σ-Semisimple Rings

M. Boulagouaz
L. Oukhtite
Département de Mathématiques, Faculté des Sciences et Techniques Saïss-Fès
B.P. 2202 Route d'Imouzzar, Fès, Maroc

Abstract

The aim of this paper is to give a complete description of σ-rings. Indeed, we define and study a more general class of rings with involution that we call σ-semisimple rings. In particular, we prove that for the left artinian rings with involution, this new definition coincides with the classical definition of semisimple rings.

An involution on a ring A is a map $\sigma: A \longrightarrow A$ subject to the following conditions: $\sigma(x+y)=\sigma(x)+\sigma(y), \sigma(x y)=\sigma(y) \sigma(x)$ and $\sigma^{2}(x)=x$, for each $x, y \in A$. The most common example of involution is the transpose when we consider the matrix algebra $M_{n}(K)$ over an arbitrary field K.
Rings and algebras with involutions have been the object of many studies since von Neumann remarked the role played by the classical adjoint in the algebra of linear operators on a Hilbert space. Especially, the theory of rings with involution has been developped to investigate Lie algebras, Jordan algebras and rings of operators. It was known, that there is a connection between semisimple algebras with involution and the classical semisimple Lie groups (see [6]). Recently, the book of involutions that appeared in 1998, gives more complete description of the new investigations concerning this topic (see [3]).
Let A be a ring with unity 1 and let σ be an involution on A. For clarity, it is interesting to elucidate some of the terminology to be used in the sequel. Given a subset B of $A, \sigma(B)$ will stand for the subset of all involutive images of elements of B. An ideal I of A is called a σ-ideal if $\sigma(I) \subseteq I$. Moreover, I is said to be a σ-minimal (resp. σ-maximal) ideal of A if I is minimal (resp. maximal) in the set of nonzero (resp. proper) σ-ideals of A. Observe that if I is an ideal of A, then $I+\sigma(I), I \sigma(I), \sigma(I) I$ and $I \cap \sigma(I)$ are σ-ideals of A. Moreover, if we denote by $\bar{\sigma}$ the map from A / I to A / I defined by $\bar{\sigma}(a+I)=\sigma(a)+I$, then $\bar{\sigma}$ is a well-defined involution on A / I.
Throughout this paper, if (A, σ) and (B, τ) are rings with involutions, we use the notation
$(A, \sigma) \simeq(B, \tau)$ to express the existence of a ring isomorphism $f: A \longrightarrow B$ such that $f \circ \sigma=\tau \circ f$.

1. σ-minimal ideals

Throughout this section, A is a ring with unity and σ is an involution of A. If I and J are ideals of A, we will denote the set of all left A-module homomorphisms from I to J by $\operatorname{Hom}_{A}(I, J)$. Then, $f \in \operatorname{Hom}_{A}(I, J)$ is said to be a σ-homomorphism if $f \circ \sigma=\sigma \circ f$. We will write $\operatorname{Hom}_{A}^{\sigma}(I, J)$ for the set of all σ-homomorphisms from I to J.
In what follows, for a σ-ideal I of A, we denote by $S_{\sigma}(I)$ the set of all σ-ideals J of A such that $J \subseteq I$. Hence, for a nonzero σ-ideal I of A we have $S_{\sigma}(I)=I$ if and only if I is σ-minimal.

Lemma 1. Let I and J be σ-ideals of A. Suppose that $f: I \rightarrow J$ is a nonzero σ homomorphism.

1) If I is σ-minimal, then f is injective.
2) If J is σ-minimal, then f is surjective.

Proof. 1) Let x be an element of $\operatorname{Ker}(f)$ and let $a \in A$. Since f is a left module homomorphism, then $a x \in \operatorname{Ker}(f)$. Moreover,
$f(x a)=f \circ \sigma(\sigma(a) \sigma(x))=\sigma \circ f(\sigma(a) \sigma(x))=\sigma[\sigma(a) f(\sigma(x))]=\sigma \circ f \circ \sigma(x) \sigma^{2}(a)=f(x) a=0$.
Consequently, $x a \in \operatorname{Ker}(f)$. Which proves that $\operatorname{Ker}(f)$ is an ideal of A. The fact that $f \circ$ $\sigma(x)=\sigma \circ f(x)=0$ yields $\sigma(x) \in \operatorname{Ker}(f)$. Thus $\sigma(\operatorname{Ker}(f)) \subset \operatorname{Ker}(f)$. Hence $\operatorname{Ker}(f) \in S_{\sigma}(I)$. As $f \neq 0$, the σ-minimality of I implies that $\operatorname{Ker}(f)=0$ and therefore f is injective.
2) Similarly, $\operatorname{Im}(f) \in S_{\sigma}(J)$. In view of the σ-minimality of J, the fact that $f \neq 0$ implies that $\operatorname{Im}(f)=J$, proving the surjectivity of f.

Corollary 1. If I is a σ-minimal ideal of A, then $E n d_{A}^{\sigma}(I)$ is a division ring.
To prove the converse of Corollary 1 , we need to introduce a new class of σ-ideals. A σ ideal I of A is said σ-indecomposable if I cannot be written as a direct sum of nonzero σ-ideals: if $I=P \oplus Q$, then $P=(0)$ or $Q=(0)$. Note that every σ-minimal ideal of A is σ-indecomposable.

Proposition 1. Let I be a σ-ideal of A such that $I=\oplus_{i \in S} I_{i}$, where each I_{i} is a σ-minimal ideal of A. Then the following conditions are equivalent:

1) I is a σ-minimal ideal.
2) $E n d_{A}^{\sigma}(I)$ is a division ring.
3) I is a σ-indecomposable ideal.

Proof. 1) $\Rightarrow 2$) This follows from Corollary 1.
$2) \Rightarrow 3$) Suppose that $I=P \oplus Q$, where both P and Q are σ-ideals of A. Let π denote the projection of I on P associated with this decomposition. It is straightforward to check that $\pi \in E n d_{A}^{\sigma}(I)$. Since $\pi\left(\pi-i d_{I}\right)=0$, the assumption that $E n d_{A}^{\sigma}(I)$ is a division ring implies that $P=(0)$ or $Q=(0)$.
$3) \Rightarrow 1)$ This is obvious.

2. σ-semisimple rings

We introduce now a new class of rings with involution. We say that a ring with involution (A, σ) is σ-semisimple if A is a sum of σ-minimal ideals.

Lemma 2. Let A be a σ-semisimple ring such that $A=\sum_{i \in S} I_{i}$, where each I_{i} is a σ minimal ideal of A. If P is a σ-minimal ideal of A, then there is a subset T of S such that $A=P \oplus\left(\oplus_{j \in T} I_{j}\right)$.

Proof. Since I_{i} are σ-minimal and $P \neq A$, then there exists some $i \in S$ such that $I_{i}+P$ is a direct sum. Indeed, otherwise $I_{i} \cap P=I_{i}$ for all $i \in S$, which implies that $P=A$. Applying Zorn's lemma, there is a subset T of S such that the collection $\left\{I_{i}: i \in T\right\} \cup\{P\}$ is maximal with respect to independence: $\left(\oplus_{i \in T} I_{i}\right)+P=\left(\oplus_{i \in T} I_{i}\right) \oplus P$. Setting $B=\left(\oplus_{i \in T} I_{i}\right)+P$, the maximality of T implies that $I_{i} \cap B \neq(0)$ for all $i \in S$. Then, the σ-minimality of I_{i} yields that $I_{i} \cap B=I_{i}$, hence $I_{i} \subseteq B$ for all $i \in S$. Consequently, $B=A$.

Corollary 2. For a ring with involution (A, σ), the following conditions are equivalent:

1) A is σ-semisimple.
2) A is a direct sum of σ-minimal ideals.

Example. Let A_{4} be the alternating group on 4 letters. Consider the group algebra $\mathbb{R}\left[A_{4}\right]$ provided with its canonical involution σ defined by $\sigma\left(\sum_{g \in A_{4}} r_{g} g\right)=\sum_{g \in A_{4}} r_{g} g^{-1}$. From [2], the decomposition of the semisimple algebra $\mathbb{R}\left[A_{4}\right]$ into a direct sum of simple components is as follows: $\mathbb{R}\left[A_{4}\right]=B_{1} \oplus B_{2} \oplus B_{3}$, where each B_{i} is invariant under σ. More explicitely, $B_{1} \simeq \mathbb{R}, \quad B_{2} \simeq \mathbb{C}$ and $B_{3} \simeq M_{3}(\mathbb{R})$. In particular, each B_{i} is a σ-minimal ideal of $\mathbb{R}\left[A_{4}\right]$. Consequently, $\mathbb{R}\left[A_{4}\right]$ is a σ-semisimple ring.
Now, let A be a σ-semisimple ring. Since A is finitely generated (indeed, 1 generates A), then A has finite lenght. Thus $A=\oplus_{i=1}^{l} I_{i}$, where each I_{i} is a σ-minimal ideal of A. It is easy to verify that each I_{i} is generated by a central symmetric idempotent element $e_{i} \in A$ (i.e. $e_{i}^{2}=e_{i}$ and $\sigma\left(e_{i}\right)=e_{i}$), where $1=\sum_{i=1}^{l} e_{i}$. Moreover, $e_{i} e_{j}=0$ for all $i \neq j$. In what follows, we denote by S the set of central symmetric orthogonal idempotents of A, i.e. $S=\left\{e_{1}, \ldots, e_{l}\right\}$ such that $I_{i}=A e_{i}$.

We say that a central symmetric idempotent $e \in A$ is a σ-primitive idempotent of A if e cannot be written as a sum of two orthogonal central symmetric idempotents of A.

Proposition 2. For a σ-semisimple ring A, the following statements hold:

1) For each $e_{i} \in S$, e_{i} is a σ-primitive idempotent.
2) I_{1}, \ldots, I_{l} are the only σ-minimal ideals of A.
3) Every nonzero σ-ideal of A is a direct sum of σ-minimal ideals of A.
4) Every σ-ideal of A is generated by a central symmetric idempotent.

Proof. 1) Suppose $e_{i}=f_{1}+f_{2}$, where f_{1} and f_{2} are orthogonal central symmetric idempotents. As $f_{1} f_{2}=0$ then $I_{i}=A e_{i}=A f_{1} \oplus A f_{2}$. Since $A f_{1}$ and $A f_{2}$ are σ-ideals of A, the σ-minimality of I_{i} yields that $A f_{1}=(0)$ or $A f_{2}=(0)$. Hence $f_{1}=0$ or $f_{2}=0$.
2) Let T be a σ-minimal ideal of A. For all $1 \leq i \leq l$, it is clear that $T I_{i}=T e_{i}=e_{i} T=$
$e_{i} A T=I_{i} T$. Thus $T I_{i}$ is a σ-ideal of A contained in I_{i}. The fact that I_{i} is σ-minimal, implies that either $T I_{i}=(0)$ or $T I_{i}=I_{i}$. If $T I_{i}=(0)$ for all $1 \leq i \leq l$ then $T A=T=(0)$ which is impossible. Consequently, there exists some $1 \leq j \leq l$ such that $T I_{j}=I_{j}$. As $T I_{j}$ is a nonzero σ-ideal contained in T, the σ-minimality of T yields $T I_{j}=T$. Therefore, $T=I_{j}$.
3) Let I be a nonzero σ-ideal of A. As $I I_{i}=I_{i} I$ is a σ-ideal of A contained in I_{i}, for all $1 \leq i \leq l$, then either $I I_{i}=(0)$ or $I I_{i}=I_{i}$. Since $I \neq(0)$, the fact that $I=I A$ assures the existence of some $1 \leq t \leq l$ such that $I=I_{1} \oplus \cdots \oplus I_{t}$ (one can arrange the indices to have this equality).
4) Let I be a nonzero σ-ideal of A. From 3), there exists some $1 \leq t \leq l$ such that $I=$ $I_{1} \oplus \cdots \oplus I_{t}$. Setting $e=e_{1}+\cdots+e_{t}$, it is clear that e is a central idempotent element generating I. As $\sigma\left(e_{i}\right)=e_{i}$ for all $1 \leq i \leq t$, it follows that e is symmetric i.e. $\sigma(e)=e$.

Remark. From Proposition 2, it follows that the decomposition of a σ-semisimple ring into a direct sum of σ-minimal ideals is unique.

Now, recall that a ring with involution (A, σ) is said to be a σ-simple ring if (0) and A are the only σ-ideals of A. Let $A=\oplus_{i=1}^{l} I_{i}$ be a σ-semisimple ring, we have already seen that each I_{i} is generated by a central symmetric idempotent e_{i} such that $1=\sum_{i=1}^{l} e_{i}$. Hence, I_{i} is a subring of A with unity e_{i}. Moreover, I_{i} is a σ-simple ring for all $1 \leq i \leq l$. Consequently, every σ-semisimple ring is a direct sum of σ-simple rings.

Theorem 1. Let (A, σ) be a ring with involution. The following conditions are equivalent:

1) A is σ-semisimple.
2) Every σ-ideal of A is generated by a unique central symmetric idempotent.
3) Every σ-ideal I of A has a complement in $S_{\sigma}(A)$, i.e. there is a σ-ideal J such that $A=I \oplus J$.

Proof. 1) $\Rightarrow 2$) Let I be a σ-ideal of A. The existence of a central symmetric idempotent e generating I, follows from Proposition 2. To prove the uniqueness of e, suppose f a central symmetric idempotent such that $I=A f$. Then $f=f e$ since $f \in A e$. Samely, $e \in A f$ then $e=e f$. Since both e and f are central, these two equalities yield $e=f$.
$2) \Rightarrow 3)$ Let I be a σ-ideal of A, by hypotheses there exists a central symmetric idempotent e generating I, i.e. $I=A e$. Set $J=A(1-e)$, it is clear that J is a σ-ideal of A such that $I \oplus J=A$.
$3) \Rightarrow 1$) If A is a σ-simple ring then A is σ-semi-simple. Now, suppose that A is not a σ-simple ring and let I be a nonzero proper σ-ideal of A. Consider the set $\mathcal{F}=\{J \mid J$ proper σ-ideal of $A, I \subseteq J\}$. Since \mathcal{F} is a non-empty set, then Zorn's lemma assures the existence of a maximal element L of \mathcal{F}. It is clear that L is a σ-maximal ideal of A. As L has a complement in $S_{\sigma}(A)$, then there exists a σ-ideal N of A such that $N \oplus L=A$. Hence $(N, \sigma) \simeq(A / L, \bar{\sigma})$, which proves that N is a σ-minimal ideal of A. Consider $P:=\sum_{N \in \mathcal{M}} N$, where \mathcal{M} is the set of all σ-minimal ideals of A. As P is a σ-ideal of A, then $P \oplus Q=A$ for some σ-ideal Q of A. Suppose $Q \neq(0)$ and write $1_{A}=e_{1}+e_{2}$, where $e_{1} \in P$ and $e_{2} \in Q$ (e_{1} and e_{2} being central symmetric elements), it is easy to verify that (Q, σ) is a σ-ring with unity $e_{2} . Q$ cannot be a σ-simple ring. On the other hand, it is clear that every σ-ideal of Q admits a complement. Reasoning as above, we conclude that Q has a σ-minimal ideal which
is also a σ-minimal ideal of A. But this again contradicts the fact that $P \cap Q=(0)$. Hence $Q=(0)$ and therefore $A=P$. Consequently, A is a σ-semisimple ring.

Corollary 3. Let $f:(A, \sigma) \longrightarrow(B, \tau)$ be a surjective homomorphism of rings with involution. If A is σ-semisimple then B is τ-semisimple.

Proof. From Theorem 1, it suffices to show that every τ-ideal of B is generated by a central symmetric idempotent. Let J be a τ-ideal of B. It is straightforward to check that $I=f^{-1}(J)$ is a σ-ideal of A. The σ-semisimplicity of A implies that $I=A e$ for some central idempotent $e \in A$. Let $\mu=f(e)$, then μ is a central idempotent of B such that $J=B \mu$. Moreover, $\tau(\mu)=\tau \circ f(e)=f \circ \sigma(e)=\mu$, which ends our proof.

Corollary 4. If I is a nonzero σ-ideal of a σ-semisimlpe ring A, then $\left(\frac{A}{I}, \bar{\sigma}\right)$ is a $\bar{\sigma}$-semisimple ring.

Proposition 3. Let e be a central symmetric idempotent of a σ-semisimple ring A. Then the following conditions are equivalent :

1) Ae is a σ-minimal ideal.
2) e is a σ-primitive idempotent.
3) $A e^{+}:=\{x \in Z(A e) \mid \sigma(x)=x\}$ is a field, where $Z(A e)$ denotes the center of the subring $A e$ of A.

Proof. 1) $\Rightarrow 2$) is clear.
$2) \Rightarrow 1$) Since $\sigma(e)=e$, then $A e$ is a σ-ideal of A. Writing $A=\oplus_{i=1}^{l} I_{i}$, from Proposition 2 there exists some $1 \leq r \leq l$ such that $A e=I_{1} \oplus \cdots \oplus I_{r}$. Consequently, $e=e e_{1}+\cdots+e e_{r}=$ $e e_{1}+\left(e e_{2}+\cdots+e e_{r}\right)$. As $e e_{1}$ and $e e_{2}+\cdots+e e_{r}$ are orthogonal central symmetric idempotents of A, the σ-primitivity of e yields that $e=e e_{i}$ for some unique $1 \leq i \leq r$. Hence $A e$ is a nonzero σ-ideal of A contained in I_{i}. Accordingly, $A e=I_{i}$, since I_{i} is σ-minimal.
$3) \Rightarrow 1$) Writing $1=\sum_{i=1}^{l} e_{i}$, it follows that $e=e e_{1}+\cdots+e e_{l}$. Since $e e_{i}$ is an idempotent element of the field $A e^{+}$, we then deduce that for $1 \leq i \leq l$, we have either $e e_{i}=0$ or $e e_{i}=e$. As $e \neq 0$, there exists necessarily a unique $1 \leq i \leq l$ such that $e e_{i}=e$. This implies that $A e \subseteq A e_{i}=I_{i}$. The σ-minimality of I_{i} implies that $A e=I_{i}$.
$1) \Rightarrow 3$) Assume $A e$ is a σ-minimal ideal of A. According to Corollary $1, E n d_{A}^{\sigma}(A e)$ is a division ring. Let $f \in \operatorname{End}_{A}^{\sigma}(A e)$, the fact that $\sigma(f(e))=f \circ \sigma(e)=f(e)$ implies that $f(e)$ is a symmetric element of $A e$. If a is any element of A, then

$$
f(e a)=f \circ \sigma(\sigma(a) e)=\sigma \circ f(\sigma(a) e)=\sigma[\sigma(a) f(e)]=\sigma \circ f(e) a=f(e) a
$$

Thus $f(e a)=f(e) a$ for all $a \in A$. Since

$$
a e f(e)=a f(e)=f(a e)=f(e a)=f(e) a=f(e) e a=f(e) a e
$$

it follows that $f(e)$ is a central element of $A e$ and therefore $f(e) \in A e^{+}$. Consequently, the map $\Psi: E n d d_{A}^{\sigma}(A e) \longrightarrow A e^{+}$defined by $\Psi(f)=f(e)$ is a well-defined injective map. Moreover, if $f, g \in E n d_{A}^{\sigma}(A e)$ then

$$
\Psi(f \circ g)=f(g(e))=f(e g(e))=f(e) g(e)=\Psi(f) \Psi(g) .
$$

To prove the surjectivity of Ψ, let $a e$ be any element of $A e^{+}$. Define $g \in E n d_{A}(A e)$ by $g(e)=a e$. On one hand $g \circ \sigma(b e)=g(\sigma(b) e)=\sigma(b) a e$, for all $b \in A$. On the other hand, since $a e$ is central and e is the unit element of $A e$ then

$$
\sigma \circ g(b e)=\sigma(b a e)=a e \sigma(b)=a e \sigma(b) e=\sigma(b) e a e=\sigma(b) a e
$$

hence $\sigma \circ g=g \circ \sigma$. This proves that Ψ is a ring isomorphism.
Remark. It follows from Proposition 3 and the fact that A has only a finite number of σ-minimal ideals that A has a finite number of σ-primitive idempotents, namely e_{1}, \ldots, e_{l}.

Recall that the σ-Socle $S o c_{\sigma}(A)$ of A is defined to be the sum of all σ-minimal ideals of A. It is clear that $\operatorname{Soc}_{\sigma}(A)$ is a σ-ideal of A. Now, using $\operatorname{Soc}_{\sigma}(A)$, we give a σ-semisimplicity criterion for a ring with involution as follows.

Proposition 4. The following conditions are equivalent:

1) A is σ-semisimple.
2) $\operatorname{Soc}_{\sigma}(A)=A$.

Proof. Suppose that A is σ-semisimple. Writing $A=\oplus_{i=1}^{l} I_{i}$ where each I_{i} is a σ-minimal ideal of A. It follows from 2) of Proposition 2, that I_{1}, \ldots, I_{l} are the only σ-minimal ideals of A. Consequently $S o c_{\sigma}(A)=A$. The converse is immediate by the definition of a σ-semisimple ring.

We will say that a ring A with involution σ is a σ-artinian ring if $S_{\sigma}(A)$ satisfies the descending condition. That is, there are no infinite decreasing sequences of elements of $S_{\sigma}(A)$. Equivalently, A is σ-artinian if every nonempty subset of $S_{\sigma}(A)$ contains a minimal element.

Remark. It is straightforward to verify that every σ-semisimple ring is σ-artinian.
Let \mathcal{M}_{σ} denote the set of all σ-maximal ideals of A, and set:

$$
\operatorname{Rad}_{\sigma}(A)= \begin{cases}A & \text { if } \mathcal{M}_{\sigma}=\emptyset \\ \cap_{L \in \mathcal{M}_{\sigma}} L & \text { otherwise }\end{cases}
$$

Proposition 5. The following statements are equivalent:

1) A is σ-semisimple.
2) A is σ-artinian and $\operatorname{Rad}_{\sigma}(A)=(0)$.

Proof. 1) \Rightarrow 2) Writing $A=\oplus_{i=1}^{l} I_{i}$ where each I_{i} is a σ-minimal ideal of A and setting $L_{i}=$ $\oplus_{j \neq i} I_{j}$, then plainly L_{i} is a σ-maximal ideal of A. Since $\operatorname{Rad}_{\sigma}(A) \subset \cap_{i=1}^{l} L_{i}$ and $\cap_{i=1}^{l} L_{i}=(0)$, then $\operatorname{Rad}_{\sigma}(A)=(0)$.
2) $\Rightarrow 1)$ Since $\operatorname{Rad}_{\sigma}(A)=(0)$, then $\mathcal{M}_{\boldsymbol{\sigma}}$ is a non-empty set. Let us consider $\mathcal{P}=\left\{L_{i_{1}} \cap \cdots \cap\right.$ $L_{i_{r}}$, where $r \in \mathbb{N}$ and $\left.L_{i_{j}} \in \mathcal{M}_{\sigma}\right\}$. The fact that A is σ-artinian implies that \mathcal{P} has a minimal element, say $L_{1} \cap \cdots \cap L_{r}$ and denote it by I. We claim that $I=(0)$. Indeed, otherwise there exists some $L_{j} \in \mathcal{M}_{\sigma}$ such that $I \cap L_{j} \subset I$ and $I \cap L_{j} \neq I$, and this contradicts the minimality of I. Since $(A, \sigma) \simeq\left(\prod_{i=1}^{r} A / L_{i}, \bar{\sigma}\right)$, the $\bar{\sigma}$-simplicity of A / L_{i} implies that A is a σ-semisimple ring.

Since a σ-semisimple ring is a direct sum of σ-simple subrings, it is worthwhile to give some properties of σ-simple rings. For this, observe that every simple ring with involution (A, σ) is a σ-simple ring. The following counterexample shows that the converse is not true.

Counterexample. Let B be a simple ring. We denote by B^{o} the opposite ring of B and by σ the exchange involution defined on $A=B \oplus B^{o}$ by $\sigma(x, y)=(y, x)$. It is clear that the ring A is not simple, since the ideals of A are (0), $A,\{0\} \times B^{o}$ and $B \times\{0\}$. But A is σ-simple. Indeed, the only σ-ideals of A are 0 and A.

Now we give a sufficient condition for a σ-simple ring to be simple. For this, we use the following terminology: we say that σ is anisotropic if

$$
\sigma(a) a=0 \Rightarrow a=0: \text { for all } a \in A
$$

Proposition 6. Let (A, σ) be a σ-simple ring. If the involution σ is anisotropic, then A is a simple ring.

Proof. Let I be an ideal of A. Using the fact that $I \cap \sigma(I)$ is a σ-ideal of A, it follows that either $I \cap \sigma(I)=(0)$ or $I \cap \sigma(I)=A$. If $I \cap \sigma(I)=(0)$, then $\sigma(x) x=0$ for all $x \in I$. As σ is anisotropic, we then deduce that $x=0$, and therefore $I=(0)$. If $I \cap \sigma(I)=A$, then $I=A$. Consequently, A is a simple ring.

Proposition 7. Let A be a σ-simple ring and let u be an invertible element of A. If $\sigma(u)=\lambda u$ for some element $\lambda \in Z(A)$ satisfying $\sigma(\lambda) \lambda=1$, then A is $\operatorname{int}(u) \circ \sigma$-simple.

Proof. Let $\tau=\operatorname{int}(u) \circ \sigma$. It is readily verified that τ is a well-defined involution on A. For every ideal I of A, it is easy to show that I is a τ-ideal if and only if I is a σ-ideal, which completes the proof.

Proposition 8. Let A be a σ-simple ring which is not simple. Then there exists a simple subring B of A such that $A=B \oplus \sigma(B)$.

Proof. Let I be a nonzero proper ideal of A. Since $I \cap \sigma(I)$ is a σ-ideal of A, then necessarily $I \cap \sigma(I)=(0)$. The fact that $I+\sigma(I)$ is a σ-ideal of A, yields that $I+\sigma(I)=A$. Indeed, otherwise $I=\sigma(I)$ and the σ-semisimplicity of A implies that either $I=(0)$ or $I=A$, which contradicts our assumption. Accordingly, $I \oplus \sigma(I)=A$. Let J be a nonzero ideal of A that is contained in I. A similar reasoning gives $J \oplus \sigma(J)=A$. Choose any element $i \in I$, then there exist $j, j^{\prime} \in J$ such that $i=j+\sigma\left(j^{\prime}\right)$. Hence $i-j=\sigma\left(j^{\prime}\right) \in I \cap \sigma(I)$, proving $i=j$. Therefore, $I=J$. Consequently, I is a minimal ideal of A. Moreover, it is readily verified that there is an idempotent element $e \in A$ satisfying $e+\sigma(e)=1$ such that $I=A e$. Hence, I is a simple subring, with unity, of A, proving our proposition.

Remark. It follows from Proposition 8 that if A is a σ-simple ring which is not simple, then there is an idempotent element $e \in A$ satisfying $1=e+\sigma(e)$.

Proposition 9. Let (A, σ) be a semisimple ring with involution. Then A is σ-semisimple.

Proof. According to Theorem 1, it suffices to show that every σ-ideal of A is generated by a central symmetric idempotent. Let I be a σ-ideal of A, the semi-simplicity of A assures the existence of a central idempotent $e \in A$ generating I, i.e. $I=A e$. Since $\sigma(I)=I$, it follows that $\sigma(e)=e$, proving our proposition.

As shown in the following counterexample, the converse of Proposition 9 is not true.
Counterexample. Let B be a simple ring which is not semisimple, such a ring exists for it suffices to choose B not left artinian. Consider the ring $A=B \times B^{o}$ provided with the exchange involution σ defined by $\sigma(x, y)=(y, x)$. We have already seen that A is a σ-semisimple ring. Since B is not semisimple, then necessarily A is not semisimple too.

In the following proposition, we show that for the category of left artinian rings the notions of semisimplicity and σ-semisimplicity are the same.

Proposition 10. Let A be a left artinian ring and let σ be an involution of A. Then the following conditions are equivalent:

1) A is semisimple.
2) A is σ-semisimple.

Proof. 1) \Rightarrow 2) immediate from Proposition 9.
2) $\Rightarrow 1)$ Write $A=\oplus_{i=1}^{l} B_{i}$, where B_{i} is a σ-simple subring of A. Since A is left artinian, then B_{i} is left artinian too, for all $1 \leq i \leq l$. According to Proposition 8, we have to distinguish to cases :
i) B_{i} is a simple ring. The fact that B_{i} is left artinian implies that B_{i} is semisimple.
ii) $B_{i}=C_{i} \oplus \sigma\left(C_{i}\right)$ for some simple subring C_{i} of B_{i}. Since C_{i} is left artinian, then C_{i} is a semisimple ring. Accordingly, B_{i} is a semisimple ring too.
As a finite direct sum of semisimple rings is a semisimple ring, we then deduce that also A is a semisimple ring.

References

[1] Beidar, K. I.; Wiegandt, R.: Ring with involution and chain conditions. J. Pure Appl. Algebra 87 (1993), 205-220.
[2] Boulagouaz, M.; Oukhtite, L.: Involutions of semisimple group algebras. Arabian Journal for Science and Engineering 25 (2000), Number 2C, 133-149.
[3] Knus, M. A.; Merkurjev, A.; Rost, M.; Tignol, J.-P.: The book of involutions. Colloquium Publication 44, American Mathematical Society, Providence 1998.
[4] Pierce, R.-S.: Associative algebras. Springer-Verlag, New York Heidelberg Berlin 1982.
[5] Rowen, L. H.: Ring theory. Vol. I, Academic Press, Boston 1988.
[6] Weil, A.: Algebras with involution and the classical groups. J. Ind. Math. Soc. 24 (1961), 589-623.
[7] Wiegandt, R.: On the structure of involution rings with chain conditions. (Vietnam) J. Math. 21 (1993), 1-12.

Received July 27, 2000

