The Upper Bound Conjecture for Arrangements of Halfspaces

Gerhard Wesp ${ }^{1}$
Institut für Mathematik, Universität Salzburg
Hellbrunnerstr. 34, A-5020 Salzburg
e-mail: gwesp@cosy.sbg.ac.at

Abstract

Let \mathcal{A} be an arrangement of n open halfspaces in \mathbb{R}^{r-1}. In [2], Linhart proved that for $r \leq 5$, the numbers of vertices of \mathcal{A} contained in at most k halfspaces are bounded from above by the corresponding numbers of $\mathcal{C}(n, r)$, where $\mathcal{C}(n, r)$ is an arrangement realizing the alternating oriented matroid of rank r on n elements. In the present paper Linhart's result is generalized to faces of dimension $s-1$ for $1 \leq s \leq 4$.

1. Introduction

An arrangement of halfspaces is an n-tuple of open halfspaces $\mathcal{A}=\left(H_{e}^{+}\right)_{e=1}^{n}$ in \mathbb{R}^{r-1}. By H_{e} we denote the bounding hyperplane of H_{e}^{+}and by H_{e}^{-}the complementary open halfspace such that \mathbb{R}^{r-1} is the disjoint union $H_{e}^{+} \cup H_{e} \cup H_{e}^{-}$. For each $x \in \mathbb{R}^{r-1}$ the position vector $\sigma(x)$ with respect to the arrangement is defined as follows: $\sigma(x)=\left(\sigma_{1}(x), \ldots, \sigma_{n}(x)\right)$, where

$$
\sigma_{e}(x)= \begin{cases}+ & \text { if } x \in H_{e}^{+} \\ 0 & \text { if } x \in H_{e} \\ - & \text { if } x \in H_{e}^{-} .\end{cases}
$$

If two points have the same position vector, call them equivalent. We call the corresponding equivalence classes the (relatively open) faces of \mathcal{A}. For two faces F and G, we write $F \leq G$ if F is a face of G in the usual convex-geometric sense. Together with elements $\hat{0}$ and $\hat{1}$ such

[^0]| s | r | $g_{s, k}(n, r)$ |
| :--- | :--- | :--- |
| 1 | 2 | $2(1+k)$ |
| 2 | 2 | $1+2 k$ |
| 1 | 3 | $(1+k) n$ |
| 2 | 3 | $n+2 k n$ |
| 3 | 3 | $1+k n$ |
| 1 | 4 | $(1+k)(2+k)(3 n-6-2 k) / 3$ |
| 2 | 4 | $(1+k)\left(3(1+k) n-6-7 k-2 k^{2}\right)$ |
| 3 | 4 | $k(1+k)(3 n-4-2 k)+n$ |
| 4 | 4 | $1-k(k(3+2 k-3 n)-5) / 3$ |
| 1 | 5 | $n(1+k)(2+k)(3 n-9-2 k) / 12$ |
| 2 | 5 | $n(1+k)\left(3(1+k) n-9-10 k-2 k^{2}\right) / 3$ |
| 3 | 5 | $n(n-1-k(1+k)(7+2 k-3 n)) / 2$ |
| 4 | 5 | $n(3+k(5+k(3 n-6-2 k))) / 3$ |

Table 1: Values of $g_{s, k}(n, r)$, valid for $0 \leq k<n-(r-s)$
that $\hat{0}<F<\hat{1}$ for all faces F of \mathcal{A}, the set of faces forms a graded lattice under this order, denoted by $\hat{\mathcal{L}}(\mathcal{A})$ and called the face lattice of \mathcal{A}. We will also refer to the face lattice as the combinatorial structure of \mathcal{A}. If the arrangement is essential, i.e. it has at least one vertex, then the rank of a face in $\hat{\mathcal{L}}(\mathcal{A})$ is equal to its dimension plus one.

The weight weight F of a face F is the number of positive halfspaces which contain F, or, equivalently, the number of plus signs in its position vector. By $g_{s, k}(\mathcal{A})$ we denote the number of faces of \mathcal{A} having rank s and weight at most k. The Upper Bound Conjecture for arrangements of halfspaces can then be stated as follows:

Conjecture 1. For $1 \leq s \leq r$, and all $k \leq n-(r-s)$,

$$
g_{s, k}(\mathcal{A}) \leq g_{s, k}(n, r),
$$

where $g_{s, k}(n, r)$ is the number of rank s and weight at most k covectors of the alternating oriented matroid $C(n, r)$ of rank r on n elements.
$C(n, r)$ and the corresponding quantities $g_{s, k}(n, r)$ are discussed in more detail in [5]. Here we just quote Table 1 which lists the $g_{s, k}(n, r)$ for those r and s we're concerned with in this paper.

A halfspace arrangement \mathcal{A} is called polyhedral if

$$
P(\mathcal{A})=\bigcap_{e=1}^{n} \mathrm{cl} H_{e}^{-}
$$

is a (possibly unbounded) polyhedron with n facets.
In [5], the author also investigated a generalisation of Conjecture 1 for oriented matroids. Conjecture 1 in turn is a generalisation of McMullen's [3] celebrated Upper Bound Theorem
for convex polytopes, since for polyhedral arrangements $g_{s, 0}(\mathcal{A})$ is the number of $(s-1)$ dimensional faces of $P(\mathcal{A})$ and $C(n, r)$ can be realized by a halfspace arrangement $\mathcal{C}(n, r)$ such that $P(\mathcal{C}(n, r))$ is the dual of a cyclic polytope.

Historically, Conjecture 1 seems first to be mentioned in Eckhoff's Handbook article [1], where the case $s=r$ is stated in the dual language of point sets and semispaces. Then Linhart [2] solved the case $s=1$ for $r \leq 5$, and the author of the present paper extended his ideas in order to prove it for $1 \leq s \leq \min (r, 4)$ in his thesis [5]. Since this thesis is of very limited distribution only, this paper serves the purpose of making the result available to a wider audience.

2. Statement of the result and proof

Theorem 2. Let \mathcal{A} be an arrangement of n halfspaces in $\mathbb{R}^{r-1}, r \leq 5$. Then for $1 \leq s \leq$ $\min (r, 4)$ and $k \leq n-(r-s)$,

$$
g_{s, k}(\mathcal{A}) \leq g_{s, k}(n, r) .
$$

The proof requires a few lemmas which we state and prove before the proof of the theorem.
Lemma 3. For each polyhedral arrangement in $\mathbb{R}^{r-1}, r \leq 4$, the assertion of Theorem 2 is true.

This lemma is a straightforward extension of Lemma 1 in [2] (using [4, Equation (6.106)]), so we don't need to repeat the proof here.

Lemma 4. Let i, j, p, q be integers with $p \geq q \geq 0$ and $j \geq i \geq 0$. Then

$$
\begin{equation*}
\binom{q}{i}\binom{p}{j} \geq\binom{ p}{i}\binom{q}{j} . \tag{1}
\end{equation*}
$$

Proof. If

$$
\binom{q}{i}\binom{p}{j}=0,
$$

then either $i>q$ or $j>p$. In both cases it follows that $j>q$ and the right hand side of (1) is zero.

If the right hand side of (1) is zero, then there is nothing to prove. Otherwise, we have $j \leq q$ and therefore $i \leq j \leq q \leq p$. Hence the left hand side is also nonzero. If $i=j$, then there is nothing to prove. Otherwise we consider the quotient

$$
\begin{aligned}
\binom{q}{i}\binom{p}{j}\left\{\binom{p}{i}\binom{q}{j}\right\}^{-1} & =\frac{p(p-1) \cdots(p-j+1) q(q-1) \cdots(q-i+1)}{p(p-1) \cdots(p-i+1) q(q-1) \cdots(q-j+1)} \\
& =\frac{(p-i)(p-i-1) \cdots(p-j+1)}{(q-i)(q-i-1) \cdots(q-j+1)} .
\end{aligned}
$$

This quotient is ≥ 1, because all factors in the last line are positive and $p \geq q$.

A halfspace arrangement in \mathbb{R}^{r-1} is called simple if each r-subset of the hyperplanes H_{e}^{0} determines an $(r-1)$-simplex. It is sufficient to prove Theorem 2 for simple arrangements, since otherwise the arrangement may be transformed into a simple one by small perturbations of the hyperplanes such that none of the $g_{s, k}$ decreases.

For faces F, G in $\hat{\mathcal{L}}(\mathcal{A})$, we denote by $[F, G]$ the closed interval between F and G, i.e. the set $\left\{F^{\prime} \in \hat{\mathcal{L}}(\mathcal{A}): F \leq F^{\prime} \leq G\right\}$.

By $f_{s, k}(\mathcal{A})$, we denote the number of $\operatorname{rank} s$ faces of \mathcal{A} with weight equal to k. In the following lemma, the weight of a face is considered with respect to different arrangements. We use the notations \mathcal{s} weight $F, \mathcal{s} f_{s, k}$ and $\mathcal{s} g_{s, k}$ in order to specify the arrangement which determines the weights, $f_{s, k}$ or $g_{s, k}$ in question.

It is clear that each simple arrangement of r halfspaces has a unique bounded $(r-1)$ simplex in its face lattice.

Lemma 5. Let $\mathcal{S}=\left(H_{1}^{+}, \ldots, H_{r}^{+}\right)$be a simple arrangement of halfspaces in \mathbb{R}^{r-1} with bounded ($r-1$)-simplex T, and let $p=s$ weight T. Let \mathcal{S}^{\prime} be the arrangement obtained from \mathcal{S} by reversing the orientation of all r hyperplanes and let $q=\mathcal{S}^{\prime}$ weight $T=r-p$. If $q \leq p$, then

$$
\mathcal{s}_{s, k}([\hat{0}, T]) \leq \mathcal{S}^{\prime} g_{s, k}([\hat{0}, T])
$$

for $1 \leq s \leq r, 0 \leq k \leq r$.
Proof. First, we compute the value of $\mathcal{s} f_{s, k}([\hat{0}, T])$. The weight of a rank s face of T can be at most s, so $\mathcal{s} f_{s, k}([\hat{0}, T])=0$ if $k>s$. Let $k \leq s$. We count the number of rank s weight k faces of T in \mathcal{S}. In order to obtain an s-face F with weight k, we have to choose k out of p hyperplanes such that F lies in the positive halfspace defined by each of them and then $s-k$ out of the remaining $q=r-p$ hyperplanes such that F lies in their negative halfspaces. (Because T is a simplex, all these possibilities indeed define a face!) Then F is the intersection of the above chosen halfspaces and the remaining $r-s$ hyperplanes. It follows that

$$
s f_{s, k}([\hat{0}, T])=\binom{p}{k}\binom{q}{s-k}
$$

if $k \leq s$. Analogously, we can compute

$$
\mathcal{S}^{\prime} f_{s, k}([\hat{0}, T])=\binom{q}{k}\binom{p}{s-k}
$$

for $k \leq s$. Both formulas are also valid for $k>s$, because then $s-k<0$ and the second binomial is zero by definition. It follows that

$$
s g_{s, k}([\hat{0}, T])=\sum_{i=0}^{k}\binom{p}{i}\binom{q}{s-i}
$$

and

$$
\mathcal{S}^{\prime} g_{s, k}([\hat{0}, T])=\sum_{i=0}^{k}\binom{q}{i}\binom{p}{s-i} .
$$

Let $\Delta=\mathcal{s}^{\prime} g_{s, k}([\hat{0}, T])-\mathcal{s}^{\prime} g_{s, k}([\hat{0}, T])$. Then

$$
\Delta=\sum_{i=0}^{k}\binom{q}{i}\binom{p}{s-i}-\binom{p}{i}\binom{q}{s-i} .
$$

By substituting $s-i$ for i in the above expression, we get

$$
\Delta=\sum_{i=s-k}^{s}\binom{p}{i}\binom{q}{s-i}-\binom{q}{i}\binom{p}{s-i} .
$$

Adding the above two expressions for Δ, we get with $m=\min (k, s-k-1)$

$$
\begin{aligned}
2 \Delta= & \sum_{i=0}^{m}\binom{q}{i}\binom{p}{s-i}-\binom{p}{i}\binom{q}{s-i} \\
& +\sum_{i=s-m}^{s}\binom{p}{i}\binom{q}{s-i}-\binom{q}{i}\binom{p}{s-i} .
\end{aligned}
$$

Because $m \leq(s-1) / 2$, we have $i \leq s-i$ in the first sum and $i \geq s-i$ in the second one. By (1), we conclude that $2 \Delta \geq 0$.
Lemma 6. The bounded ($r-1$)-simplex of each r-subarrangement (a subarrangement consisting of exactly r halfspaces) \mathcal{S} of a simple polyhedral arrangement has weight at most $r-2$ (with respect to \mathcal{S}).

We omit the proof, because this lemma is the same as Lemma 2 in [2] if we note that the weight of the bounded $(r-1)$-simplex coincides with the notion of "total weight" used in [2].

Let u be a nonzero vector in \mathbb{R}^{r-1} and let β, γ be two real numbers. If we associate to each $t \in[0,1]$ the halfspace

$$
H^{+}(t)=\left\{x \in \mathbb{R}^{r-1}: u \cdot x>\beta+\gamma t\right\}
$$

we call H^{+}a constantly moving halfspace (with velocity γ). An n-tuple of constantly moving halfspaces will shortly be called a moving arrangement. The velocities of the individual halfspaces may of course be different.

We say that an r-subarrangement $\left(H_{e_{1}}^{+}, \ldots, H_{e_{r}}^{+}\right)$of a moving arrangement is switched at $t_{0} \in(0,1)$ if the hyperplanes $H_{e_{1}}\left(t_{0}\right), \ldots, H_{e_{r}}\left(t_{0}\right)$ intersect in a point (the switching point). The following is Lemma 3 in [2]:
Lemma 7. Each r-subarrangement of a moving arrangement is switched at most once.
Let $\mathcal{A}(t)=\left(H_{1}^{+}(t), \ldots, H_{n}^{+}(t)\right)$ be a moving arrangement. In the following we use the abbreviation $g_{s, k}(t)$ for $g_{s, k}(\mathcal{A}(t))$.
Lemma 8. Let $\mathcal{S}(t)$ be an r-subarrangement of a moving arrangement $\mathcal{A}(t)$. Denote by $T(t)$ the unique bounded $(r-1)$-simplex of $\mathcal{S}(t)$. Let $\mathcal{S}(t)$ be switched at t_{0}, and let no other switching occur in $\mathcal{A}(t)$ at t_{0}. Then there is an $\epsilon>0$ such that, if $\mathcal{S}\left(t_{0}+\epsilon\right)$ weight $\left(T\left(t_{0}+\epsilon\right)\right) \leq$ $r / 2$, then

$$
g_{s, k}\left(t_{0}-\epsilon\right) \leq g_{s, k}\left(t_{0}+\epsilon\right)
$$

for all $s=1, \ldots, r$ and $k=0, \ldots, n-(r-s)$.

Proof. Let

$$
p=\mathcal{S}\left(t_{0}-\epsilon\right) \operatorname{weight}\left(T\left(t_{0}-\epsilon\right)\right)
$$

and

$$
q=\mathcal{S}\left(t_{0}+\epsilon\right) \operatorname{weight}\left(T\left(t_{0}+\epsilon\right)\right) .
$$

Then $p+q=r$, because in \mathcal{S} the switching corresponds to a reorientation of all of the hyperplanes in \mathcal{S}.

We can choose ϵ so small that for all $t \in\left[t_{0}-\epsilon, t_{0}+\epsilon\right]$, the simplex $T(t)$ is a face of $\mathcal{A}(t)$ and the faces of $\mathcal{A}(t)$ outside $T(t)$ are continuously deformed throughout this time interval such that their combinatorial structure, in particular their weights, remain constant.

Let m be the weight in $\mathcal{A}\left(t_{0}\right)$ of the switching point at t_{0} and let $t \in\left[t_{0}-\epsilon, t_{0}+\epsilon\right] \backslash\left\{t_{0}\right\}$. Then all faces of $T(t)$ have weight at least m in $\mathcal{A}(t)$. Therefore for $k<m$ we have

$$
g_{s, k}\left(t_{0}+\epsilon\right)=g_{s, k}\left(t_{0}-\epsilon\right) .
$$

On the other hand, we have

$$
g_{s, k}(t)=\mathcal{A}(t) g_{s, k}([\hat{0}, T(t)])+_{\mathcal{A}(t)} g_{s, k}(\mathcal{A}(t) \backslash[\hat{0}, T(t)]) .
$$

Because of the continuous deformation outside of $T(t),{ }_{\mathcal{A}}(t) g_{s, k}(\mathcal{A}(t) \backslash[\hat{0}, T(t)])$ remains constant. Noting that for $k \geq m$ we have

$$
\mathcal{A}(t) g_{s, k}([\hat{0}, T(t)])=\mathcal{S}(t) g_{s, k-m}([[\hat{0}, T(t)]),
$$

and that $q \leq p$, we can apply Lemma 5 with $\mathcal{S}=\mathcal{S}\left(t_{0}-\epsilon\right)$ and $\mathcal{S}^{\prime}=\mathcal{S}\left(t_{0}+\epsilon\right)$ and get the result.

Proof of Theorem 2. We first consider the case $r \leq 4$. Let $\mathcal{A}_{0}=\left(H_{1}^{+}, \ldots, H_{n}^{+}\right)$be an arbitrary simple arrangement of halfspaces in \mathbb{R}^{r-1} and let \mathcal{A}_{1} be the polyhedral arrangement obtained from \mathcal{A}_{0} by translating the halfspaces such that they support the unit sphere S^{r-2}, that is $\mathcal{A}_{1}=\left(H_{1}^{\prime+}, \ldots, H_{n}^{\prime+}\right)$ with $H_{e}^{\prime-} \supset S^{r-2}, H_{e}^{\prime}$ parallel to H_{e} and tangent to S^{r-2} for each $e \in\{1, \ldots, n\}$. \mathcal{A}_{0} and \mathcal{A}_{1} uniquely determine a moving arrangement \mathcal{A} with $\mathcal{A}(0)=\mathcal{A}_{0}$ and $\mathcal{A}(1)=\mathcal{A}_{1}$.

A switching in $\mathcal{A}(t)$ is determined by the r participating moving hyperplanes. Because of this and of Lemma 7 , there can only be finitely many switchings and hence only finitely many different switching times.

It is easy to see that the time of a switching linearly depends on the β_{e} 's of the participating moving hyperplanes. Therefore, by one or more arbitrarily small changes in the β_{e} 's (corresponding to translations of the hyperplanes in $\mathcal{A}(0)$ and $\mathcal{A}(1)$ by the same amount), we can perturb the moving arrangement in such a way that the switching times are distinct. Because $\mathcal{A}(0)$ is simple, we can choose the perturbations so small that its combinatorial structure remains intact. Because $\mathcal{A}(1)$ is polyhedral, we can choose the perturbations so small that it remains polyhedral.

By Lemma 6, the bounded ($r-1$)-simplex of each r-subarrangement of $\mathcal{A}(1)$ has weight at most $r-2$, which is $\leq r / 2$ for $r \leq 4$. Thus by Lemmas 7 and $8, g_{s, k}(0) \leq g_{s, k}(1)$ for all s and k. Finally, by Lemma 3, the upper bounds of the theorem are valid for $g_{s, k}(1)$ and hence also for $g_{s, k}(0)$.

For $r=5$, we first remark that it can be shown using Theorem 3.4 in [5] that for odd $r \geq 3$ and $1 \leq s \leq r-1$ we have

$$
\begin{equation*}
(r-s) g_{s, k}(n, r)=n g_{s, k}(n-1, r-1) \tag{2}
\end{equation*}
$$

(the sceptical reader may also check this equation directly for $r=5$ by using Table 1). Let $\mathcal{A}=\left(H_{1}^{+}, \ldots, H_{n}^{+}\right)$be a simple arrangement of halfspaces in \mathbb{R}^{4}. For each $e \in\{1, \ldots, n\}$, consider

$$
\mathcal{A}_{e}=\left(H_{f}^{+} \cap H_{e}\right)_{f \in\{1, \ldots, n\} \backslash\{e\}},
$$

which is a simple arrangement of $n-1$ halfspaces in \mathbb{R}^{3}. Since the theorem is already proved for $r=4$, we have

$$
g_{s, k}\left(\mathcal{A}_{e}\right) \leq g_{s, k}(n-1,4)
$$

for each e and $1 \leq s \leq 4$ and hence

$$
\sum_{e=1}^{n} g_{s, k}\left(\mathcal{A}_{e}\right) \leq n g_{s, k}(n-1,4)=(5-s) g_{s, k}(n, 5)
$$

Each s-face of \mathcal{A} belongs to exactly $5-s$ hyperplanes, so the above sum equals $(5-s) g_{s, k}(\mathcal{A})$ and the result

$$
g_{s, k}(\mathcal{A}) \leq g_{s, k}(n, 5)
$$

follows.
Acknowledgements. The author wishes to thank Peter Hellekalek for the opportunity to write this paper and Johann Linhart as well as the anonymous referee for valuable comments and suggestions.

References

[1] Eckhoff, Jürgen: Helly, Radon, and Carathéodory type theorems. In: Handbook of convex geometry, volume A, pages 389-448. North-Holland 1993.
[2] Linhart, Johann: The Upper Bound Conjecture for arrangements of halfspaces. Beiträge Algebra Geom. 35(1) (1994), 29-35.
[3] McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17 (1970), 179-184.
[4] Philipp, Martin: Combinatorial Properties of Arrangements of Halfspaces. PhD thesis, Universität Salzburg 1994.
[5] Wesp, Gerhard: Counting Certain Covectors in Oriented Matroids. PhD thesis, Universität Salzburg 1999.

Received January 31, 2000

[^0]: ${ }^{1}$ Research supported by the Austrian Science Fund under grants P12313-MAT and S8303-MAT
 0138-4821/93 \$ 2.50 © 2001 Heldermann Verlag

