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Abstract. We associate a 3-manifold to a multiple valued semi-conformal map-
ping on the 3-sphere and study the branching set of the corresponding covering
projection. Some remarkable geometric structures occur.

1. Introduction

Let P (z, x) be a polynomial in z ∈ CP 1 whose coefficients are smooth complex-valued func-
tions of x ∈Mm, where Mm is a smooth manifold of dimension m:

P (z, x) ≡ an(x)z
n + an−1(x)z

n−1 + · · · a1(x)z + a0(x) . (1)

Then we define the discriminant variety associated to P , to be the set K of points x ∈Mm,
for which the (algebraic) equation

P (z, x) = 0 , (2)

has a multiple root.
Recall that for two polynomials:

f = akz
k + ak−1z

k−1 + · · ·+ a0
g = blz

l + bl−1z
l−1 + · · ·+ b0 ,
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the resultant is the determinant

Rf,g =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ak ak−1 · · · · · · a0
ak ak−1 · · · · · · a0

. . .

ak ak−1 · · · · · · a0
bl bl−1 · · · · · · b0

bl bl−1 · · · · · · b0
. . .

bl bl−1 · · · · · · b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

As is well-known in algebra, f and g have a common zero if and only if Rf,g = 0, so that the
discriminant variety consists of those points x ∈ Mm for which the resultant RP,∂P/∂z (i.e.
the discriminant) vanishes. In general it can be extremely hard to calculate the zero set of
RP,∂P/∂z . One of our objectives is to find other practical ways of doing this. We are able to
achieve this goal for certain classes of polynomials P .
The study of discriminant varieties is motivated by the following covering construction,

well-known in Riemann surface theory and important in 3-manifold theory (see the Intro-
duction of [7] for an account of related constructions).
Set M̃ = {(z, x) ∈ CP 1 ×Mm : P (z, x) = 0}. Then provided dP has maximal rank 2

along P (z, x) = 0, M̃ is a smooth submanifold of CP 1 ×Mm of dimension m. There are
natural projections π : M̃ → M and ϕ : M̃ → CP 1 given by π(z, x) = x, ϕ(z, x) = z,
respectively. We then view π as a covering map, branched over the discriminant variety.
Thus K is the image of the set C of critical points of π. We refer to the image of C under ϕ
as the set of singular values and denote this set by Σ.
A particular case of this construction was considered by Gudmundsson and Wood [9]

(see also [1]), with M3 equal to either R3 or S3 endowed with their Euclidean metrics and
with any local solution z = z(x) to (2) a harmonic morphism (see [5] for definitions) – in
particular this is equivalent to z being semi-conformal (see below) with geodesic fibres. One
consequence of our study is to show how it is possible to determine explicitly the discriminant
variety in this case. A class of examples, which we refer to as (p, q)-examples, displays some
fascinating properties. Here, p, q are positive co-prime integers satisfying 1 < p < q < 2p.
One component of the discriminant variety lies on a sphere whose radius is bounded above
and below independently of p and q. By suitably choosing p and q, this component can be
made to make an arbitrary number of rotations about an axis and forms a geometric object
resembling a shell in space.
We shall take a more general viewpoint than that described above which is tied up

intimately with the conformal geometry of S3. We will suppose

1. M3 = S3 endowed with any smooth metric conformal to the standard Euclidean one;
2. any smooth local solution to 2 is semi-conformal (see below);
3. the regular fibres of such a solution are arcs of circles.

Let us explain these assumptions. A fundamental theorem of topology asserts that every
closed connected orientable 3-manifold can be viewed as a cover of S3, branched over some link
(see [12] for an account), hence our choice of S3. We will describe examples of discriminant
varieties consisting of multi-component links with non-trivial topological structure.
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By analogy with Riemann surface theory, we expect the conformal geometry of S3 to
play an important role. A smooth local solution z : U → C, U ⊂ S3 to (2) is said to be
semi-conformal if and only if

∇z · ∇z = 0 , (3)

where the gradient is taken with respect to the x-variable and is defined in terms of any
choice of metric conformal to the standard one on S3. Note that (3) is independent of this
choice. There are various equivalent definitions of semi-conformal (cf. [5]), one is as follows.
Define the horizontal space Hx ⊂ TxS

3 at x ∈ S3, to be the subspace Hx = (ker dϕx)⊥. Then
z is semi-conformal if and only if the restriction

dz|Hx : Hx → Tz(x)C

is surjective and conformal at each point x ∈ U where dz(x) 6= 0. Differentiating (2) implicitly
with respect to x yields

∂P

∂z
∇z +∇xP = 0

so that, under the assumption ∂P/∂z 6= 0, (3) is satisfied if and only if

∇xP · ∇xP = 0 , (4)

at every point along P (z, x) = 0.
Finally, the space of circles in conformal S3 has a particularly nice description in terms of

holomorphic geometry which we will exploit. This classical representation is due to Laguerre
[11]. A comprehensive account is found in the treatise of Coolidge ([6], Theorem 34). We
give a modern treatment in the next section.

2. The space of circles in S3

The complex quadric hypersurface

H = {[w0, . . . , w4] ∈ CP
4 : w20 + w

2
1 + w

2
2 + w

2
3 − w

2
4 = 0} ⊂ CP

4

can be identified with the space of oriented circles in S3, compactified to include points, as
follows [2]. Given [w0, . . . , w4] ∈ H, define the oriented 2-plane P 2 in R4 (or 3-plane if all
the wi are real) by the equation

w0y0 + w1y1 + w2y2 + w3y3 + w4 = 0 (y = (y0, . . . , y3) ∈ R
4). (5)

(The orientation is determined by that on the normal space to P 2 in R4, which in turn is
determined by Rew and Imw). Then the intersection with the sphere S3 = {y ∈ R4 :
|y| = 1} gives either a point or an oriented circle. If we identify S3 \ {(1, 0, 0, 0)} with R3

via stereographic projection: (x1, x2, x3) = (y1, y2, y3)/(1 − y0), then its equation is given
explicitly by

(w4 + w0)|x|
2 + 2w2x1 + 2w2x2 + 2w3x3 + w4 − w0 = 0 , (6)

or, after inversion x̂ = x/|x|2, by

(w4 + w0) + 2w2x̂1 + 2w2x̂2 + 2w3x̂3 + (w4 − w0)|x̂|
2 = 0 . (7)
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There is a natural antiholomorphic involution or real structure σ on H, defined by
σ([w0, . . . , w4]) = [w0, . . . , w4]. The set of fixed points (wi real) corresponds to circles of
zero radius, i.e. to points of S3. Indeed, (5) is now a 3-plane, tangent to S3 at the point
y = (w0/w4, w1/w4, w2/w4, w3/w4). Otherwise, σ has the effect of reversing the orientation
of the circle. Finally, w0+w4 = 0 if and only if the corresponding circle in S

3 passes through
the point (1, 0, 0, 0). Such circles can be identified with the space of lines in R3, compactified
to include the point ∞ (given by [−1, 0, 0, 0, 1] ∈ H). Indeed the hyperplane w0 + w4 = 0 is
tangent to H at [−1, 0, 0, 0, 1]. Its intersection L with H is a cone on the point [−1, 0, 0, 0, 1]
and L \ {[−1, 0, 0, 0, 1]} is biholomorphic to the complex surface TCP 1.
Explicitly, from (6), the equation of the line is given by

2w1x1 + 2w2x2 + 2w3x3 + w4 − w0 = 0 ,

where w21 + w
2
2 + w

2
3 = 0. The case (w1, w2, w3) = 0 corresponds to the point ∞, otherwise,

if we set g = −w3/(w1 − iw2), h = (w0 − w4)/2(w1 − iw2), its equation becomes

q − g2q − 2gx3 − 2h = 0 , (8)

where q = x1 + ix2. Then g ∈ C ∪ {∞} represents the direction u of the line in the chart
given by stereographic projection ρ : S2 → C ∪ {∞}, while γ represents the unique vector c
with endpoint on the line orthogonal to the line under the derivative of ρ : γ = dρu(c) [4].
It will be convenient to introduce the following chart on H. Provided w0 + w4 6= 0, set

ξ = (ξ1, ξ2, ξ3) =
1

w0 + w4
(w1, w2, w3) (9)

Then ξ2 = (w4−w0)/(w4+w0) and we can parametrize those points of H where w0+w4 6= 0,
by setting

[w] =

[
1− ξ2

2
, ξ1, ξ2, ξ3,

1 + ξ2

2

]

.

Equation (6) now takes the form

|x|2 + 2ξ · x+ ξ2 = 0 , (10)

or, more economically
(x+ ξ)2 = 0 ,

which, by definition is equivalent to saying that the vector x+ ξ ∈ C3 is isotropic. The chart
given by ξ parametrizes all circles and points in S3 except those passing through ∞. Under
inversion x̂ = x/|x|2, (10) becomes

ξ2|x̂|2 + 2ξ · x̂+ 1 = 0 . (11)

In terms of the coordinate x̂ for S3, a line in R3 which does not pass through the origin now
corresponds to a point in H with ξ2 = 0. It will be convenient later on to take this viewpoint.
Thus we will identify lines in R3 which do not pass through the origin (after inversion) with
circles in R3 passing through the origin, i.e. with circles given by (10) such that ξ2 = 0 .
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3. Semi-conformality and the discriminant variety

Locally, a semi-conformal map z : U ⊂ S3 → CP 1 with arcs of circles as fibres is given
by defining the point [w] ∈ H as a holomorphic function of z ∈ CP 1 [2]. Thus each wj is
holomorphic in z ∈ CP 1, i.e. meromorphic with respect to a local coordinate z 7→ [1, z] on
CP 1. Then (6) takes the form

P (z, x) ≡ (w4(z) +w0(z))|x|
2 + 2w1(z)x1 + 2w2(z)x2 + 2w3(z)x3 +w4(z)−w0(z) = 0. (12)

If (z0, x0) satisfies P (z0, x0) = 0 and
∂P
∂z
(z0, x0) 6= 0, then by the Implicit Function Theorem,

there is a local smooth solution z = z(x) satisfying z(x0) = z0. To see that z is semi-
conformal, it suffices to note that

∇xP = 2 {(w4 + w0)x+ (w1, w2, w3)} ,

so that

∇xP · ∇xP = 4
{
(w4 + w0)

2|x|2 + 2(w4 + w0)x · (w1, w2, w3) + w
2
1 + w

2
2 + w

2
3

}

= 4(w4 + w0)P (z, x) ,

which vanishes along P = 0, so that z is semi-conformal by (4).
We will henceforth suppose that the wj = wj(z) are given as rational functions of z ∈ C,

equivalently, as holomorphic functions of [z1, z2] ∈ CP 1 . We give two approaches for deter-
mining the discriminant variety in S3, both useful in studying examples.
Consider first equation (5):

Q(z, y) ≡ w0(z)y0 + w1(z)y1 + w2(z)y2 + w3(z)y3 + w4 = 0 . (13)

We clearly have

Lemma 1. The discriminant variety K is given by those points y ∈ R4 , |y| = 1 such that
there exists a point z ∈ CP 1 with

{
Q(z, y) = 0
∂Q
∂z
(z, y) = 0

(14)

In general, (14) can be solved explicitly, indeed, taking the two equations of (14) together
with their complex conjugates yields the linear system






w0y0 + w1y1 + w2y2 + w3y3 = −w4
w0y0 + w1y1 + w2y2 + w3y3 = −w4
w′0y0 + w

′
1y1 + w

′
2y2 + w

′
3y3 = −w′4

w′0y0 + w
′
1y1 + w

′
2y2 + w

′
3y3 = −w′4

(15)

Set

W =





w0 w1 w2 w3
w0 w1 w2 w3
w′0 w′1 w′2 w′3
w′0 w′1 w′2 w′3
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to be the matrix of coefficients and letWj be the matrix obtained fromW by replacing column

j with the vector





−w4
−w4
−w′4
−w′4



 (indexing the first column as 0). Then, provided |W | 6= 0, by

Cramer’s rule, the solution to (15) is given by

y =
1

|W |
(|W0|, |W1|, |W2|, |W3|) . (16)

Proposition 2. Let P (z, x) = 0 be the polynomial equation (12), then provided |W (z)| is
non-zero, z belongs to Σ, the set of singular values, if and only if

|W0(z)|
2 + |W1(z)|

2 + |W2(z)|
2 + |W3(z)|

2 = |W (z)|2 , (17)

i.e. [|W0(z)|, |W1(z)|, |W2(z)|, |W3(z)|, |W (z)|] is a real point of H .

Proof. Equation (17) is simply the condition that the solution y given by (16) lies on the
sphere S3. 2

In general the set of singular values is a real-algebraic subset of CP 1 of dimension 1. Having
found Σ, the discriminant variety is then given by (16). If, on the other hand, |W (z)| is
identically zero, other methods must be used, one of which we give below. First we give an
example.

Example 3. Let ψ : CP 1 → H be defined by

ψ([z1, z2]) =
[
z21 , z

2
1 + z

2
2 , i(z

2
1 − z

2
2), iz

2
1 ,−2z1z2

]
.

In terms of a local chart z 7→ [1, z] for CP 1, (14) has the form
{
y0 + (1 + z

2)y1 + i(1− z2)y2 + iy3 + 2z = 0
zy1 − izy2 + 1 = 0

(18)

It is easily checked that (17) has the form

(1− |z|2)(2− |z|2) = 0 ,

i.e. a pair of concentric circles in the complex plane. Setting z = eiθ, (18) gives
{
y1 + iy2 = −eiθ

y0 + iy3 = 0

i.e. an equatorial circle which we denote by C1 .
If now z =

√
2eiθ, then {

y1 + iy2 = − 1√
2
eiθ

y0 + iy3 = − 1√
2
eiθ

i.e. a circle C2 on a torus. In fact C1 and C2 represent two leaves of the Hopf fibration of S3 and
are linked with linking number 1. The discriminant variety can also be calculated directly in
this case from the discriminant of the quadratic equation given by the first equation in (18).
It is easily checked, in respect of the covering construction discussed in the introduction, that
the covering manifold M̃ is smooth.
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Let us now project S3 \ {∞} to R3 via stereographic projection and take equation (10)
as our starting point, with ξ given by (9) meromorphic in z. Then the discriminant variety
K is given by those x ∈ R3 satisfying

{
|x|2 + 2ξ · x+ ξ2 = 0

ξ′ · (x+ ξ) = 0
(19)

for some z ∈ CP 1. Whether or not ∞ ∈ S3 belongs to K can be investigated after inversion
x̂ = x/|x|2. Equations (19) imply the following system






(ξ − ξ) · x = −ξ2+ξ
2

2

ξ′ · x = −ξ · ξ′

ξ
′
· x = −ξ · ξ

′
(20)

Set A to be the matrix A =




ξ − ξ
ξ′

ξ
′



 (i.e. the row vectors are given by ξ− ξ, ξ′, ξ
′
) and

B to be the column vector B =





−ξ2+ξ
2

2

−ξ · ξ′

−ξ · ξ
′



. Then we have

Proposition 4. Provided A(z) 6= 0, then z is a singular value if and only if

|A(z)−1B(z)|2 + 2ξ(z) ·
(
A(z)−1B(z)

)
+ ξ(z)2 = 0 . (21)

If on the other hand |A(z)| = 0, then there is a non-trivial relation between the coefficients
of the form

a(z)
(
ξ(z)− ξ(z)

)
+ b(z)ξ′(z) + c(z)ξ

′
(z) = 0 , (22)

for some a(z), b(z), c(z) ∈ C . In this case z is a singular value if and only if

a(z)

(
−ξ2(z) + ξ

2
(z)
)

2
− b(z) ξ(z) · ξ′(z)− c(z) ξ(z) · ξ

′
(z) = 0 . (23)

Proof. The first part of the proposition is obtained by solving (20) and substituting into (10).
If on the other hand |A(z)| = 0 , taking the inner product with x on the left-hand-side of
(22) and applying (20) yields (23). 2

Example 5. Set ξ = (iz, 0, 0)), then, in the notation introduced above |A(z)| = 0 for all z.
The rows of A are related by the (non-unique) relation

ξ′(z)− ξ
′
(z) = 0 .

Then (23) is equivalent to z − z = 0, giving the singular values as the imaginary axis
z = iu, u ∈ R . The discriminant variety can be obtained by substituting into (10), which
yields

x21 + x
2
2 + x

2
3 − 2ux1 + u

2 = 0
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having as solution x2 = x3 = 0, x1 = u, i.e. the x1-axis in R
3. In respect of the covering

construction, dP (z, x) = 0 along K, where

P (z, x) = |x|2 + 2ξ · x+ ξ2 .

The set M̃ is not a smooth manifold, but consists of two 3-spheres glued along a great circle.

Although equations (17) and (21) both give means to determine the set of singular values
implicitly, unless we can find an explicit parametrization, it may be difficult to describe the
discriminant variety. However, there is one case where this is always possible.
Suppose that all the regular circles defined by (10) pass through a single point, for

instance this is the case if all the circles pass through ∞ and so correspond to lines in R3.
As described at the end of Section 2, after inversion we may identify this with the space of
circles passing through 0 ∈ R3. From (10), this is the case if and only if the meromorphic
function ξ satisfies

ξ(z)2 ≡ 0 (which implies ξ(z) · ξ′(z) ≡ 0). (24)

In this case the system of equations (20) becomes





(
ξ − ξ

)
· x = 0

ξ′ · x = 0

ξ
′
· x = 0

which has a non-trivial solution z if and only if

|A(z)| = 0 . (25)

As is well-known from the Weierstrass representation for minimal surfaces, we may
parametrize meromorphic ξ satisfying ξ(z)2 ≡ 0 in the form

ξ =
1

2h

(
1− g2, i(1 + g2),−2g

)
, (26)

where g and h are meromorphic in z (see [10], also [4]).

Proposition 6. A point z ∈ CP 1 is a singular value if and only if

2|g′(z)|2Im (g(z)h(z)) = (1 + |g|2)Im (g′(z)h′(z)) . (27)

If z satisfies (27), then, setting q = x2 + ix3 and ζ(z) = h
′(z)/g′(z), the corresponding point

in the discriminant variety is given by
{

q = 2
(1−|g(z)|4)

{
h(z)− g(z)ζ(z)− g2

(
h(z)− g(z)ζ(z)

)}

x3 = −g(z)q + ζ(z)
(28)

Proof. Equation (27) is obtained by substituting (26) into (25), after a straightforward
calculation. Then (28) is obtained by solving (8) for (q, x3). In fact condition (27) is precisely
the condition that x3 be real. 2

Remark. The discriminant variety depends only on the holomorphic curve in L, rather than
on its parametrization, as is easily seen from the form of (28) above. At a singular point of
such a curve ζ(z) = h′(z)/g′(z) is well-defined (see [8]), so that the corresponding point of
the discriminant variety is also well-defined by (28).
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4. Links on tori

For integers k, l, not both zero, let [w] ∈ H be defined as a holomorphic function of z ∈
C ∪ {∞}, by

[w(z)] =
[
1 + z2l, i(1− z2l), zk, izk, 2zl

]
.

If we set p = y0 + iy1, q = y2 + iy3, then (14) has the form

{
p+ z2lp+ zkq + 2zl = 0

2lz2l−1p+ kzk−1q + 2lzl−1 = 0
(29)

This implies the following equation together with its complex conjugate:

kp+ (k − 2l)z2lp+ 2(k − l)zl = 0 . (30)

There are the special cases k = 0, l, 2l .

Case 1. k = 0: After a reparametrization of the z-variable (replacing zl by z), we may
suppose l = 1 and the example is equivalent after isometry to Example 3, having two circles
with linking number 1 as discriminant variety.

Case 2. k = l: Now we have the simultaneous equations

{
p− z2lp = 0
p− z2lp = 0

This has a non-trivial solution if and only if |z| = 1 . Setting z = eiθ yields p = λeilθ

for an arbitrary real constant λ. Substituting back into (29) gives q = −2(1 + λ) . Then
|p|2 + |q|2 = 1 if and only if (5λ + 3)(λ + 1) = 0, giving two unlinked circles in S3 as the
discriminant variety.

Case 3. k = 2l: Then p + zl = 0. Substituting back into (29) gives q = (|z|2l − 1)/zl (the

solution z = 0 is excluded. Then |p|2+ |q|2 = 1 if and only if
(
2|z|2l − 1

) (
|z|2l − 1

)
= 0. We

once more obtain two linked circles, isometric to Case 1.

Other cases. From (30) and its conjugate, we obtain

p
{
k2 − (k − 2l)2|z|4l

}
+ 2(k − l)zl

{
k − (k − 2l)|z|2l

}
= 0 .

If k−(k−2l)|z|2l = 0, then it is easily checked that there is no solution satisfying |p|2+|q|2 = 1 .
Suppose then that k − (k − 2l)|z|2l 6= 0, then

p = −2(k−l)zl

k+(k−2l)|z|2l

q = −2lzl−k(1−|z|2)
k+(k−2l)|z|2l .

Then |p|2 + |q|2 = 1 if and only if

|z|2k
{
|z|2l − 1

}{
(k − 2l)2|z|2l − k2

}
− 4l2|z|2l

(
1− |z|2

)2
= 0 (z 6= 0).
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If |z| = 1, setting z = eiθ gives (p, q) = (−eiθ, 0). Otherwise, if we let z = reiθ, we obtain the
following polynomial in r:

r2k
{
r2(l−1) + r2(l−2) + · · ·+ r2 + 1

}{
(k − 2l)2r2l − k2

}
+ 4l2r2l(1− r2) = 0 . (31)

Then for each real positive root r = a, we have a link on a torus of the form:

(p, q) =
(
Aeilθ, Bei(l−k)θ

)
.

These curves are all distinct and any two have linking number l(l− k). For example, if l = 1
and k = 3, (31) has two positive roots and one negative. Note also that the polynomial on
the left-hand-side of (31) always has a real root lying strictly between 0 and 1. To summarize:

Theorem 7. Let k, l be integers which are not both zero. The holomorphic curve CP 1 → H
given by

[z1, z2] 7→
[
z2l1 + z

2l
2 , i

(
z2l1 − z

2l
2

)
, z2l−k1 zk2 , iz

2l−k
1 zk2 , 2z

l
1z
l
2

]

has associated discriminant variety K given by

(i) in the case k = 0: two linked circles with linking number 1;

(ii) in the case k = l: two unlinked circles;

(iii) in the case k = 2l: two linked circles with linking number 1;

(iv) in all other cases: one great circle and circles C1, C2, . . . , Ck (k ≥ 1) determined by the
distinct positive roots of (31). These are all disjoint and any two Ci, Cj (i 6= j) have
linking number l(l − k).

5. (p, q)-examples and their deformation

Let (p, q) be integers with 0 < p < q < 2p. Consider the polynomial equation (8), where
g = zp, h = zq. The discriminant variety can be calculated from (27) and (28). The singular
values are given by

|z|2p−2
{
q − (2p− q)|z|2p

}
Im zq−p = 0 ,

with solution set:
(i) z = 0 ;

(ii) Im zq−p = 0 ;

(iii) |z|2p = q/(2p− q) .
This consists of the circle (iii) together with (q − p) lines passing through the origin. An
example with q − p = 3 is sketched in Figure 1. To investigate the component of the
discriminant variety corresponding to the singular values given by (iii), we set z = a eiθ, (0 ≤

θ ≤ 2π), where a =
(
q
2p−q

)1/2p
. Substituting into (28) yields

q =
aq(2p− q)2

2p2

(

eqiθ −
q

(2p− q)
e(2p−q)iθ

)

x3 = −
q(2p− q)

p2
aq−p cos(q − p)θ .
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Figure 1.

It is a remarkable fact that this curve, which we denote by Cp,q, lies on a 2-sphere in R3. Its
radius can be calculated and is given by Rp,q, where

R2p,q =
(2p− q)2(2p2 − 2pq + q2)a2q

2p4
(32)

The curve is continuous with 2(p − q) cusps symmetrically placed at intervals θ = (2p −
q)kπ/(q−p), k = 0, 1, 2, . . . , 2(q−p)−1, alternating from the top of the sphere (x3 > 0) to the
bottom (x3 < 0). Each cusp is joined by a smooth arc which rotates through (2p−q)π/(q−p)
before joining the next cusp. A calculation (best done with a computer) shows that each
of these arcs has constant curvature in the sphere (Figure 2 (a), (b), (c) illustrate the cases
(p, q) = (3, 5), (4, 7), (5, 6) respectively).

(a) (b) (c)

Figure 2.

On the other hand, the (q − p) lines of (ii) determine (q − p) planar curves in R3, each one
obtained from the other by a rotation through 2π/(q − p), followed possibly by a reflection.
It suffices to set z = u real to determine the behaviour of each curve. Then

q = −
2(q − p)uq

p(1 + u2p)

x3 = −
(2p− q)up+q + quq−p

p(1 + u2p)

Each planar curve has two cusps which touch the curve Cp,q at its cusps and is one of three
types (or a reflection of these) depending on the positioning of the cusps of Cp,q. These are
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sketched in Figure 3 (a), (b), (c).

(a) (b) (c)
Figure 3.

The cusps are the image points in R3 of intersection points of components (ii) and (iii)
and correspond to points on the discriminant variety where the multiplicity of the roots of
equation (8) increases.
The whole picture takes on a more symmetrical look if we compactify R3 to S3 by adding

in the point at infinity. Now the components of the discriminant variety all lie on standard
2-spheres in S3. They consist of the central axis (component (i)), the (q − p)-curves with
2-cusps joined by smooth arcs and one curve Cp,q with 2(q − p) cusps joined by smooth arcs.
The cusps of the set of (q − p) curves touch those of Cp,q.
One particularly interesting case is when q = p+1. Then Cp,q has 2 cusps. There are two

arcs joining these which rotate through (p− 1)π as they pass from the top to the bottom of
the sphere. This rotation becomes arbitrarily large as p → ∞. The radius of the 2-sphere
supporting the arcs is given by

Rp,p+1 =

(
p+ 1

p− 1

)2
(p2 + 1)(p2 − 1)

2p4

→
1

2
as p→∞ ,

which in particular is bounded above and below. Thus as p becomes large, the component
Cp,p+1 becomes increasingly concentrated on the sphere (Figure 4). Small deformations of the
(p, q)-examples yield interesting phenomena (best investigated by computer techniques). For
example, if we set g = zp, h = zp+1 + iεzp for small ε ∈ R, then the set of singular values
becomes separated into two components as illustrated in Figure 5. In particular a compact
closed loop breaks away. Its corresponding image in R3 is a continuously embedded curve,
approximated by one arc of Cp,p+1 together with the part of the planar curve joining the
two cusps. Compactified to S3 (with the complex plane in which the singular values lie also
compactified to include ∞) the other ‘dual’ part of the curve is approximated by the other
arc with ends joined by a curve passing through ∞. We do not know whether these closed
curves are linked or not.
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Figure 4.

Figure 5

On the other hand, if we set g = zp, h = zp+2 + iεzp, then the set of singular values
breaks into three components as illustrated in Figure 6. It is shown in [3] by purely analytic
methods that the compact component corresponds to a continuously embedded closed curve
which is knotted.

Figure 6.
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