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Abstract. The aim of this paper is to give a complete description of σ-rings.
Indeed, we define and study a more general class of rings with involution that we
call σ-semisimple rings. In particular, we prove that for the left artinian rings with
involution, this new definition coincides with the classical definition of semisimple
rings.

An involution on a ring A is a map σ : A −→ A subject to the following conditions:
σ(x + y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x) and σ2(x) = x, for each x, y ∈ A. The most
common example of involution is the transpose when we consider the matrix algebra Mn(K)
over an arbitrary field K.
Rings and algebras with involutions have been the object of many studies since von Neumann
remarked the role played by the classical adjoint in the algebra of linear operators on a Hilbert
space. Especially, the theory of rings with involution has been developped to investigate Lie
algebras, Jordan algebras and rings of operators. It was known, that there is a connection
between semisimple algebras with involution and the classical semisimple Lie groups (see [6]).
Recently, the book of involutions that appeared in 1998, gives more complete description of
the new investigations concerning this topic (see [3]).
Let A be a ring with unity 1 and let σ be an involution on A. For clarity, it is interesting
to elucidate some of the terminology to be used in the sequel. Given a subset B of A, σ(B)
will stand for the subset of all involutive images of elements of B. An ideal I of A is called a
σ-ideal if σ(I) ⊆ I. Moreover, I is said to be a σ-minimal (resp. σ-maximal) ideal of A if I
is minimal (resp. maximal) in the set of nonzero (resp. proper) σ-ideals of A. Observe that
if I is an ideal of A, then I + σ(I), Iσ(I), σ(I)I and I ∩ σ(I) are σ-ideals of A. Moreover,
if we denote by σ̄ the map from A/I to A/I defined by σ̄(a + I) = σ(a) + I, then σ̄ is a
well-defined involution on A/I.
Throughout this paper, if (A, σ) and (B, τ) are rings with involutions, we use the notation
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(A, σ) ' (B, τ) to express the existence of a ring isomorphism f : A −→ B such that
f ◦ σ = τ ◦ f.

1. σ-minimal ideals

Throughout this section, A is a ring with unity and σ is an involution of A. If I and J
are ideals of A, we will denote the set of all left A-module homomorphisms from I to J by
HomA(I , J ). Then, f ∈ HomA(I , J ) is said to be a σ-homomorphism if f ◦σ = σ ◦ f . We will
write HomσA(I , J ) for the set of all σ-homomorphisms from I to J.
In what follows, for a σ-ideal I of A, we denote by Sσ(I) the set of all σ-ideals J of A such that
J ⊆ I. Hence, for a nonzero σ-ideal I of A we have Sσ(I) = I if and only if I is σ-minimal.

Lemma 1. Let I and J be σ-ideals of A. Suppose that f : I → J is a nonzero σ-
homomorphism.
1) If I is σ-minimal, then f is injective.
2) If J is σ-minimal, then f is surjective.

Proof. 1) Let x be an element of Ker(f ) and let a ∈ A. Since f is a left module homomor-
phism, then ax ∈ Ker(f ). Moreover,

f(xa) = f ◦σ(σ(a)σ(x)) = σ◦f(σ(a)σ(x)) = σ[σ(a)f(σ(x))] = σ◦f ◦σ(x)σ2(a) = f(x)a = 0.

Consequently, xa ∈ Ker(f ). Which proves that Ker(f ) is an ideal of A. The fact that f ◦
σ(x) = σ ◦f(x) = 0 yields σ(x) ∈ Ker(f ). Thus σ(Ker(f )) ⊂ Ker(f ). Hence Ker(f ) ∈ Sσ(I ).
As f 6= 0, the σ-minimality of I implies that Ker(f ) = 0 and therefore f is injective.
2) Similarly, Im(f ) ∈ Sσ(J ). In view of the σ-minimality of J, the fact that f 6= 0 implies
that Im(f ) = J , proving the surjectivity of f. �

Corollary 1. If I is a σ-minimal ideal of A, then EndσA(I ) is a division ring.

To prove the converse of Corollary 1, we need to introduce a new class of σ-ideals. A σ-
ideal I of A is said σ-indecomposable if I cannot be written as a direct sum of nonzero
σ-ideals: if I = P ⊕ Q, then P = (0) or Q = (0). Note that every σ-minimal ideal of A is
σ-indecomposable.

Proposition 1. Let I be a σ-ideal of A such that I = ⊕i∈SIi, where each Ii is a σ-minimal
ideal of A. Then the following conditions are equivalent:

1) I is a σ-minimal ideal.
2) EndσA(I ) is a division ring.
3) I is a σ-indecomposable ideal.

Proof. 1) ⇒ 2) This follows from Corollary 1.
2) ⇒ 3) Suppose that I = P ⊕Q, where both P and Q are σ-ideals of A. Let π denote the
projection of I on P associated with this decomposition. It is straightforward to check that
π ∈ EndσA(I ). Since π(π − idI) = 0, the assumption that End

σ
A(I ) is a division ring implies

that P = (0) or Q = (0).
3) ⇒ 1) This is obvious. �
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2. σ-semisimple rings

We introduce now a new class of rings with involution. We say that a ring with involution
(A, σ) is σ-semisimple if A is a sum of σ-minimal ideals.

Lemma 2. Let A be a σ-semisimple ring such that A =
∑
i∈S Ii, where each Ii is a σ-

minimal ideal of A. If P is a σ-minimal ideal of A, then there is a subset T of S such that
A = P ⊕ (⊕j∈T Ij).

Proof. Since Ii are σ-minimal and P 6= A, then there exists some i ∈ S such that Ii + P is a
direct sum. Indeed, otherwise Ii ∩ P = Ii for all i ∈ S, which implies that P = A. Applying
Zorn’s lemma, there is a subset T of S such that the collection {Ii : i ∈ T}∪ {P} is maximal
with respect to independence: (⊕i∈T Ii) + P = (⊕i∈T Ii) ⊕ P. Setting B = (⊕i∈T Ii) + P , the
maximality of T implies that Ii ∩ B 6= (0) for all i ∈ S. Then, the σ-minimality of Ii yields
that Ii ∩B = Ii, hence Ii ⊆ B for all i ∈ S. Consequently, B = A. �

Corollary 2. For a ring with involution (A, σ), the following conditions are equivalent:
1) A is σ-semisimple.
2) A is a direct sum of σ-minimal ideals.

Example. Let A4 be the alternating group on 4 letters. Consider the group algebra R[A4]
provided with its canonical involution σ defined by σ(

∑
g∈A4
rgg) =

∑
g∈A4
rgg

−1. From [2],
the decomposition of the semisimple algebra R[A4] into a direct sum of simple components
is as follows: R[A4] = B1 ⊕ B2 ⊕ B3, where each Bi is invariant under σ. More explicitely,
B1 ' R, B2 ' C and B3 ' M3(R). In particular, each Bi is a σ-minimal ideal of R[A4].
Consequently, R[A4] is a σ-semisimple ring.

Now, let A be a σ-semisimple ring. Since A is finitely generated (indeed, 1 generates A), then
A has finite lenght. Thus A = ⊕li=1Ii, where each Ii is a σ-minimal ideal of A. It is easy to
verify that each Ii is generated by a central symmetric idempotent element ei ∈ A (i.e. e2i = ei
and σ(ei) = ei), where 1 =

∑l
i=1 ei. Moreover, eiej = 0 for all i 6= j. In what follows, we

denote by S the set of central symmetric orthogonal idempotents of A, i.e. S = {e1, . . . , el}
such that Ii = Aei.
We say that a central symmetric idempotent e ∈ A is a σ-primitive idempotent of A if e

cannot be written as a sum of two orthogonal central symmetric idempotents of A.

Proposition 2. For a σ-semisimple ring A, the following statements hold:
1) For each ei ∈ S, ei is a σ-primitive idempotent.
2) I1, . . . , Il are the only σ-minimal ideals of A.
3) Every nonzero σ-ideal of A is a direct sum of σ-minimal ideals of A.
4) Every σ-ideal of A is generated by a central symmetric idempotent.

Proof. 1) Suppose ei = f1+f2, where f1 and f2 are orthogonal central symmetric idempotents.
As f1f2 = 0 then Ii = Aei = Af1⊕Af2. Since Af1 and Af2 are σ-ideals of A, the σ-minimality
of Ii yields that Af1 = (0) or Af2 = (0). Hence f1 = 0 or f2 = 0.
2) Let T be a σ-minimal ideal of A. For all 1 ≤ i ≤ l, it is clear that TIi = Tei = eiT =



388 M. Boulagouaz; L. Oukhtite: σ-Semisimple Rings

eiAT = IiT. Thus TIi is a σ-ideal of A contained in Ii. The fact that Ii is σ-minimal, implies
that either TIi = (0) or TIi = Ii. If TIi = (0) for all 1 ≤ i ≤ l then TA = T = (0) which
is impossible. Consequently, there exists some 1 ≤ j ≤ l such that TIj = Ij. As TIj is a
nonzero σ-ideal contained in T, the σ-minimality of T yields TIj = T. Therefore, T = Ij.
3) Let I be a nonzero σ-ideal of A. As IIi = IiI is a σ-ideal of A contained in Ii, for all
1 ≤ i ≤ l, then either IIi = (0) or IIi = Ii. Since I 6= (0), the fact that I = IA assures the
existence of some 1 ≤ t ≤ l such that I = I1 ⊕ · · · ⊕ It (one can arrange the indices to have
this equality).
4) Let I be a nonzero σ-ideal of A. From 3), there exists some 1 ≤ t ≤ l such that I =
I1 ⊕ · · · ⊕ It. Setting e = e1 + · · · + et, it is clear that e is a central idempotent element
generating I. As σ(ei) = ei for all 1 ≤ i ≤ t, it follows that e is symmetric i.e. σ(e) = e. �

Remark. From Proposition 2, it follows that the decomposition of a σ-semisimple ring into
a direct sum of σ-minimal ideals is unique.

Now, recall that a ring with involution (A, σ) is said to be a σ-simple ring if (0) and A are
the only σ-ideals of A. Let A = ⊕li=1Ii be a σ-semisimple ring, we have already seen that
each Ii is generated by a central symmetric idempotent ei such that 1 =

∑l
i=1 ei. Hence, Ii is

a subring of A with unity ei. Moreover, Ii is a σ-simple ring for all 1 ≤ i ≤ l. Consequently,
every σ-semisimple ring is a direct sum of σ-simple rings.

Theorem 1. Let (A, σ) be a ring with involution. The following conditions are equivalent:

1) A is σ-semisimple.
2) Every σ-ideal of A is generated by a unique central symmetric idempotent.
3) Every σ-ideal I of A has a complement in Sσ(A), i.e. there is a σ-ideal J such that
A = I ⊕ J.

Proof. 1) ⇒ 2) Let I be a σ-ideal of A. The existence of a central symmetric idempotent e
generating I, follows from Proposition 2. To prove the uniqueness of e, suppose f a central
symmetric idempotent such that I = Af. Then f = fe since f ∈ Ae. Samely, e ∈ Af then
e = ef. Since both e and f are central, these two equalities yield e = f.
2) ⇒ 3) Let I be a σ-ideal of A, by hypotheses there exists a central symmetric idempotent
e generating I, i.e. I = Ae. Set J = A(1 − e), it is clear that J is a σ-ideal of A such that
I ⊕ J = A.
3) ⇒ 1) If A is a σ-simple ring then A is σ-semi-simple. Now, suppose that A is not a
σ-simple ring and let I be a nonzero proper σ-ideal of A. Consider the set F = {J | J
proper σ-ideal of A, I ⊆ J}. Since F is a non-empty set, then Zorn’s lemma assures the
existence of a maximal element L of F . It is clear that L is a σ-maximal ideal of A. As L
has a complement in Sσ(A), then there exists a σ-ideal N of A such that N ⊕L = A. Hence
(N, σ) ' (A/L, σ̄), which proves that N is a σ-minimal ideal of A. Consider P :=

∑
N∈MN ,

whereM is the set of all σ-minimal ideals of A. As P is a σ-ideal of A, then P ⊕Q = A for
some σ-ideal Q of A. Suppose Q 6= (0) and write 1A = e1 + e2, where e1 ∈ P and e2 ∈ Q
(e1 and e2 being central symmetric elements), it is easy to verify that (Q, σ) is a σ-ring with
unity e2. Q cannot be a σ-simple ring. On the other hand, it is clear that every σ-ideal of Q
admits a complement. Reasoning as above, we conclude that Q has a σ-minimal ideal which
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is also a σ-minimal ideal of A. But this again contradicts the fact that P ∩ Q = (0). Hence
Q = (0) and therefore A = P. Consequently, A is a σ-semisimple ring. �

Corollary 3. Let f : (A, σ) −→ (B, τ) be a surjective homomorphism of rings with involu-
tion. If A is σ-semisimple then B is τ -semisimple.

Proof. From Theorem 1, it suffices to show that every τ -ideal of B is generated by a central
symmetric idempotent. Let J be a τ -ideal of B. It is straightforward to check that I = f−1(J)
is a σ-ideal of A. The σ-semisimplicity of A implies that I = Ae for some central idempotent
e ∈ A. Let µ = f(e), then µ is a central idempotent of B such that J = Bµ. Moreover,
τ(µ) = τ ◦ f(e) = f ◦ σ(e) = µ, which ends our proof. �

Corollary 4. If I is a nonzero σ-ideal of a σ-semisimlpe ring A, then (A
I
, σ̄) is a σ̄-semisimp-

le ring.

Proposition 3. Let e be a central symmetric idempotent of a σ-semisimple ring A. Then
the following conditions are equivalent :

1) Ae is a σ-minimal ideal.
2) e is a σ-primitive idempotent.
3) Ae+ := {x ∈ Z(Ae) | σ(x) = x} is a field, where Z(Ae) denotes the center of the subring
Ae of A.

Proof. 1) ⇒ 2) is clear.
2) ⇒ 1) Since σ(e) = e, then Ae is a σ-ideal of A. Writing A = ⊕li=1Ii, from Proposition 2
there exists some 1 ≤ r ≤ l such that Ae = I1⊕ · · · ⊕ Ir. Consequently, e = ee1+ · · ·+ eer =
ee1+(ee2+ · · ·+eer). As ee1 and ee2+ · · ·+eer are orthogonal central symmetric idempotents
of A, the σ-primitivity of e yields that e = eei for some unique 1 ≤ i ≤ r. Hence Ae is a
nonzero σ-ideal of A contained in Ii. Accordingly, Ae = Ii, since Ii is σ-minimal.
3) ⇒ 1) Writing 1 =

∑l
i=1 ei, it follows that e = ee1 + · · · + eel. Since eei is an idempotent

element of the field Ae+, we then deduce that for 1 ≤ i ≤ l, we have either eei = 0 or eei = e.
As e 6= 0, there exists necessarily a unique 1 ≤ i ≤ l such that eei = e. This implies that
Ae ⊆ Aei = Ii. The σ-minimality of Ii implies that Ae = Ii.
1) ⇒ 3) Assume Ae is a σ-minimal ideal of A. According to Corollary 1, EndσA(Ae) is a
division ring. Let f ∈ EndσA(Ae), the fact that σ(f(e)) = f ◦ σ(e) = f(e) implies that f(e) is
a symmetric element of Ae. If a is any element of A, then

f(ea) = f ◦ σ(σ(a)e) = σ ◦ f(σ(a)e) = σ[σ(a)f(e)] = σ ◦ f(e)a = f(e)a

Thus f(ea) = f(e)a for all a ∈ A. Since

aef(e) = af(e) = f(ae) = f(ea) = f(e)a = f(e)ea = f(e)ae

it follows that f(e) is a central element of Ae and therefore f(e) ∈ Ae+. Consequently,
the map Ψ : EndσA(Ae) −→ Ae

+ defined by Ψ(f) = f(e) is a well-defined injective map.
Moreover, if f, g ∈ EndσA(Ae) then

Ψ(f ◦ g) = f(g(e)) = f(eg(e)) = f(e)g(e) = Ψ(f)Ψ(g).
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To prove the surjectivity of Ψ, let ae be any element of Ae+. Define g ∈ EndA(Ae) by
g(e) = ae. On one hand g ◦ σ(be) = g(σ(b)e) = σ(b)ae, for all b ∈ A. On the other hand,
since ae is central and e is the unit element of Ae then

σ ◦ g(be) = σ(bae) = aeσ(b) = aeσ(b)e = σ(b)eae = σ(b)ae

hence σ ◦ g = g ◦ σ. This proves that Ψ is a ring isomorphism. �

Remark. It follows from Proposition 3 and the fact that A has only a finite number of
σ-minimal ideals that A has a finite number of σ-primitive idempotents, namely e1, . . . , el.
Recall that the σ-Socle Socσ(A) of A is defined to be the sum of all σ-minimal ideals of

A. It is clear that Socσ(A) is a σ-ideal of A. Now, using Socσ(A), we give a σ-semisimplicity
criterion for a ring with involution as follows.

Proposition 4. The following conditions are equivalent:
1) A is σ-semisimple.
2) Socσ(A) = A.

Proof. Suppose that A is σ-semisimple. Writing A = ⊕li=1Ii where each Ii is a σ-minimal
ideal of A. It follows from 2) of Proposition 2, that I1, . . . , Il are the only σ-minimal ideals of
A. Consequently Socσ(A) = A. The converse is immediate by the definition of a σ-semisimple
ring. �

We will say that a ring A with involution σ is a σ-artinian ring if Sσ(A) satisfies the de-
scending condition. That is, there are no infinite decreasing sequences of elements of Sσ(A).
Equivalently, A is σ-artinian if every nonempty subset of Sσ(A) contains a minimal element.

Remark. It is straightforward to verify that every σ-semisimple ring is σ-artinian.

LetMσ denote the set of all σ-maximal ideals of A, and set:

Radσ(A)=

{
A ifMσ = ∅
∩L∈MσL otherwise

Proposition 5. The following statements are equivalent:

1) A is σ-semisimple.
2) A is σ-artinian and Radσ(A) = (0 ).

Proof. 1) ⇒ 2) Writing A = ⊕li=1Ii where each Ii is a σ-minimal ideal of A and setting Li =
⊕j 6=iIj, then plainly Li is a σ-maximal ideal of A. Since Radσ(A) ⊂ ∩li=1Li and ∩

l
i=1Li = (0),

then Radσ(A) = (0 ).
2)⇒ 1) Since Radσ(A) = (0 ), thenMσ is a non-empty set. Let us consider P = {Li1 ∩ · · · ∩
Lir , where r ∈ N and Lij ∈Mσ}. The fact that A is σ-artinian implies that P has a minimal
element, say L1 ∩ · · · ∩ Lr and denote it by I. We claim that I = (0). Indeed, otherwise
there exists some Lj ∈ Mσ such that I ∩ Lj ⊂ I and I ∩ Lj 6= I, and this contradicts the
minimality of I. Since (A, σ) ' (

∏r
i=1A/Li, σ̄), the σ̄-simplicity of A/Li implies that A is a

σ-semisimple ring. �
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Since a σ-semisimple ring is a direct sum of σ-simple subrings, it is worthwhile to give some
properties of σ-simple rings. For this, observe that every simple ring with involution (A, σ)
is a σ-simple ring. The following counterexample shows that the converse is not true.

Counterexample. Let B be a simple ring. We denote by Bo the opposite ring of B and by
σ the exchange involution defined on A = B⊕Bo by σ(x, y) = (y, x). It is clear that the ring
A is not simple, since the ideals of A are (0), A, {0} × Bo and B × {0}. But A is σ-simple.
Indeed, the only σ-ideals of A are 0 and A.

Now we give a sufficient condition for a σ-simple ring to be simple. For this, we use the
following terminology: we say that σ is anisotropic if

σ(a)a = 0 ⇒ a = 0 : for all a ∈ A.

Proposition 6. Let (A, σ) be a σ-simple ring. If the involution σ is anisotropic, then A is
a simple ring.

Proof. Let I be an ideal of A. Using the fact that I ∩ σ(I) is a σ-ideal of A, it follows that
either I ∩ σ(I) = (0) or I ∩ σ(I) = A. If I ∩ σ(I) = (0), then σ(x)x = 0 for all x ∈ I. As σ is
anisotropic, we then deduce that x = 0, and therefore I = (0). If I ∩ σ(I) = A, then I = A.
Consequently, A is a simple ring. �

Proposition 7. Let A be a σ-simple ring and let u be an invertible element of A. If σ(u) = λu
for some element λ ∈ Z(A) satisfying σ(λ)λ = 1, then A is int(u) ◦ σ-simple.

Proof. Let τ = int(u) ◦ σ. It is readily verified that τ is a well-defined involution on A. For
every ideal I of A, it is easy to show that I is a τ -ideal if and only if I is a σ-ideal, which
completes the proof. �

Proposition 8. Let A be a σ-simple ring which is not simple. Then there exists a simple
subring B of A such that A = B ⊕ σ(B).

Proof. Let I be a nonzero proper ideal of A. Since I ∩σ(I) is a σ-ideal of A, then necessarily
I ∩ σ(I) = (0). The fact that I + σ(I) is a σ-ideal of A, yields that I + σ(I) = A. Indeed,
otherwise I = σ(I) and the σ-semisimplicity of A implies that either I = (0) or I = A, which
contradicts our assumption. Accordingly, I ⊕ σ(I) = A. Let J be a nonzero ideal of A that
is contained in I. A similar reasoning gives J ⊕ σ(J) = A. Choose any element i ∈ I, then
there exist j, j

′
∈ J such that i = j + σ(j

′
). Hence i − j = σ(j

′
) ∈ I ∩ σ(I), proving i = j.

Therefore, I = J . Consequently, I is a minimal ideal of A. Moreover, it is readily verified
that there is an idempotent element e ∈ A satisfying e+ σ(e) = 1 such that I = Ae. Hence,
I is a simple subring, with unity, of A, proving our proposition. �

Remark. It follows from Proposition 8 that if A is a σ-simple ring which is not simple, then
there is an idempotent element e ∈ A satisfying 1 = e+ σ(e).

Proposition 9. Let (A, σ) be a semisimple ring with involution. Then A is σ-semisimple.
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Proof. According to Theorem 1, it suffices to show that every σ-ideal of A is generated by a
central symmetric idempotent. Let I be a σ-ideal of A, the semi-simplicity of A assures the
existence of a central idempotent e ∈ A generating I, i.e. I = Ae. Since σ(I) = I, it follows
that σ(e) = e, proving our proposition. �

As shown in the following counterexample, the converse of Proposition 9 is not true.

Counterexample. Let B be a simple ring which is not semisimple, such a ring exists
for it suffices to choose B not left artinian. Consider the ring A = B × Bo provided with
the exchange involution σ defined by σ(x, y) = (y, x). We have already seen that A is a
σ-semisimple ring. Since B is not semisimple, then necessarily A is not semisimple too.

In the following proposition, we show that for the category of left artinian rings the notions
of semisimplicity and σ-semisimplicity are the same.

Proposition 10. Let A be a left artinian ring and let σ be an involution of A. Then the
following conditions are equivalent:

1) A is semisimple.
2) A is σ-semisimple.

Proof. 1) ⇒ 2) immediate from Proposition 9.
2)⇒ 1) Write A = ⊕li=1Bi, where Bi is a σ-simple subring of A. Since A is left artinian, then
Bi is left artinian too, for all 1 ≤ i ≤ l. According to Proposition 8, we have to distinguish
to cases :
i) Bi is a simple ring. The fact that Bi is left artinian implies that Bi is semisimple.
ii) Bi = Ci ⊕ σ(Ci) for some simple subring Ci of Bi. Since Ci is left artinian, then Ci is a
semisimple ring. Accordingly, Bi is a semisimple ring too.
As a finite direct sum of semisimple rings is a semisimple ring, we then deduce that also A
is a semisimple ring. �
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