ,

called the group of quasi-units or the circle group of S. When S = S1, denote by G(S) the
group of units of (S, ·), in which case ̂ : G(S) → G(S) is a group isomorphism.

The Jacobson radical of S, denoted by J (S), may be defined to be the largest ideal of S
consisting of quasi-invertible elements. It is easy to see that any ideal of S contained in
J (S) forms a normal subgroup of (G(S), ◦). The existence of complements of J (S) and the
nilradical in G(S) appears to be a delicate issue, investigated in [7].

Call S radical if S = J (S). The circle group of a radical ring has also been called the
adjoint group [40]. Chick [3], [4] investigates, also with Gardner [5], interesting examples
of commutative radical rings S in which (S, ◦) and (S,+) are isomorphic. The question of
when an abstract group arises as the circle group of a ring, and the interplay between finite
generation, nilpotency of the ring and nilpotency of its circle group have been investigated
by a number of authors including Ault, Watters, Kruse, Tahara, Hosomi and Sandling [1],
[40], [12], [13], [39], [37]. Membership criteria for the circle groups of band graded rings have
been investigated by Kelarev [11].

It should be remarked that many authors use as circle operation ◦+ defined by x ◦+ y =
x+y+xy. This does not matter in our context, however, because negation is an isomorphism
between the monoids (S, ◦) and (S, ◦+). Both ◦ = ◦(−1) and ◦+ = ◦(1) are special cases of
the derived associative operation ◦(k), where k is an integer, defined by

x ◦(k) y = x+ y + kxy .

Derived associative operations are characterized by McConnell and Stokes[21]. If k is invert-
ible modulo the characteristic of S with inverse reperesented by ` then it is easy to see that
(S, ◦) ∼= (S, ◦(k)) under the map x 7→ `x for x ∈ S.

In this paper we develop a general decomposition theory (Section 5) for submonoids and
subgroups of rings under ◦, in terms of semidirect, reverse semidirect and general products,
defined later in this section. Details of the mappings involved in the case of semidirect and
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reverse semidirect products can best be understood in terms of naturally occurring represen-
tations and antirepresentations (Section 4). This theory is applied to obtain decompositions
of the circle group of the ring of matrices with entries from a radical ring S (Section 6), yield-
ing a group presentation (Section 7) in terms of (S,+) and (S, ◦), further details of which
are worked out (Section 8) when S = pZpt for p prime and t ≥ 3.

We establish here some notational conventions used throughout the paper. If M is a monoid
then its identity element is denoted by 1 or 1M , and the dual of M is the monoid M∗ =
{x∗ | x ∈M} with multiplication

x∗y∗ = (yx)∗ (x, y ∈M) .

The cyclic group of order n is denoted by Cn, written multiplicatively. If G is a group and
x, y ∈ G then we write

xy = y−1xy and [x, y] = x−1y−1xy ,

and if H is a subgroup of G then we write H ≤ G. The use of angular brackets varies slightly
according to context. If X is a subset of a monoid or group then 〈X〉 denotes the submonoid
or subgroup, respectively, generated by X. The difference in meaning never causes confusion
here. If X is a subset of a ring S then 〈X〉+ denotes the additive subgroup generated by X,
and if X ⊆ G(S) then 〈X〉◦ denotes the subgroup generated by X under ◦. If Σ is an alphabet
and R a collection of relations then 〈Σ | R〉 denotes a group presentation. Manipulations
of group presentations in the final sections use Tietze transformations, a good reference for
which is [23]. In some examples, monoid presentations appear (which are not groups), for
which we adopt the notation 〈Σ | R〉monoid.

Let S be a ring, x ∈ G(S) and k ∈ Z. Denote the kth power of x in (S, ◦) by x◦ k, and
note that, since ̂ is a monoid homomorphism, (1 − x)k = 1 − x◦k. It is well-known (see,
for example [22, Theorem XVI.9]), for p prime and n ≥ 1, that the group of units of Zpn is
isomorphic to Cp−1 × Cpn−1 , if p is odd, or p = 2 and n ≤ 2, and C2 × C2n−2 , if p = 2 and
n > 2. It is easy to see that

(pZpn , ◦) =






〈p〉◦ if p is odd, or p = 2 and n ≤ 2 ;

〈2, 4〉◦ if p = 2 and n > 2 .

If n ≥ 1 then we denote by Mn(S) the ring of n× n matrices with entries from S. Note that
J (Mn(S)) = Mn(J (S)). If S is radical then so also is Mn(S), whence Mn(S) = G(Mn(S))
is a group under ◦.

Our development begins by recalling a well-known construction. Let M and N be monoids.
Given a monoid antihomomorphism ϕ : M −→ End (N) then we may form the (external)
semidirect product

N oϕM = { (n,m) |n ∈ N ,m ∈M }
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with multiplication

(n1,m1)(n2,m2) = (n1[n2(m1ϕ)],m1m2)

which is easily seen to be a monoid with identity (1, 1) . Dually, given a monoid homomor-
phism ϕ :M −→ End (N) then we may form the (external) reverse semidirect product

M nϕ N = { (m,n) |m ∈M ,n ∈ N }

with multiplication

(m1, n1)(m2, n2) = (m1m2, [n1(m2ϕ)]n2) ,

which is a monoid, and one may verify that

(M nϕ N)∗ ∼= N∗ oϕ∗ M∗(1.1)

under the map (m,n)∗ 7→ (n∗,m∗) for m ∈ M , n ∈ N , where ϕ∗ : M∗ −→ End (N∗) is the
antihomomorphism

m∗ϕ∗ : n∗ 7→ (n(mϕ))∗ (m ∈M ,n ∈ N) .

In both cases above one can easily verify that ifM is a group then ϕ :M −→ Aut (N) . If
M and N are both groups and ϕ :M −→ Aut (N) is an antihomomorphism then one verifies
that N oϕM is a group (see also (1.5) below) and

N oϕM ∼= M nψ N(1.2)

under the map (n,m) 7→ (m−1, n−1)−1 for m ∈ M , n ∈ N , where ψ : M −→ Aut (N) is the
homomorphism defined by mψ = m−1φ for m ∈M . This accords with (and can be deduced
from) isomorphism (1.1) because every group is isomorphic to its dual under the inversion
mapping.

For the development of the theory of semidirect products of semigroups, though not
needed in this paper, and for historical background, the interested reader is referred to the
work of Nico [27] and Preston [28], [29], [30], [31].

We now describe a construction which encompasses both semidirect and reverse semidi-
rect products, and which arises naturally in the decomposition theory we develop later for
circle subgroups and submonoids of rings. The notation is due to Rosenmai [36]. Suppose
that we have monoids M and N and maps

� :M ×N −→M , (m,n) 7→ m� n

� :M ×N −→ N , (m,n) 7→ m� n

which satisfy the following conditions, known as the general product axioms:

(P1) (∀m ∈M)(∀n1 , n2 ∈ N) m� (n1n2) = (m� n1)� n2
(P2) (∀m1 ,m2 ∈M)(∀n ∈ N) (m1m2)� n = m1 � (m2 � n)
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(P3) (∀m1 ,m2 ∈M)(∀n ∈ N) (m1m2)� n = (m1 � (m2 � n))(m2 � n)

(P4) (∀m ∈M)(∀n1 , n2 ∈ N) m� (n1n2) = (m� n1)((m� n1)� n2)

(P5) (∀m ∈M) m� 1N = m

(P6) (∀n ∈ N) 1M � n = n

(P7) (∀n ∈ N) 1M � n = 1M

(P8) (∀m ∈M) m� 1N = 1N

Now form the (external) general product

N ~M = { (n,m) |n ∈ N ,m ∈M }

with multiplication

(n1,m1)(n2,m2) = (n1(m1 � n2), (m1 � n2)m2)

which may be routinely seen to form a monoid with identity element (1, 1) .

If m � n = m for all m ∈ M , n ∈ N then one may check that this reduces to the
semidirect product

N ~M = N oϕM(1.3)

where mϕ : n 7→ m� n for m ∈ M , n ∈ N . If m� n = n for all m ∈ M , n ∈ N then this
reduces to the reverse semidirect product

N ~M = N nψ M(1.4)

where nψ : m 7→ m � n for m ∈ M , n ∈ N . If M and N are groups then one may check
that N ~M is also a group and, for m ∈M ,n ∈ N ,

(n,m)−1 = (m−1 � n−1,m−1 � n−1) .(1.5)

The concept of a general product was first studied for groups by B.H. Neumann [26], and
subsequently by Zappa [41] and Casadio [2]. For further development in the theory of groups
the reader is referred also to the work of Rédei and Szép [32], [33], [34], [35], [38], who intro-
duce the term skew product. The concept for semigroups and monoids has been developed
by Kunze [14], [15], [16], [17], who refers to them as bilateral semidirect products, focusing
attention on transformation semigroups and applications to automata theory. The termi-
nology that we use has been popularized by Lavers [18], [19] who finds applications in the
theory of vine monoids and monoid presentations. We remark that axioms (P1), (P2), (P3),
(P4) define a semigroup general product, though we have no use for this wider notion in this
paper.

One may ask whether there is a simple criterion for recognizing when a monoid is isomorphic
to the general product of two of its submonoids. Call a monoid M an internal general
product of submonoids N1 and N2 if M = N1N2 (monoid product of sets) and factorizations
are unique, that is

(∀m ∈M)(∃!n1 ∈ N1)(∃!n2 ∈ N2) m = n1n2 .

It is straightforward to verify the following result, first noted by Kunze [14].
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Proposition 1.1. If a monoid M is the internal general product of submonoids N1 and N2
then

M ∼= N1 ~N2

under the map n1n2 7→ (n1 , n2) for n1 ∈ N1 , n2 ∈ N2 , with respect to the mappings � and
� defined by the equation

n2n1 = (n2 � n1)(n2 � n1)

for unique n2 � n1 ∈ N1 and n2 � n1 ∈ N2 .

Call a monoid M with submonoids N1, N2 an internal semidirect [reverse semidirect] product
of N1 by N2 if M is an internal general product of N1 and N2 [ N2 and N1] and

(∀n1 ∈ N1)(∀n2 ∈ N2)(∃n
∗
1 ∈ N1) n2n1 = n∗1n2 [ n1n2 = n2n

∗
1 ] .

We deduce easily the following.

Proposition 1.2. If a monoid M is the internal semidirect [reverse semidirect] product of
N1 by N2 then

M ∼= N1 oφ N2 [ N2 nφ N1 ]

where φ : N2 → End (N1) is defined by the equation

n2n1 = (n1(n2φ))n2 [ n1n2 = n2(n1(n2φ)) ]

for n1 ∈ N1, n2 ∈ N2.

2. Examples

We give some contrasting examples using groups and monoids illustrating general, semidirect
and reverse semidirect products. The group examples will be revisited, from a different
direction, in Section 8, as an application of the theory of presentations which we develop in
Section 7.

Example 2.1. We give a simple example of a general product which is neither semidirect
nor reverse semidirect. Let M = {xi | i ∈ Z+ ∪ {0} } be the infinite monogenic monoid and
define, for i , j ∈ Z+ ∪ {0} ,

xi � xj =

{
1 if j ≥ i

xi−j if i > j
, xi � xj =

{
1 if i ≥ j

xj−i if j > i .

Then it is routine to check that the general product axioms are satisfied, so we may form the
general product M ~M , and further that

M ~M ∼= 〈 a , b | ab = 1 〉monoid ,

the bicyclic monoid [9, Example V.4.6], [6, Section 1.12].
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We give two examples of general products of groups which we will see later arise as
the circle groups of the ring of 2 × 2 matrices over pZp3 where p is an odd and even prime
respectively.

Example 2.2. Let p be any prime and

G = 〈x , y |xp
2

= yp
2

= 1 , xy = x1−p 〉 .

Observe that z 7→ z1−p is an automorphism of Cp2 of order p , with respect to which we may
form the semidirect product Cp2 o Cp2 , and this is isomorphic to G . Thus we may write

G = {xiyj | i , j ∈ Zp2 }

with multiplication

xi1yj1xi2yj2 = xi1+i2(1+p)
j1
yj1+j2 .

Now define � ,� : G×G −→ G by the rules

xiyj � xkyl = xi(1−p)
−l
yj−ikp , xiyj � xkyl = xk(1−p)

j

yl+ikp ,

interpreting the expressions in the exponents always as elements of Zp2 . The verification of
axioms (P5), (P6), (P7), (P8) is trivial and (P1), (P2) straightforward. To check (P3) note
that, for z ∈ Cp2 ,

z(1±p)
p

= z , (zp)(1±p) = zp .

[xi1yj1 � (xi2yj2 � xkyl)](xi2yj2 � xkyl)Then

= xi1(1−p)
−l−i2kp+i2(1−p)

−l(1+p)j1−i1k(1−p)
j2 p

yj1−i1k(1−p)
j2p+j2−i2kp

= xi1(1−p)
−l+i2(1−p)

−l(1+p)j1yj1−i1kp+j2−i2kp

= x(i1+i2(1−p)
j1 )(1+p)−lyj1+j2−(i1+i2(1+p)

j1 )kp

= (xi1yj1xi2yj2)� xkyl ,

which verifies (P3). The verification of (P4) is similar. Thus we may form the general product
G~G. Observe that

y−1 � x = x1+p , y−1 � x = y−1 , x � y = y , x� y = x1+p ,

y � y = y � y = y , x � x = xyp , x� x = xy−p .

It follows, by an obvious identification of generators and a straightforward counting argument
(using the previous observations to check satisfiability of the relations below), that G~G is
isomorphic to the group

〈x1, y1, x2, y2 | xi
p2 = yi

p2 = 1 , xi
yi = x1−pi (∀i) , xi

yj = x1+pi (∀i 6= j)

[y1 , y2] = 1 , [x1 , x2] = y
−p
1 y2

p 〉 .
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Example 2.3. Consider

H = 〈x, y, z |x4 = y2 = z2 = 1 , [x, y] = [y, z] = 1 , xz = x−1 〉

which may be viewed as a semidirect product, in at least two ways, isomorphic to

C4 o (C2 × C2) or (C4 × C2)o C2

where the copy of C4 and the second copy of C2 form a dihedral subgroup of order 8 . We
may write

H = {xiyjzk | i ∈ Z4 , j, k ∈ Z2 }

with multiplication

xi1yj1zk1xi2yj2zk2 = xi1+i2(−1)
k1
yj1+j2zk1+k2 .

Now define � ,� : H ×H −→ H by the rules

xiyjzk � xlymzn = x(−1)
niyj+ilzk , xiyjzk � xlymzn = x(−1)

klym+ilzn .

It is straightforward to verify the general product axioms (relying on the fact that y = y−1 for
(P3)). Thus we may form the general product H ~H which, by a straightforward counting
argument, is isomorphic to

〈x1 , y1 , z1 , x2 , y2 , z2 | xi
4 = yi

2 = zi
2 = 1 , [xi , yj] = [yi , zj] = 1 ,

xi
zj = x−1i , i, j = 1, 2 , [y1 , y2] = [z1 , z2] = 1 , [x1 , x2] = y1y2 〉 .

The differences between semidirect and reverse semidirect products become apparent when
one moves beyond the class of groups. We combine both in the example below. A Munn ring
M(S;P ), where S is a ring and P is an m × n matrix over S1, consists of n ×m matrices
over S with usual addition of matrices and multiplication · defined by

α · β = αPβ

for α, β ∈M(S;P ), where juxtaposition denotes normal matrix multiplication. For a detailed
analysis of the circle monoids of Munn rings the interested reader is referred to another paper
[8] of the authors. The terminology Munn ring is due to McAlister [20], which in turn derives
from the notion of Munn algebra (see [24] and [6, Section 5.2]), though in our definition above
we allow an unrestricted sandwich matrix P (see also [25]).

Example 2.4. Consider the commutative monoid

M1 = 〈x , y |x
2 = 1 , y3 = y2 , y = xy = yx 〉monoid

which is an ideal extension (in the sense of [6, Section 4.4]) of a two element null semigroup
by a copy of C2 with zero adjoined, and we may write

M1 = { 1 , x , y , y
2 = 0 } .
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Then M1
∼= (Z4 , ·) ∼= (Z4 , ◦) . We write C4 = 〈z〉 and induce endomorphisms xϕ , yϕ of C4

by the rules

xϕ : z 7→ z−1 , yϕ : z 7→ z2 .

The relations of M1 are satisfied in End (C4) when x , y are replaced by xϕ , yϕ respectively,
so we induce a homomorphism (= antihomomorphism, sinceM1 is commutative) ϕ : M1 −→
End (C4) with respect to which we may form the semidirect product

M2 = C4 oϕM1 .

Clearly

M2
∼= 〈x , y , z | relations of M1 , z

4 = 1 , xz = z3x , yz = z2y 〉monoid

and we may write, without causing confusion,

M2 = { z
ixj , ziyk | i ∈ Z4 , j ∈ Z2 , k ∈ {1 , 2} } .

It is not difficult to see, by a simple counting argument, that M2 is isomorphic to the circle
monoid of the Munn ringM(Z4 ; ( 10 )) . Now put

K = 〈u , v |u4 = v4 = [u , v] = 1 〉 ∼= C4 × C4

and induce endomorphisms xψ , yψ , zψ of K by the rules

xψ : u 7→ u−1 , v 7→ v

yψ : u 7→ u2 , v 7→ v

zψ : u 7→ uv−1 , v 7→ v .

The relations of M2 are satisfied in End (K) where x , y , z are replaced by xψ , yψ , zψ
respectively, so we induce a homomorphism ψ : M2 −→ End (K) with respect to which we
may form the reverse semidirect product

M3 =M2 nψ K .

It is not difficult to verify that M3 is isomorphic to the circle monoid of the Munn ring
M(Z4 ; ( 1 00 0 )) , and further that

M3
∼= 〈x , y , z , u , v | relations of M2 and K , ux = xu3 , uy = yu2 ,

uz = zuv3 , vx = xv , vy = yv , vz = zv 〉monoid .

3. Some technical lemmas

In this section we collect together some observations of a technical nature which will be
useful later in applying Tietze transformations. The proofs of Lemmas 3.1 and 3.2 are
straightforward inductions and left to the reader.
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Lemma 3.1. If G is a group and x, y, z ∈ G such that [x , y] = z and [x , z] = [y , z] = 1 then
[xλ , yµ] = zλµ for all λ , µ ∈ Z+ .

Lemma 3.2. If G is a group and x, y ∈ G such that [x , y] = yα for some α ∈ Z then

[xλ , yµ] = yµ(1−(1−α)
λ)

for all λ , µ ∈ Z+ .

Lemma 3.3. Suppose that G is a group and x, y, z ∈ G such that [x, z] = zα for some α ∈ Z,
[y, z] = z2 and [x, y] = 1. Then

[xλy, zµ] = zµ(1+(1−α)
λ)

for all λ, µ ∈ Z+.

Proof. Observe that zy = z−1, so, by Lemma 3.2,

[xλy, zµ] = [xλ, zµ]y [y, zµ] = z−µ(1−(1−α)
λ)z2µ = zµ(1+(1−α)

λ) . 2

Lemma 3.4. Let p be a prime, t ≥ 3, and put

q =

{
p if p 6= 2

4 if p = 2 .

Suppose G is a group, x, y, z, w ∈ G such that x, y, z, w each have order dividing pt ,

xz = x1−q , xw = x1−q
′
, yz = y1−q

′
, yw = y1−q , [z , w] = 1

(all quasi-inversion taking place in Zpt), and for each m = 0 , . . . , pt−3 − 1 ,

x1−(−mp
2)′y = z−αyx1−(−mp

2)′wα

where α is the least positive integer such that

(1− q)α = 1 + (1− (−mp2)′)p2

in Zpt (which exists because qZpt = 〈q〉◦). Then, for all λ , µ ∈ Z+ ,

xλyµ = z−νyµxλwν

where ν is the least positive integer such that

(1− q)ν = 1 + λµp2

in Zpt .
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Proof. The case λ = µ = 1 is covered by the hypothesis (when m = 0), which starts an
induction. In the following, since orders divide pt , we may interpret exponents as elements
of Zpt . Let λ > 1 . By an inductive hypothesis, choosing α so that (1− q)α = 1 + (λ− 1)p2,

xλy = xxλ−1y = xz−αyxλ−1wα

= z−αxz
−α
yxλ−1wα

= z−αx(1−q)
−α
yxλ−1wα

= z−αz−βyx(1−q)
−α
wβxλ−1wα ,

choosing β such that (1 − q)β = 1 + (1 − q)−αp2 by the hypothesis, since (1 − q)−α =
1− (−(λ− 1)p2)′, so that

xλy = z−(α+β)yx(1−q)
−α
(xλ−1)w

−β
wβwα

= z−(α+β)yx(1−q)
−α
x(1−q

′)−β(λ−1)wα+β

= z−δyxλwδ

where δ = α+ β , after observing that (performing arithmetic in Zpt)

(1− q)−α + (1− q′)−β(λ− 1) = (1− q)−α + (1− q)β(λ− 1)

= (1− q)−α + (1 + (1− q)−αp2)(λ− 1)

= λ− 1 + (1− q)−α(1 + (λ− 1)p2)

= λ− 1 + 1 = λ .

Further we have that

(1− q)δ = (1− q)α(1− q)β

= (1− q)α(1 + (1− q)−αp2)

= (1− q)α + p2 = 1 + λp2 .

Now let µ > 1 , λ ≥ 1 . By an inductive hypothesis, we have, choosing γ such that (1− q)γ =
1 + λ(µ− 1)p2 ,

xλyµ = xλyµ−1y = z−γyµ−1xλwγy

= z−γyµ−1wγ(xλ)
wγ

y

= z−γyµ−1wγx(1−q
′)γλy

= z−γyµ−1wγz−εyx(1−q
′)γλwε ,

choosing ε such that (1− q)ε = 1 + (1− q′)γλp2 by the first half, so that, since [z , w] = 1 ,

xλyµ = z−γyµ−1z−εwγyx(1−q
′)γλwε

= z−γz−ε(yµ−1)z
−ε
yw

−γ
wγx(1−q

′)γλwε

= z−(γ+ε)y(1−q
′)−ε(µ−1)y(1−q)

−γ
(x(1−q

′)γλ)w
−γ
wγwε

= z−σy(1−q
′)−ε(µ−1)+(1−q)−γx(1−q

′)−γ(1−q′)γλwσ

= z−σyµxλwσ
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where σ = ε+ γ, after observing that

(1− q′)−ε(µ− 1) + (1− q)−γ = (1− q)ε(µ− 1) + (1− q)−γ

= (1 + (1− q′)γλp2)(µ− 1) + (1− q)−γ

= µ− 1 + (1− q)−γ(λ(µ− 1)p2 + 1)

= µ− 1 + 1 = µ .

Further we have that

(1− q)σ = (1− q)ε(1− q)γ

= (1 + (1− q′)γλp2)(1− q)γ

= (1− q)γ + λp2

= 1 + λ(µ− 1)p2 + λp2

= 1 + λµp2 . 2

The next result is used in developing the presentation in Section 6 for circle groups of rings
of matrices over radical rings. Though we only apply it in this paper in a group-theoretic
context, it is no harder to state and prove for monoids, and it is useful in studying the
circle monoids of Munn rings (see [8]). Note that the angular brackets refer to submonoid
generation for the remainder of this section.

Lemma 3.5. Let M be a monoid and n a positive integer. For each i , j ∈ { 1, . . . , n }, let
Xij ⊆M and put Yij = 〈Xij 〉 . Suppose that

(1) M = 〈 ∪
i,j
Xij 〉 .

(2) (∀i 6= l , j 6= k )(∀x ∈ Xij )(∀y ∈ Xkl ) xy = yx

(3) (∀i, j , k 6= i )(∀x ∈ Xij )(∀y ∈ Xjk )(∃z1, z2, w1, w2 ∈ Yik)

xy = z1yx = yxz2 , yx = xyw1 = w2xy ;

(4) (∀i > j )(∀x ∈ Yij )(∀y ∈ Yji )(∃z ∈ Yjj )(∃w ∈ Yii ) xy = zyxw .

Then M =
n∏

i=1

n∏

j=1

Yij , so, in particular, if M is finite, |M | ≤
n∏

i=1

n∏

j=1

|Yij| .

We prove Lemma 3.5 by first developing a sequence of lemmas, each of which is assumed
to have the hypotheses of Lemma 3.5.

Lemma 3.6. (∀j 6= i )(∀x ∈ Yii )(∀y ∈ Yij [Yji ] )( ∃z , w ∈ Yij [Yji ] )

yx = xz and xy = wx .

Proof. This follows by (3) and a simple induction on the number of generators. 2

Lemma 3.7. (∀i 6= j 6= k 6= i )(∀x ∈ Yjk )(∀y ∈ Yij )(∃z1, z2 ∈ Yik )

yx = xyz1 and xy = yxz2 .
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Proof. Suppose i 6= j 6= k 6= i . By (2), elements of Yik commute with elements of Yij ∪ Yjk ,
so, by a simple induction on the number of generators, it suffices to suppose x ∈ Xjk , y ∈ Xij ,
and then the result follows immediately by (3). 2

For i ∈ {1 , . . . , n} , put

Ri = Yi1 . . . Yin .

Lemma 3.8. For each i ∈ {1, . . . , n},

Ri = 〈
n
∪
j=1
Xij 〉 ,

so, in particular, RiRi = Ri.

Proof. Clearly
n
∪
j=1
Xij ⊆ Ri ⊆ 〈

n
∪
j=1
Xij 〉 , so to prove the Lemma it suffices to show Ri is

closed under multiplication on the right by elements of
n
∪
j=1
Xij . Let g = y1 . . . yn ∈ Ri where

yj ∈ Yij for j = 1 , . . . , n . Let k ∈ { 1 , . . . , n } and choose x ∈ Xik . We show gx ∈ Ri . If
k > i then, by (2),

gx = y1 . . . yk−1( yk x )yk+1 . . . yn ∈ Ri .

If k = i then, by Lemma 3.6, for each j > i , yjx = xzj for some zj ∈ Yij , so

gx = y1 . . . yi−1( yi x )zi+1 . . . zn ∈ Ri .

If k < i then, by (2) and Lemma 3.6, there exists z ∈ Yik such that

gx = y1 . . . yi x yi+1 . . . yn = y1 . . . yi−1 z yi yi+1 . . . yn

= y1 . . . yk−1( yk z )yk+1 . . . yn ∈ Ri . 2

Lemma 3.9. (∀i > j )(∀k ) RiYjk ⊆ RjRi .

Proof. Suppose i , j , k ∈ { 1, . . . , n } and j < i . Let g ∈ Ri , x ∈ Xjk , so g = y1 . . . yn for
some y1 ∈ Yi1 , . . . , yn ∈ Yin . If i 6= k then, by (2),

gx = y1 . . . yj x yj+1 . . . yn = y1 . . . yj−1 xw yj+1 . . . yn

for some w ∈ Yij, by Lemma 3.6, if k = j, and for w = yjz for some z ∈ Yik, by Lemma 3.7,
if k 6= j, so that, by (2) and Lemma 3.8,

gx = x( y1 . . . yj−1w yj+1 . . . yn )

∈ Xjk〈
n
∪
l=1
Xil 〉 = XjkRi ⊆ RjRi .
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If i = k then, making free use of (2) throughout,

gx = y1 . . . yi x( yi+1 zi+1 ) . . . ( yn zn )

(∃zi+1 ∈ Yj,i+1 ) . . . (∃zn ∈ Yjn ) by Lemma 3.7

= y1 . . . yi−1w yi yi+1 . . . yn zi+1 . . . zn

(∃w ∈ Yji ) by Lemma 3.6

= y1 . . . yj w ( yj+1 zj+1 ) . . . ( yi−1 zi−1 )yi . . . yn zi+1 . . . zn

(∃zj+1 ∈ Yj,j+1 ) . . . (∃zi−1 ∈ Yj,i−1 ) by Lemma 3.7

= y1 . . . yj w yj+1 . . . yn zj+1 . . . zi−1 zi+1 . . . zn

= y1 . . . yj−1 (uw yj v ) yj+1 . . . yn zj+1 . . . zi−1 zi+1 . . . zn

(∃u ∈ Yjj )(∃v ∈ Yii ) by (4)

= u y1 . . . yj−1w yj v yj+1 . . . yn zj+1 . . . zi−1 zi+1 . . . zn

= uw ( y1 z1 ) . . . ( yj−1 zj−1 ) yj v yj+1 . . . yn zj+1 . . . zi−1 zi+1 . . . zn

(∃z1 ∈ Yj1 ) . . . (∃zj−1 ∈ Yj,j−1 ) by Lemma 3.7

= (uw z1 . . . zj−1 )( y1 . . . yj v yj+1 . . . yn )( zj+1 . . . zi−1 zi+1 . . . zn )

∈ RjRi( zj+1 . . . zi−1 zi+1 . . . zn ) ⊆ RjRjRi = RjRi ,

in the last line, by iterating the previous case (when i 6= k), and also by Lemma 3.8. This
proves RiXjk ⊆ RjRi . It follows immediately that RiYjk ⊆ RjRi . 2

Lemma 3.10. (∀i > j ) RiRj ⊆ RjRi .

Proof. This follows immediately by Lemmas 3.8 and 3.9. 2

Proof of Lemma 3.4. We have to show M = R1 . . . Rn . Clearly
⋃
i,j

Xij ⊆ R1 . . . Rn , so it

suffices to show R1 . . . Rn is closed under multiplication on the right by elements of
⋃
i,j

Xij .

For any j ,

RnXnj ⊆ 〈
n
∪
k=1

Xnk 〉 = Rn ,

by Lemma 3.8, so that

R1 . . . RnXnj ⊆ R1 . . . Rn ,

and, for any i < n ,

R1 . . . RnXij ⊆ R1 . . . RnRi ⊆ (R1 . . . Ri )(Ri . . . Rn ) = R1 . . . Rn ,

since (Ri+1 . . . Rn )Ri ⊆ Ri . . . Rn , by Lemma 3.10, and since RiRi = Ri, by Lemma 3.8.
This completes the proof of Lemma 3.5. �
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4. Representations and antirepresentations

Consider a ring S. In what follows we develop a sequence of steps leading to naturally oc-
curring representations and antirepresentations of circle submonoids of S by endomorphisms
(or automorphisms if the submonoid is a subgroup) of additive subgroups of (S ,+) . From
these we may form external semidirect and reverse semidirect products. In the next section
we will find conditions under which these become internal, leading to a decomposition theory
for a large class of circle monoids and groups.

(1) Define

ρ
S
, λ

S
: S −→ End (S ,+)

by, for x, y ∈ S,

xρ
S
: y 7→ yx , xλ

S
: y 7→ xy .

It is well known (and easily checked) that ρS and λS are a representation and antirepre-
sentation respectively of S , and faithful if S has 1 .

(2) Let M be a multiplicatively closed subset of S1 and T , U be additive subgroups of S1

closed under multiplication by elements of M on the right, left respectively. Define

ρ
M,T
: M −→ End (T ,+) by mρ

M,T
: t 7→ tm (m ∈M , t ∈ T )

and

λ
M,U
: M −→ End (U ,+) by mλ

M,U
: u 7→ mu (m ∈M ,u ∈ U) .

Then ρ
M,T
and λ

M,U
are a representation and antirepresentation respectively, resulting

from ρ
S1
and λ

S1
by restriction. Further, it is easy to see that if M ≤ G(S1) , then

ρ
M,T
: M −→ Aut (T ,+) and λ

M,U
: M −→ Aut (U ,+) .(4.1)

(3) Let M be a subset of S closed under ◦ , and T , U be additive subgroups of S1 closed

under ordinary ring multiplication by elements ofM (and hence also by elements of M̂)
on the right, left respectively. Define the composites

ρ̂M,T = ̂◦ ρM,T and λ̂M,U = ̂◦ λM,U ,

so

mρ̂M,T : t 7→ tm̂ = t− tm (m ∈M , t ∈ T )

and

mλ̂M,U : u 7→ m̂u = u−mu (m ∈M , u ∈ U) .

Because they are composites with a monoid homomorphism, we have that ρ̂M,T and

λ̂M,U are a representation and antirepresentation respectively. Further, by (4.1) , ifM≤
(G(S) , ◦) then

ρ̂M,T : M−→ Aut (T ,+) and λ̂M,U : M−→ Aut (U ,+) .(4.2)
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(4) Suppose, in addition to the hypothesis of (3), that there is an anti-isomorphism † :M−→
M (for example † might be quasi-inversion ifM≤ (G(S) , ◦)). Define the composites

ρ̂ †
M,T
= † ◦ ρ̂M,T and λ̂ †

M,U
= † ◦ λ̂M,U

so

mρ̂ †
M,T

: t 7→ t− tm† (m ∈M , t ∈ T )

and

mλ̂ †
M,U

: u 7→ u−m†u (m ∈M , u ∈ U) .

Because they are composites with an anti-isomorphism, ρ̂ †
M,T
and λ̂ †

M,U
are an antirepre-

sentation and representation respectively. Further, by (4.2), ifM≤ (G(S) , ◦) then

ρ̂ †
M,T
: M−→ Aut (T ,+) and λ̂ †

M,U
: M−→ Aut (U ,+) .

As a result of these four steps, we may, under the appropriate hypotheses, form the external
semidirect products

U oλ̂M,U M and T o
ρ̂
†
M,T
M ,

and the external reverse semidirect products

Mnρ̂M,T T and Mn
λ̂
†
M,U

U .

In the case thatM≤ (G(S), ◦), and † is quasi-inversion, then all of these are groups and, by
(1.2),

Mnρ̂M,T T
∼= T o

ρ̂
†
M,T
M

and

U oλ̂M,U M
∼= Mn

λ̂
†
M,U

U .

5. Circle Decompositions

In this section we find decompositions of circle monoids and groups using internal general,
semidirect and reverse semidirect products, and, in particular, look for conditions under
which the external constructions of the previous section can be realized up to isomorphism.
We begin with general conditions under which additive and circle decompositions coincide
and the circle factorization is unique.
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Lemma 5.1. Suppose (I ,+) ≤ (S ,+) , (H , ◦) ≤ (G(S) , ◦) and I ∩ 〈H〉+ = {0} . If I
absorbs multiplication on the right [ left ] by elements of H then

I +H = I ◦ H [H ◦ I ]

and circle factorizations are unique.

Proof. Suppose I absorbs multiplication on the right by elements of H . If x ∈ I and h ∈ H
then xĥ , xh ∈ I ,

x ◦ h = x+ h− xh = xĥ+ h ∈ I +H

and

x+ h = xh+ h− xhh = (xh) ◦ h ∈ I ◦ H .

This proves I +H = I ◦ H . If x1 , x2 ∈ I , h1 , h2 ∈ H and x1 ◦ h1 = x2 ◦ h2 then

h1 − h2 = x2 − x1 + x1h1 − x2h2 ∈ I ∩ 〈H〉+ = {0} ,

so h1 = h2 and x1 = x1 ◦ h1 ◦ h1
′ = x2 ◦ h1 ◦ h1

′ = x2 . This proves circle factorizations are
unique. The other half of the lemma is dual. 2

Theorem 5.2. Suppose that I is a subring of S, (H , ◦) ≤ (G(S) , ◦) , I ∩〈H〉+ = {0} and
I absorbs multiplication by elements of H on both the right and left. Then

I +H = I ◦ H = H ◦ I

and I +H is the internal semidirect product of (I , ◦) by (H , ◦) . Furthermore

I +H ∼= (I , ◦)oθ (H , ◦)

where θ is defined by

hθ : x 7→ ĥxh (x ∈ I , h ∈ H) .

Proof. Observe that I +H is a submonoid of (S , ◦) , by the formula

(x1 + h1) ◦ (x2 + h2) = (x1 ◦ x2) + (h1 ◦ h2)− x1h2 − h1x2(5.1)

and the fact that I absorbs multiplication by elements of H on both the right and the left,
and, by Lemma 5.1, that I + H = I ◦ H = H ◦ I and circle factorizations are unique. If
x ∈ I , h ∈ H then h′ ◦ x ◦ h = x− h′x− xh+ h′xh ∈ I so that I is closed under conjugation
by elements of H . It follows immediately that I + H is the internal semidirect product of
(I , ◦) by (H , ◦) . The last claim follows easily by observing, for x ∈ I , h ∈ H , that

h ◦ x = h+ x− hx = ĥx+ h = (ĥxh) ◦ h . 2
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Corollary 5.3. If I is a subring of S , (H , ◦) ≤ (G(S) , ◦) , I ∩ 〈H〉+ = {0} , I absorbs
multiplication by elements of H on the right [ left ] and H annihilates I by multiplication on
the left [ right ], then

I +H = I ◦ H = H ◦ I ,

I +H is the internal semidirect product of (I , ◦) by (H , ◦), and

I +H ∼= (I , ◦)oρ̂ ′
H,I
(H , ◦) [ (I , ◦)oλ̂H,I (H , ◦) ] .

Proof. This is immediate from Theorem 5.2, noting that for x ∈ I , h ∈ H ,

ĥxh =

{
xh if hx = 0

ĥx if xh = 0 .
2

Theorem 5.4. Suppose that I is a subring of S , (H ,+) ≤ (S,+), I ∩ H = {0}, (H, ◦) ≤
(G(S)
circ) and I and H absorb each other by multiplication on the right [ left ]. Then

I +H = I ◦ H [H ◦ I ]

and I +H is the internal general product of (I , ◦) with (H , ◦) [ (H , ◦) with (I , ◦) ]. Further-
more

I +H ∼= (I , ◦)~ (H , ◦) [ (H , ◦)~ (I , ◦) ]

where the mappings � and � are defined by, for x ∈ I, h ∈ H,

h� x = hx̂ , h� x = xhx̂ [x� h = x̂hx , x� h = x̂h ]

Proof. We prove the “right” half, the other being dual. Observe that I +H is a submonoid
of (S , ◦) (again by equation (5.1)) so, by Lemma 5.1, I +H = I ◦ H is the internal general
product of (I , ◦) with (H , ◦) . The last claim follows by observing that, for x ∈ I , h ∈ H ,

h ◦ x = x+ hx̂ = (xhx̂) ◦ (hx̂) . 2

Corollary 5.5. If I is a subring of S , (H ,+) ≤ (S ,+) , I ∩ H = {0} , (H , ◦) ≤
(G(S) , ◦) , H absorbs elements of I by multiplication on the left [ right ] and I annihilates H
by multiplication on the right [ left ], then

I +H = H ◦ I [ I ◦ H ] ,

I +H is the internal semidirect [ reverse semidirect ] product of (H , ◦) by (I , ◦) and

I +H ∼= (H , ◦)oλ̂
I,H
(I , ◦) [ (I , ◦)nρ̂

I,H
(H , ◦) ]

Proof. This is immediate from Theorem 5.4, noting that, for x ∈ I , h ∈ H ,

x =

{
x̂hx if (x̂h)x = 0

xhx̂ if x(hx̂) = 0 . 2

In the applications that now follow, all of the submonoids are subgroups, and the conclusions
of Corollaries 5.4 and 5.5 carry the same information (in accordance with (1.2)). In [8] the
authors consider monoids which are not groups (see Example 2.4 above) and Theorems 5.2
and 5.4 and their corollaries play markedly different roles.
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6. Matrices over a radical ring

Let S be a radical ring and n ≥ 1. Then S is an abelian group under addition and a
(not necessarily abelian) group under circle. (Even when both groups are abelian they need
not be isomorphic; for example (2Z8 ,+) is cyclic of order 4 , whilst (2Z8 , ◦) is isomorphic
to the Klein 4 group.) Then Mn(S) = J (Mn(S)) = G(Mn(S)) is a group under ◦ and has
many possible decompositions. In this section we give a decomposition involving rows (which
dualizes to columns) and then a contrasting decomposition involving both rows and columns
leading to a recursive formula. In both cases (Mn(S) , ◦) is built from (S ,+) and (S , ◦) using
direct, semidirect and general products. All of the anti-representations involved in the use of
semidirect products are described explicitly using the theory and notation of Section 5. The
� ,� mappings involved in forming general products, whilst not explicitly described here,
can be gleaned from results in Section 5.

Put M =Mn(S) and for i , j ∈ { 1 , . . . , n } ,

Xij = {α ∈M |αkl = 0 if k 6= i or l 6= j } ,

Ri = Xi1 + . . .+Xin ,

R̃i = Xi1 + . . .+Xi,i−1 +Xi,i+1 + . . .+Xin ,

Ci = X1i + . . .+Xni ,

C̃i = X1i + . . .+Xi−1,i +Xi+1,i + . . .+Xni ,

Ti = R1 + . . .+Ri ,

Mi = {α ∈M |αkl = 0 if k > i or l > i } .

It is straightforward to check that all of these are subrings and circle subgroups of M . We
develop our understanding of (M , ◦) through the following sequence of steps.

(1) If i 6= j then Xij is both an ideal and a normal subgroup of Ri, and Xij is a null ring (so
circle coincides with addition) which annihilates elements of Ri , and Xii in particular,
by multiplication on the left. Clearly then, for each i ,

R̃i = Xi1 ◦ . . . ◦Xi,i−1 ◦Xi,i+1 ◦ . . . ◦Xin

and, for j 6= i ,

Xij ∩ (
∑

k 6=j
k 6=i

Xik) = {0} ,

yielding an internal direct product decomposition of R̃i , whence

(R̃i , ◦)
∼= (S ,+)n−1 .(6.1)

(2) For each i , (Xii , ◦) ∼= (S , ◦) and Xii is a left ideal of Ri . Further, R̃i absorbs multipli-
cation by elements of Xii on the left and is annihilated by Xii by multiplication on the
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right. Also R̃i ∩Xii = {0} . Hence, by Corollary 5.3 or 5.5 and isomorphism (6.1)

Ri = R̃i +Xii = R̃i ◦Xii

∼= R̃i oλ̂
X
ii
,R̃
i

Xii

∼= (S ,+)n−1 o (S , ◦) .(6.2)

Observe also that, for j 6= i , Xij is normalized by Ri, and Xii in particular, so the factors
may be placed in any order, yielding, for example,

Ri = R̃i ◦Xii = Xi1 ◦ . . . ◦Xin(6.3)

(3) Dual formulae and the use of equation (1.2) yield, for each i ,

Ci = C̃i +Xii = C̃i ◦Xii = C1i ◦ . . . ◦ Cni
∼= C̃i oρ̂ ′

X
ii
,C̃
i

Xii

∼= (S ,+)n−1 o (S , ◦) .

(4) For each i < n , Ti and Ri+1 are right ideals ofM , Ti+1 = Ti+Ri+1 and Ti∩Ri+1 = {0} ,
so that, by Theorem 5.4, Ti+1 is the general product

Ti+1 = Ti ◦Ri+1
∼= (Ti , ◦)~ (Ri+1 , ◦) .(6.4)

(and the general product mappings, though not explicitly described here, may also be
deduced from Theorem 5.4). For each i , we have, by a simple induction,

Ti = R1 ◦ . . . ◦Ri
∼= (. . . (R1 ~R2)~ . . . )~Ri .

Steps (1) to (4) culminate, by equation (6.3) and its dual, in the following result.

Theorem 6.1. If S is a radical ring and n ≥ 1 then

Mn(S) = R1 ◦ . . . ◦Rn = C1 ◦ . . . ◦ Cn
= (X11 ◦ . . . ◦X1n) ◦ . . . ◦ (Xn1 ◦ . . . ◦Xnn)

= (X11 ◦ . . . ◦Xn1) ◦ . . . ◦ (X1n ◦ . . . ◦Xnn)
∼= (. . . (R1 ~R2)~ . . . )~Rn

∼= (. . . (C1 ~ C2)~ . . . )~ Cn .

We describe an alternative recursive decomposition of M = Mn , which uses a mixture
of general and semidirect products. By equation (6.4) we have the internal general product

M = Tn = Tn−1 ◦Rn .(6.5)
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But Mn−1 and C̃n are left ideals of Tn−1 , Mn−1 annihilates C̃n by multiplication on the

right, Tn−1 = Mn−1 + C̃n and Mn−1 ∩ C̃n = {0} , so, by Corollary 5.3 or 5.5 and the dual of
isomorphism (6.1),

Tn−1 = C̃n ◦Mn−1

∼= (C̃n , ◦)oλ̂
M
n−1,C̃n

(Mn−1 , ◦)

∼= (S ,+)n−1 o (Mn−1 , ◦) .

Thus by equation (6.5) and isomorphism (6.2) we get the following recursive formula.

Theorem 6.2. If S is a radical ring and n ≥ 1 then

(Mn(S) , ◦) ∼=
(
(S ,+)n−1 o (Mn−1(S) , ◦)

)
~
(
(S ,+)n−1 o (S , ◦)

)
.

7. A group presentation

Let S be any radical ring and n any positive integer. In this section we first find a presentation
for (Mn(S) , ◦ ) in terms of the addition and circle multiplication tables of S .We then modify
it to yield a presentation in terms of presentations and sets of normal forms for the groups
(S ,+) and (S , ◦ ) . In Section 8 we illustrate how this result can be used to find explicit,
concise presentations in important special cases.

Form the alphabet

ΣS = {xij |x ∈ S , i , j ∈ { 1 , . . . n } } .

Let RS be the collection of relations of the following types:

(1) (∀i , j )(∀x , y ∈ S )

xijyij =

{
(x+ y )ij if j 6= i,

(x ◦ y )ij if j = i .

(2) (∀i 6= l , j 6= k )(∀x , y ∈ S ) [xij , ykl ] = 1 .

(3) (∀i 6= j 6= k 6= i )(∀x , y ∈ S )

[xij , yjk ] = (−xy )ik .

(4) (∀i 6= j )(∀x , y ∈ S )

[xii , yij ] = (x
′y )ij .

(5) (∀i 6= j )(∀x , y ∈ S )

[xij , yjj ] = (−xy )ij .
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(6) (∀i > j )(∀x , y ∈ S )

xijyji =
(
(−yx )′jj

)
yjixij(−xy )ii .

The reader might observe that (3) and (5) could be amalgamated. However it is convenient
to keep them separate for the purposes of the proofs below.

Theorem 7.1. (Mn(S) , ◦ ) ∼= 〈ΣS |RS 〉 .

Proof. Put G = 〈ΣS |RS 〉 . We identify elements of G with words over ΣS without causing
confusion. Observe that

ΣS =
⋃

i ,j

Xij

where, for each i , j ,

Xij = {xij |x ∈ S } ,

so that, by (1) of RS , Xij = 〈Xij 〉 (where the angular brackets may be interpreted both as
subgroup and submonoid generation). By rearranging the commutators it is easy to see that
the relations in RS imply that the hypotheses of Lemma 3.5 are satisfied with G in place of
M , so

G =
n∏

i=1

n∏

j=1

Xij .(7.1)

For each x ∈ S and i , j , let xij
† denote the n × n matrix consisting of zeros everywhere

except for x in the ( i , j )th place. It is routine to check that all of the relations of RS

become equations in Mn(S) when each xij is replaced by xij
† . As an example of the nature

of the calculations involved, the following suffices to verify (6):

j i

j
i

(
−( yx )′ 0
0 0

)
◦

(
0 y
0 0

)
◦

(
0 0
x 0

)
◦

(
0 0
0 −xy

)

=

(
(−yx )′ y − ( yx )′y
0 0

)
◦

(
0 0
x −xy

)

=

(
(−yx )′ − ( y − ( yx )′y )x y − ( yx )′y + ( y − ( yx )′y )xy

x −xy

)

=

(
0 y
x −xy

)
=

(
0 0
x 0

)
◦

(
0 y
0 0

)

Thus the mapping xij 7→ xij
† (x ∈ S , i , j ∈ { 1 , . . . , n } ) induces a well-defined homomor-

phism ϕ : G −→Mn(S) . Now put, for i , j ,

Xij
† = {xij

† |x ∈ S }
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and observe, by Theorem 6.1, that

Mn(S ) = (X11
† ◦ . . . ◦X1n

† ) ◦ . . . ◦ (Xn1
† ◦ . . . ◦Xnn

† ) = 〈
⋃

i ,j

Xij
† 〉◦ ,

which proves ϕ is onto. To complete the proof it suffices to show ϕ is one-one, and for that
it is sufficient, by equation (7.1), to check the induced map, also denoted by ϕ , on the set of
words

W =
n∏

i=1

n∏

j=1

Xij

is one-one.

Let u , v ∈ W and suppose uϕ = vϕ . There are elements x( i , j ) , y( i , j ) ∈ S for i , j ∈
{ 1 , . . . , n } such that

u =
n∏

i=1

n∏

j=1

(x( i, j ) )ij and v =
n∏

i=1

n∏

j=1

( y( i , j ) )ij .

For each k ∈ { 1 , . . . , n } , put

rk =
n∏

j=1

(x( k , j ) )kj and sk =
k∏

j=1

( y( k , j ) )kj ,

so u = r1 . . . rn and v = s1 . . . sn . We will prove

(∀k = 1 , . . . , n ) rkϕ = skϕ .(7.2)

Suppose that rlϕ = slϕ for all l > k (which is vacuously true if k = n ). Then, since Mn(S)
is radical,

( r1 . . . rk )ϕ = ( r1 . . . rk )ϕ ◦ ( rk+1 . . . rn )ϕ ◦ ( ( rk+1 . . . rn )ϕ )
′

= ( r1 . . . rn )ϕ ◦ ( rnϕ )
′ ◦ . . . ◦ ( rk+1ϕ )

′

= ( s1 . . . sn )ϕ ◦ ( snϕ )
′ ◦ . . . ◦ ( sk+1ϕ )

′

= ( s1 . . . sk )ϕ .

But, by a simple matrix calculation, we see that the kth rows of ( r1 . . . rk )ϕ and ( s1 . . . sk )ϕ
are rkϕ and skϕ respectively, whence rkϕ = skϕ , and equation (7.2) follows by induction.
By another simple matrix calculation, rkϕ and skϕ are matrices with zeros everywhere

except for the kth rows which are
(
x( k , 1 ) . . . x( k , k ) ẑ x( k , k + 1 ) . . . ẑ x( k , n )

)

and
(
y( k , 1 ) . . . y( k , k ) ŵ y( k , k + 1 ) . . . ŵ y( k , n )

)
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respectively, where z = x( k , k ) and w = y( k , k ) . But rkϕ = skϕ , so, for j = 1 , . . . , k ,
x( k , j ) = y( k , j ) , and in particular z = w . Hence, also, for j = k + 1 , . . . , n ,

x( k , j ) = z ẑ x( k , j ) = z ẑ y( k , j ) = y( k , j ) .

This proves u = v , proving ϕ is one-one, completing the proof of Theorem 7.1. 2

The reader might note that if S is finite then it is not necessary to argue that φ is one-
one on W , since this follows immediately from the fact that φ is onto and, by Lemma 3.5,
|G| ≤ Πni=1Π

n
j=1 |Xij|.

The presentation of Theorem 7.1 uses the entire addition and circle multiplication tables
of S , leading to superfluity in practice. For example, the generators 0ij may be deleted
and replaced by 1 throughout, for all i , j . In Theorem 7.2 below we give a presentation for
(Mn(S) , ◦ ) in terms of presentations for (S ,+) and (S , ◦ ) . Suppose

(S ,+) ∼= 〈Γ(+) |R(+) 〉 , (S , ◦ ) ∼= 〈Γ( ◦) |R(◦) 〉

for some alphabet Γ(+) , Γ(◦) and collections of relations R(+) , R(◦) over Γ(+) , Γ(◦) respec-
tively. We may suppose no generator is redundant, so that there are collections W (+) , W (◦)

of words, which we may refer to as normal forms, over Γ(+) , Γ(◦) respectively such that

Γ(+) ⊆ W (+) , Γ(◦) ⊆ W (◦) ,

and bijections

ϕ : W (+) −→ S , ψ : W (◦) −→ S

whose inverses induce the above isomorphisms. We now create a new alphabet

Γ = {σij | i , j ∈ { 1 , . . . , n } , σ ∈ Γ(+) if i 6= j , and σ ∈ Γ(◦) if i = j } .

For any i , j ∈ { 1 , . . . , n } , put

1ij = 1

where 1 here denotes the empty word, and if w = σ(1) . . . σ(m) is any non-empty word where
σ(1) , . . . , σ(m) are letters, put

wij = σ
(1)
ij . . . σ

(m)
ij ,

so that, if w is over Γ(+) and i 6= j , or over Γ(◦) and i = j , then wij is over Γ . For any i 6= j,

let R(+)ij denote the collection of relations of the form

vij = wij

where v = w is a relation of R(+) . For any i, let R(◦)i denote the collection of relations of the
form

vii = wii

where v = w is a relation of R(◦) . Now let R denote the collection of relations of the following
types:
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(1)
⋃
i6=j

R(+)ij ∪
⋃
i

R(◦)i .

(2) (∀i 6= l , j 6= k )

(

∀a ∈

{
Γ(+) if i 6= j

Γ(◦) if i = j

)(

∀b ∈

{
Γ(+) if k 6= l

Γ(◦) if k = l

)

[ aij , bkl ] = 1 .

(3) (∀i 6= j 6= k 6= i )(∀u , v ∈ W (+) )

[uij , vjk ] =
(
(−(uϕ )( vϕ ) )ϕ−1

)
ik
.

(4) (∀i 6= j )(∀u ∈ W (◦) , v ∈ W (+) )

[uii , vij ] =
(
( (uψ )′( vϕ ) )ϕ−1

)
ij
.

(5) (∀i 6= j )(∀u ∈ W (+ ) , v ∈ W (◦) )

[uij , vjj ] =
(
(−(uϕ )( vψ ) )ϕ−1

)
ij
.

(6) (∀i > j )(∀u , v ∈ W (+) )

uijvji =
(
(−( vϕ )(uϕ ) )′ψ−1

)
jj
vjiuij

(
(−(uϕ )( vϕ ) )ψ−1

)
ii
.

Theorem 7.2. (Mn(S) , ◦ ) ∼= 〈Γ |R 〉 .

Proof. Put H = 〈Γ |R 〉 . By Theorem 7.1 it is sufficient to prove H ∼= G = 〈ΣS |RS 〉 .We
do this by applying Tietze transformations to G .

Step 1: Add to ΣS the alphabet Γ , which we may assume to be disjoint from ΣS , and to RS

relations of the form

σij = sij

where σ ∈

{
Γ(+) if i 6= j

Γ(◦) if i = j
and s =

{
σϕ if i 6= j

σψ if i = j .

Step 2: Add relations

xij = wij

where x ∈ S and w =

{
xϕ−1 if i 6= j

xψ−1 if i = j .
This is justified for i 6= j ( i = j being

similar ) as follows:
Suppose x ∈ S and xϕ−1 = w = σ(1) . . . σ(t) for some σ(1) , . . . , σ(t) ∈ Γ(+) . Then, in
S ,

x = σ(1)ϕ+ . . .+ σ(t)ϕ

so, by type (1) relations in G , followed by Step 1 relations,

xij = (σ
(1)ϕ )ij . . . (σ

(t)ϕ )ij = σ(1)ij . . . σ
(t)
ij = wij .



80 C. Coleman, D. Easdown: Decomposition of Rings under the Circle Operation

Step 3: Add all relations in

⋃

i6=j

R(+)ij ∪
⋃

i

R(◦)i .

This is justified for R(+) (R(◦) is similar ) as follows:
Suppose v = w is a relation of R(+) . Write v = σ(1) . . . σ(t) ,
w = τ (1) . . . τ (u) where σ(1) , . . . , σ(t) , τ (1) , . . . , τ (u) ∈ Γ(+) .
Then, in S ,

σ(1)ϕ+ . . .+ σ(t)ϕ = τ (1)ϕ+ . . .+ τ (u)ϕ ,

so, in G , using type (1) relations,

(σ(1)ϕ )ij . . . (σ
(t)ϕ )ij = (σ

(1)ϕ+ . . .+ σ(t )ϕ )ij

= ( τ (1)ϕ+ . . .+ τ (u)ϕ )ij

= ( τ (1)ϕ )ij . . . ( τ
(u)ϕ )ij ,

so, by Step 1 relations, we deduce that

vij = σ
(1)
ij . . . σ

(t)
ij = (σ(1)ϕ)ij . . . (σ

(t)ϕ)ij

= (τ (1)ϕ)ij . . . (τ
(t)ϕ)ij = τ

(1)
ij . . . τ

(u)
ij = wij .

Step 4: Remove all of G’s type (1) relations. This is justified for i 6= j ( i = j being similar )
as follows:
Suppose x , y ∈ S . Then x+ y ∈ S and, in 〈Γ(+) |R+ 〉 ,

(xϕ−1)( yϕ−1 ) = ( x+ y )ϕ−1 ,

so, as a consequence of relations in R(+)ij , we have

(xϕ−1 )ij( yϕ
−1 )ij = ((x+ y )ϕ

−1)ij ,

from which we derive, using relations from Step 2, the relation

xijyij = (x+ y )ij .

Step 5: Remove all letters from ΣS , replacing any letter sij ( s ∈ S , i , j ∈ { 1 , . . . , n } )
which appears in any relation by the word ( sϕ−1 )ij if i 6= j , and ( sψ−1 )ij if i = j .
The Step 1, 2 relations now become equality of the same letter, word respectively,
so are redundant and may be deleted.

The effect of Steps 1 to 5 is to replace ΣS by Γ , type (1) relations of RS by type (1) relations
of R and each relation of types (2) to (6) of RS by a relation in which any letter sij has been
replaced by the word ( sϕ−1 )ij or ( sψ

−1 )ij if i 6= j or i = j respectively.
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Step 6: Consider i 6= l , j 6= k . The transformed type (2) relations have the form

[ vij , wkl ] = 1

where v ∈

{
W (+) if i 6= j

W (◦) if i = j
, w ∈

{
W (+) if k 6= l

W (◦) if k = l ,
.

Delete all such relations where v 6∈

{
Γ(+) if i 6= j

Γ(◦) if i = j

or w 6∈

{
Γ(+) if k 6= l

Γ(◦) if k = l
, since these are implied by the remaining relations of the

form [σij , τkl ] = 1 where σ ∈

{
Γ(+) if i 6= j

Γ(◦) if i = j
and τ ∈

{
Γ(+) if k 6= l

Γ(◦) if k = l .

The relations that remain are precisely those catalogued byR , and Theorem 7.2 is proved. 2

8. Examples

We apply the results of the previous section section to determine (Mn(S ) , ◦ ) when S = pZpt ,
the radical of the ring Zpt , where p is a prime and t ≥ 3 ( the cases t = 1 , 2 yielding trivial,
elementary abelian groups respectively ). The cases p odd and even are treated separately
because ( pZpt , ◦ ) is cyclic, in fact isomorphic to ( pZpt ,+) , when p is odd, but noncyclic
when p = 2 .

Theorem 8.1. Let p be odd. Then

(Mn( pZpt ) , ◦ ) ∼= 〈Γ |R 〉

over the alphabet

Γ = { aij | i , j ∈ { 1 , . . . , n } }

and where R comprises relations of the following types

( 1 ) (∀i , j ) a pt−1

ij = 1 ;

( 2 ) (∀i 6= l , j 6= k ) [ aij , akl ] = 1 ;

( 3 ) (∀i 6= j 6= k 6= i ) [ aij , ajk ] = a
−p
ik ;

( 4 ) (∀i 6= j ) [ aii , aij ] = a
p′

ij ;

( 5 ) (∀i 6= j ) [ aij , ajj ] = a
−p
ij ;

( 6 ) (∀i > j )(∀m = 0 , . . . , pt−3 − 1 )

a
1−(−mp2 )′

ij aji = a
−α
jj ajia

1−(−mp2 )′

ij a α
ii

where α is the least positive integer such that

( 1− p )α = 1 + ( 1− (−mp2 )′ )p2

in Zpt ( which exists because ( pZpt , ◦ ) is cyclic generated by p ).



82 C. Coleman, D. Easdown: Decomposition of Rings under the Circle Operation

Proof. Observe that, for S = pZpt ,

(S ,+) = 〈 p 〉+ ∼= 〈 a | ap
t−1
= 1 〉 ∼= 〈 p 〉◦ = (S , ◦ ) .

In the framework leading up to Theorem 7.2 we take

W (+) = W (◦) = { am |m ∈ { 0 , . . . , pt−1 − 1 } }

and choose bijections

ϕ : W (+) −→ (S ,+) , am 7→ mp

and

ψ : W (◦) −→ (S , ◦ ) , am 7→ p◦m .

Then relations of type ( 1 ), ( 2 ) are identical in Theorems 7.2 and 8.1.
Consider relations of type ( 3 ) in Theorem 7.2. Suppose i 6= j 6= k 6= i . The relations

have the form

[ a λ
ij , a

µ
jk ] = a

−λµp
ik

for λ , µ ∈ { 0 , . . . , pt−1 } . The cases λ = 0 or µ = 0 are redundant, and the cases λ > 0 and
µ > 0 follow from the relation [ aij , ajk ] = a −pik , by Lemma 3.1, so may be deleted, leaving
type ( 3 ) relations of Theorem 8.1.
Suppose i 6= j . Relations of type ( 4 ) of Theorem 7.2 have the form

[ a λ
ii , a

µ
ij ] = ( ( ( p

◦λ )′(µp ) )ϕ−1 )ij = a
( 1−( 1−p′ )λ )µ
ij

and of type ( 5 ) the form

[ a λ
ij , a

µ
jj ] = ( (−(λp )( p

◦µ ) )ϕ−1 )ij = a
−( 1−( 1−p )µ )λ
ij .

The cases λ = 0 or µ = 0 are redundant, and the cases λ > 0 and µ > 0 follow from the
relations

[ aii , aij ] = a p′

ij and [ aij , ajj ] = a−pij ,

by Lemma 3.2, noting that the latter is equivalent to

[ ajj , aij ] = [ aij , ajj ]
−1 = a p

ij ,

whilst the type ( 5 ) relation is equivalent to

[ a µ
jj , a

λ
ij ] = a

( 1−( 1−p )µ )λ
ij .

Deleting all but the cases λ = µ = 1 yields type ( 4 ) and ( 5 ) relations of Theorem 8.1.
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Suppose i > j . Relations of type ( 6 ) of Theorem 7.2 have the form

a λ
ij a

µ
ji = ( (−(µp )(λp ) )

′ψ−1 )jja
µ
ji a

λ
ij ( (−(λp )(µp ) )ψ

−1 )ii

= a−νjj a
µ
ji a

λ
ij a

ν
ii

where ν is the least nonnegative integer such that

( 1− p )ν = 1 + λµp2 ,

for λ , µ ≥ 0 . We delete all such relations except for the cases µ = 1, λ = 1 − (−mp2 )′ for
m = 0 , . . . , pt−3 − 1 , since those to be deleted are either redundant (when λ = 0 or µ = 0 ),
or follow from the ones to be retained and the relations [ ajj , aii ] = 1 (type 2) and

a
ajj
ij = a 1−pij , a

aii
ij = a

1−p′

ij , a
ajj
ji = a

1−p′

ji , a
aii
ji = a

1−p
ji

( the result of rearranging type ( 4 ) and ( 5 ) relations of Theorem 8.1 ) by Lemma 3.4. This
completes the proof of Theorem 8.1. 2

This presentation simplifies further when t = 3 .

Theorem 8.2. Let p be odd. Then

(Mn( pZp3 ) , ◦ ) ∼= 〈Γ |R 〉
over the alphabet

Γ = { aij | i , j ∈ { 1 , . . . , n } }

where R consists of relations

( 1 ) (∀i , j ) a p2

ij = 1 ;

( 2 ) (∀i 6= l , j 6= k ) [ aij , akl ] = 1 ;

( 3 ) (∀i , j , k , k 6= i ) [ aij , ajk ] = a
−p
ik ;

( 4 ) (∀i > j ) [ aij , aji ] = a
p
jja
−p
ii .

Proof. Relations ( 1 ), ( 2 ) are the same as those of Theorem 8.1. Note that in Zp3 ,
p′ = −p− p2 , so that relations ( 4 ) of Theorem 8.1 become

[ aii , aij ] = a
−p−p2

ij = a−pij ,

by ( 1 ). This can be amalgamated with ( 3 ) and ( 5 ) of Theorem 8.1 to yield ( 3 ) of Theorem
8.2. There is only one relation in ( 6 ) of Theorem 8.1 when t = 3 :

aijaji = a
−( p2−p )
jj ajiaiia

p2−p
ii

since ( 1− p )p
2−p = 1 + p2 in Zp3 , which becomes, by ( 1 ),

aijaji = a
p
jjajiaiia

−p
ii .

Tracing through the isomorphism with Mn(Zp3 ) ( induced by the map akl 7→ a †kl in the
notation of Theorem 7.1 ) we see that a p

jj and a
−p
ii are central ( since they correspond with

matrices with one nonzero entry equal to p2 and −p2 respectively ), so the above relation, in
conjunction with commutativity relations, is equivalent to

[ aij , aji ] = a
p
jja
−p
ii . 2
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Example 8.3. Further simplification takes place when n = 2 in Theorem 8.2: one relation
suffices in each of ( 2 ) and ( 4 ), and relations of type ( 3 ) may be rearranged to give four
conjugation relations, yielding the following presentation for (M2( pZp3 ) , ◦ ) , for any odd
prime p :

〈 a11 , a12 , a21 , a22 | a
p2

ij = 1 (∀i , j ) , [ a11 , a22 ] = 1 , [ a21 , a12 ] = a
p
11a
−p
22 ,

a
aii
ij = a

1+p
ij , a

ajj
ij = a 1−pij (∀i 6= j ) 〉

which the reader will recognize as being the presentation of the general product G ~ G of
Example 2.2 , after renaming generators.

Finally we consider the case when p = 2 .

Theorem 8.4.

(Mn( 2Z2t ) , ◦ ) ∼= 〈Γ |R 〉

over the alphabet

Γ = { aij | i , j ∈ { 1 , . . . , n } , i 6= j } ∪ { bi , ci | i ∈ { 1 , . . . , n } }

where R comprises relations

(∀i 6= j ) a 2
t−1

ij = 1 ;( 1 )

(∀i ) b 2
t−2

i = c 2i = 1 , [ bi , ci ] = 1 ;( 1 )′

(∀l 6= i 6= j 6= k 6= l ) [ aij , akl ] = 1 ;( 2 )

(∀i 6= j ) [ bi , bj ] = [ bi , cj ] = [ ci , cj ] = 1 ;( 2 )′

(∀k 6= i 6= l 6= k ) [ bi , akl ] = [ ci , akl ] = 1 ;( 2 )′′

(∀i 6= j 6= k 6= i ) [ aij , ajk ] = a
−2
ik ;( 3 )

(∀i 6= j ) [ bi , aij ] = a
4′

ij , [ ci , aij ] = a
2
ij ;( 4 )

(∀i 6= j ) [ aij , bj ] = a
−4
ij , [ aij , cj ] = a

−2
ij ;( 5 )

(∀i > j )(∀m = 0 , . . . , 2t−3 − 1 )( 6 )

a
1−(−4m )′

ij aji = b
−α
j ajia

1−(−4m )′

ij b α
i

where α is the least positive integer such that

(−3 )α = 1 + 4( 1− (−4m )′ )

in Z2t ( which exists because all multiples of 4 comprise the

cyclic subgroup of ( 2Z2t , ◦ ) generated by 4 ).
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Proof. Observe that, for S = 2Z2t ,

(S ,+) = 〈 2 〉+ ∼= 〈 a | a2
t−1
= 1 〉 ;

(S , ◦ ) = 〈 2 , 4 〉◦ ∼= 〈 b , c | b 2
t−2
= c 2 = 1 , [ b , c ] = 1 〉 .

In the framework leading up to Theorem 7.2 we take

W (+ ) = { aλ |λ ∈ { 0 , . . . , 2t−1 − 1 } } ,

W ( ◦ ) = { bλcµ |λ ∈ { 0 , . . . , 2t−2 − 1 } , µ ∈ { 0 , 1 } } ,

ϕ : W (+ ) −→ S , aλ 7→ 2λ ,

ψ : W ( ◦ ) −→ S , bλcµ 7→ 2◦µ ◦ 4◦λ .

We apply Theorem 7.2 and also, to decongest notation slightly, identify bii , cii with new
letters bi , ci respectively. Then relations of types ( 1 ), ( 1 )

′, ( 2 ), ( 2 )′ and ( 2 )′′ here are
identical with relations of types ( 1 ) and ( 2 ) which feature in Theorem 7.2. The reduction
of relations of types ( 3 ) and ( 6 ) is identical to that in the proof of Theorem 8.1, relying on
Lemma 3.1 and Lemma 3.4 (with q = 4) respectively.

Suppose i 6= j. Relations of type (4) of Theorem 7.2 have the form

[bλi , a
µ
ij] = (((4◦λ)′(2µ))φ−1)ij = a

(1−(1−4′)λ)µ
ij

or

[bλi ci, a
µ
ij] = (((2 ◦ 4◦λ)′(2µ))φ−1)ij = a

(1+(1−4′)λ)µ
ij ,

and of type (5) the form

[aλij, b
µ
j ] = ((−(2λ)(4◦µ)φ−1)ij = a

−(1−(−3)µ)λ
ij

or

[aλij, b
µ
j cj] = ((−(2λ)(2 ◦ 4◦µ)φ−1)ij = a

−(1+(−3)µ)λ
ij .

The nonredundant cases follow from the relations

[bi, aij] = a4
′

ij , [ci, aij] = a2ij , [bi, ci] = 1 ,

[aij, bj] = a−4ij , [aij, cj] = a−2ij , [bj, cj] = 1 ,

by Lemmas 3.2 and 3.3. Deleting all but the cases λ = µ = 1 yields type (4) and (5) relations
of Theorem 8.4, and the proof is complete. 2
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Again, the presentation simplifies when t = 3 .

Theorem 8.5.

(Mn( 2Z8 ) , ◦ ) ∼= 〈Γ |R 〉

over the alphabet

Γ = { aij | i , j ∈ { 1 , . . . , n } , i 6= j } ∪ { bi , ci | i ∈ { 1 , . . . , n } }

where R comprises relations

( 1 ) (∀i , j 6= i ) a 4ij = b
2
i = c

2
i = 1 ;

( 2 ) (∀l 6= i 6= j 6= k 6= l ) [ aij , akl ] = 1 ;

( 3 ) (∀i , j 6= k 6= l 6= j ) [ bi , cj ] = [ bk , bl ] = [ bi , akl ]
= [ ck , cl ] = [ cj , akl ] = 1 ;

( 4 ) (∀i 6= j 6= k 6= i ) [ aij , ajk ] = [ ci , aik ] = [ aik , ck ] = a
2
ik ;

( 5 ) (∀i > j ) [ aij , aji ] = bjbi .

Proof. This follows by making economies to relations appearing in Theorem 8.4, noting that
4′ = 4 in Z8 , exploiting relation ( 1 ), and rearranging ( 6 ) into a commutator relation, noting
that bi commutes with aij and aji for i 6= j by ( 4 ) and ( 5 ) . 2

Example 8.6. Yet further simplification takes place when n = 2 in Theorem 8.5, yielding
the following presentation for (M2( 2Z8 ) , ◦ ) :

〈 a12 , a21 , b1 , b2 , c1 , c2 | a
4
12 = a

4
21 = b

2
i = c

2
i = 1 , a

ci
12 = a

−1
12 , a

ci
21 = a

−1
21 ,

[ bi , x ] = [ c1 , c2 ] = 1 , [ a12 , a21 ] = b1b2 (∀i )(∀x 6= bi ) 〉

which the reader will recognize as the presentation of the general product H~H of Example
2.3, after renaming generators.
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