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Abstract. In this paper it is proven the following conjecture: If G is a subgroup
of the permutation group Sn andM is a 2-dimensional real manifold, thenM

n/G
is a manifold if and only if G = Sm1 × Sm2 × · · · × Smr where Sm1 , . . . , Smr are
permutation groups of partition of {1, 2, . . . , n} into r subsets with cardinalities
m1, . . . ,mr, and M

n is the topological product of n copies of M .
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1. Introduction

Let M be a nonvoid set and let n be a positive integer. In the Cartesian product Mn

we define a relation ≈ such that (x1, . . . , xn) ≈ (y1, . . . , yn) if there exists a permutation
ϑ : {1, 2, . . . , n} → {1, 2, . . . , n} such that yi = xϑ(i) (1 ≤ i ≤ n). This is an equivalence
relation. The class represented by (x1, . . . , xn) will be denoted by (x1, . . . , xn)/≈ and the
set Mn/≈ will be denoted by M (n). The set M (n) is called a permutation product of M
and it was mainly studied in [3].
If M is a topological space, then M (n) is also a topological space. The space (Rm)(n)

(n ≥ 2) is a manifold only for m = 2. If m = 2, then (R2)(n) = C(n) is homeomorphic to
Cm. Indeed, using the fact that the field C is algebraically closed, the mapping ϕ : C(n) →
Cn defined by

ϕ((z1, . . . , zn)/≈) = (σ1, σ2, . . . , σn)

is a bijection, where σi(1 ≤ i ≤ n) is the i-th symmetric function of z1, . . . , zn. The
mapping ϕ is also a homeomorphism. Moreover, if M is a 2-dimensional manifold, then
M (n) is a manifold. In [1] it is proven that if M is orientable, i.e. if M is a 1-dimensional
complex manifold, then M (n) is a complex manifold. If dimM 6= 2, then M (n) is not a
manifold.
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Now let dimM = 2 and let us consider a subgroup G of the permutation group Sn.
Then define a relation ≈ in Mn by

(x1, x2, . . . , xn) ≈ (xτ(1), xτ(2), . . . , xτ(n))

if and only if τ ∈ G. The factor spaceMn/≈ will be denoted byMn/G. In [2] it was given
the following conjecture which is true for any n ≤ 4.

Conjecture. Let G ≤ Sn and M be a 2-dimensional real manifold. Then Mn/G is a
manifold if and only if G = Sm1 × Sm2 × · · · × Smr where Sm1 , . . . , Smr are permutation
groups of a partition of {1, 2, . . . , n} on r subsets with cardinalities m1, . . . ,mr.

In this paper the conjecture will be proved. We remark that in the special case when G
is the cyclic group, then Mn/G is called a cyclic product of M and denoted by M [n]. The
cyclic product is not a manifold if n > 2 [3] while if n = 2, then it is a manifold which is
identical to M (2). Note also that if dimM ≥ 3, then Mn/G is not a manifold whenever G
is a cyclic group [3].

2. Proof of the conjecture

Let G be a subgroup of the permutation group Sn of the set of n elements {a1, a2, . . . , an}
which is not of type Sm1×Sm2×· · ·×Smk and letM

n/G be the corresponding factor-space.
We shall prove that Mn/G is not a manifold.
The group G defines a partition of the set {a1, a2, . . . , an} as follows: if a is an element

of {a1, a2, . . . , an} then we define

Ta = {f(a)| f is a permutation of G}.

Of course, we have that Ta and Tb are either nonintersecting or equal. Hence they give a
partition of the set {a1, a2, . . . , an} as claimed.
For these sets Ta we define subgroups

Ga = {f |f ∈ G and f(x) = x for any x 6∈ Ta}

and
G′a = {f |f ∈ G and f(Ta) = Ta}.

It is obvious that G′a = G.
Now we will define some notions and will prove some of their properties.

Definition 1. The cycle of aj with respect to a given permutation f is the finite set
{fs(aj)|s = 1, 2, . . .} which is denoted by C(aj , f). The degree of the cycle is the number
of its elements.

Each element of the set {a1, a2, . . . , an} appears in exactly one cycle with respect to f and
any two cycles are nonintersecting or they coincide. If the number of elements of the cycle
is 1, then it is called trivial.
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Property 1. If p is a prime divisor of the degree of the cycle C(a, f), i.e. if |C(a, f)| =
pαm such that (p,m) = 1, then the cycle contains subcycles of degrees pi for i = 1, 2, . . . ,
α− 1.

Proof. If s = pα−im, then the cycle C(a, fs) is a subcycle of degree pi of C(a, f).

Property 2. If C(a, f) and C(b, f) are two nonintersecting cycles with respect to f with
degrees p and q, (p, q) = 1, then there exists g ∈ G such that C(a, g) = C(a, f), g = f i for
some i ∈ N and C(b, g) = {b} is trivial.

Proof. If we put g = fq, then it is easy to verify that the previous requirements are
satisfied.

Property 3. If the degree of C(ai, f) is q > 2 and there exists a permutation h of Gai such
that h(c) = d, h(d) = c and h(x) = x for x different from c and d, where c, d ∈ C(ai, f)
– (in other words, h is the transposition (cd) (thereby there exists a positive integer p
such that fp(c) = d)) – and if (p, q) = 1, then {g|C(ai,f) : g ∈ Gai and g(C(ai, f)) ⊆
C(ai, f)} = {g|C(ai,f) : g ∈ Gai} and this is the group of all permutations of the cycle
C(ai, f).

Proof. It is sufficient to prove that for each pair of two elements u and v of C(ai, f) there
exists h1 of Gai such that h1(u) = v and h1(v) = u and for any other element x of C(ai, f),
h1(x) = x. It is sufficient to prove that this subgroup contains all transpositions in order
to be the group of all permutations. If g = fp, then C(ai, f) = C(ai, g). There exist
n1, n2 ∈ Zq, n1 6= n2, such that gn1(u) = d and gn2(v) = d. We can assume that n1 < n2
since the opposite case can be discussed analogously. Let us define g1 = (g◦h)n2−n1−1◦gn1 .
Then g1(v) = d, g1(u) = c and for any x different from u and v it holds g1(x) = x. Let us
define h1 = g

q−1
1 ◦ h ◦ g1 = g

−1
1 ◦ h ◦ g1, where the second equality holds because g

q
1 = id.

Thus we obtain

h1(u) = g
−1
1 (h(g1(u))) = g

−1
1 (h(c)) = v, h1(v) = g

−1
1 (h(g1(v))) = g

−1
1 (h(d)) = u

and
h1(x) = g

−1
1 (h(g1(x))) = g

−1
1 (g1(x)) = x

for any x different from u and v.

Property 4. If the degree q (q > 2) of C(ai, f) is prime number and if there exists a
permutation h of Gai such that h(c) = d, h(d) = c and h(x) = x for x different from c and
d, where c, d ∈ C(ai, f), then {g|C(ai,f) : g ∈ Gai} is the group of all permutations.

Proof. There exists p ∈ N , p < q, such that fp(u) = v. Because q is a prime and p < q, it
follows that (p, q) = 1. Now the proof follows from Property 3.

Property 4’. If the degree of C(ai, f) is q and if there exists a permutation h of Gai such
that h(c) = d, h(d) = c and h(x) = x for x different from c and d where c, d ∈ C(ai, f) and



550 S. Kera: On the Permutation Products of Manifolds

if f(c) = d where c and d are neighbor with respect to the cycle C(ai, f), then {g|C(ai,f) :
g ∈ Gai} is the group of all permutations on C(ai, f).

The proof is analogous to that of Property 4. In this case it is p = 1. As a consequence of
Properties 3, 4 and 4’, we obtain:

Property 5. If C(a, f) is a cycle with respect to f of degree p > 2 and the transposition
(uv) ∈ G for u, v ∈ C(a, f) and (p, s) = p′ > 1, where s is positive integer such that
fs(u) = v, then {g|C(ai,f) : g ∈ Gai} contains all bijections of the subcycles C(ai, f

p/p′),
ai ∈ C(a, f), and those obtained by the previous ones by cyclic permutation with f . Fur-
thermore, we have

{g|C(ai, f
p/p′) : g ∈ Gai} = {g|C(ai, f

p/p′) : g ∈ Gai , g(C(ai, f
p/p′)) ⊆ C(ai, f

p/p′)}.

Proof. The row of the cycle C(ai, f
p/p′) is equal to p/p′ = q. Since (s, q) = 1 and using

Property 3, it follows that

{g|C(ai,fp/p′ ) : g ∈ Gai} = {g|C(ai,fp/p′ ) : g ∈ Gai , g(C(ai, f
p/p′)) ⊆ C(ai, f

p/p′)}

which is the group of all permutations of the cycle (subcycle) C(ai, f
p/p′). Each bijection

from {g|C(ai,fp/p′ ) : g ∈ Gai} belongs also to {g|C(ai,f) : g ∈ Gai} and hence it follows
that {g|C(ai,f) : g ∈ Gai} contains all the bijections of the set of elements of the cycle

C(ai, f
p/p′), which should be proven.

Note that it may happen to exist f such that C(x, g) = C(x, f) but fs 6= g for any s.

Definition 2. If C(x, g) = C(x, f) for any x and there exists s such that fs|C(x,g) =
g|C(x,g), then we say that f and g act similarly on their joint cycle C(x, g).

The following question appears naturally. If the degree of the cycle of x with respect to g
is minimal as in Property 6, is it possible to find f of G which does not act similarly with
g to the cycle C(x, g)? Indeed, the following property holds.

Property 6. If C(x, f) is a cycle which contains x, with the smallest possible degree q, i.e.
it does not exist a cycle C(x, g) for g ∈ G of degree smaller than q and bigger than 2, and
if C(x, f) = C(x, g), then there exists a positive integer s such that fs|C(x,f) = g|C(x,f),
i.e. f and g act similarly on the cycle C(x, f).

Remark. If q = 2, then it should be g = f . In this case q is a prime number.

Proof. Suppose that g acts on {1, 2, . . . , q} cyclically. Without loss of generality we can
suppose that x = 1 and y = 2, i.e. g(i) = i+1 for i < q and g(q) = 1. Let C(1, f) = C(1, g)
and assume that f and g do not act similarly on this common cycle, i.e. there is no number
s such that fs = g. Let j be the smallest number from {1, 2, . . . , q} such that f(j) > g(j),
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i.e. f(1) = g(1), f(2) = g(2), . . ., f(j − 1) = g(j − 1), and f(j) > g(j). Therefore it holds
gq−f(j)(j) = 1 and q > f(j)− g(j). Let h = gq−f(j) ◦ f j−1. Then it is very easy to verify
that h(1) = 1. Indeed, h(1) = gq−f(j) ◦ f j−1(1) = gq−f(j) ◦ gj−1(1) = gq−f(j)(j) = 1.
Here we have used that f j−1(1) = j = gj−1(1). From the fact that there is no s such that
fs = g, it follows that h is not identity mapping on {1, 2, . . . , q}. This means that there
exists k such that h(k) 6= k. Hence the cycle C(k, h) has degree smaller than q. This is a
contradiction to the choice of q.

Property 6’. If C(ai, f) = C(ai, g), i = 1, 2, . . . , s, are cycles of prime order q with the
property C(ai, f) ∩ C(ai, g) = ∅ for i 6= j, such that f and g act similarly over each cycle
and if f(x) = g(x) = x for any x /∈ C(ai, f), i = 1, . . . , s, then

Mn/<f> =Mn/<g> =Mn/<f, g> ∼=Mn−qs × (Ms)(q)

where (Ms)(q) denotes the q-th cyclic product on Ms.

Proof. Since f and g act similarly, it follows that f can be generated from g and conversely,
i.e. it holds

<f> = <g> = <f, g> ∼= Zq.

If we have in mind how f and g act on Mn, we just obtain that

Mn/<f> =Mn/<g> ∼=Mn−qs × (Ms)(q).

Property 7. If C(a, f) is a cycle with respect to f with degree m, the transpositions (u1v1)
and (u2v2) belong to G such that u1, v1, u2, v2 ∈ C(a, f), and s1, s2 are divisors of m such
that fs1(u1) = v1, f

s2(u2) = v2, then the following properties are satisfied:

1. If s1 = s2, then <f |C(a,f), (u1v1)> = <f |C(a,f), (u2v2)>.
2. If (s1, s2) = 1, then <f |C(a,f), (u1v1), (u2v2)> ∼= Sm.
3. If (s1, s2) = s3 > 1, then <f |C(a,f), (u1v1), (u2v2)> ∼= <f |C(a,f), (u3v3)> where u3,
v3 are elements of the cycle C(a, f) such that f

s3(u3) = v3 and s3 is a divisor of m.

Proof. 1. Using the fact that there exist t, s ∈ N such that f t(u1) = u2, f t(v1) = v2 and
fs(u1) = v1, we obtain that (u2v2) = f

t ◦ (u1v1). From the last equality it follows that
<f |C(a,f), (u1v1)> = <f |C(a,f), (u2v2)>.

2. Under the previous assumptions there exist n1 and n2 ∈ Zm such that n2s2 = n1s1 + 1
and hence fn2s2(a) = f(fn1s1(a)), i.e. the points fn2s2(a) and fn1s1(a) are neighbors in the
cycle C(a, f). Moreover we will prove that the transpositions (afn2s2(a)) and (afn1s1(a))
belong to G. Indeed, there exists s such that fs(a) = u1, f

s1(fs(a)) = fs1(u1) = v1 =
fs(fs1(a)) and hence we obtain that (u1v1) = f

s ◦ (afs1(a)) ∈ G. Since G is a group,
it follows that (afs1(a)) ∈ G. Note that the point a is an arbitrary point from the cycle
C(a, f) and hence (f t(a)f t(fs1(a))) ∈ G. Finally, we obtain

(afn1s1(a)) = (afs1(a)) ◦ (fs1(a)f2s1(a)) ◦ (f2s1(a)f3s1(a)) ◦ · · ·

· · · ◦ (f (n1−1)s1(a)fn1s1(a)) ◦ (f (n1−1)s1(a)f (n1−2)s1(a)) ◦ · · ·

· · · ◦ (f2s1(a)fs1(a)) ◦ (fs1(a)a) ∈ G.
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Analogously, it verifies that (afn2s2(a)) ∈ G. Thus we have

(fn2s2(a)fn1s1(a)) = (afn2s2(a))(afn1s1(a))(afn2s2(a)) ∈ G.

Now using the Property 4’, we obtain that each bijection of the cycle C(a, f) is generated.
This completes the proof of 2.

3. Analogously there exist n1 and n2 ∈ Zm such that n1s1+s3 = n2s2 and hence it follows
that

fn2s2(a) = fs3(fn1s1(a)).

Suppose that fn2s2(a) = a2 and f
n1s1(a) = a1. The points a1 and a2 belong to C(a, f),

hence we have
(a1a2) = (aa1) ◦ (a1a2) ◦ (aa2) ∈ G

and fs3(a2) = a1. The transpositions (af
s2(a)) and (afs1(a)) can be obtained by compos-

ing transpositions of the form (bfs3(b)). Moreover, for the transposition (afs2(a)) it holds
s2 = ps3 for a positive integer p. Hence it holds that

(afs2(a)) = (afs3(a)) ◦ (fs3(a)f2s3(a)) ◦ · · · ◦ (f (p−1)s3(a)fps3(a))◦

◦ (f (p−1)s3(a)f (p−2)s3(a)) ◦ (f (p−2)s3(a)f (p−3)s3(a)) ◦ · · · ◦ (fs3(a)a)

and analogously for (afs1(a)). This means that each bijection which can be generated
by f |C(a,f), (af

s2(a)) and (afs1(a)) can also be generated only by f |C(a,f) and (af
s3(a)).

The converse holds, too. From (afs2(a)) ∈ G and from the fact that a and fsi(a) are
neighbors with respect to the cycle C(a, fsi) according to Property 4’, it follows that each
bijection restricted on the cycle C(a, fsi) belongs to G, and hence also the transposition
(afnisi(a)) belongs to G for i = 1, 2. By substituting fn1s1(a) instead of a we get

(fn1s1(a)fn2s2(fn1s1(a))) ∈ G,

(fn1s1(a)fs3(a)) ∈ G,

(a, fs3(a)) = (afn1s1(a)) ◦ (fn1s1(a)fs3(a)) ◦ (afn1s1(a)) ∈ G

and hence 3. is proven.

Remark. From Property 7 we obtain the following conclusion. If G restricted on the
cycle C(a, f) does not contain all its bijections, then all bijections restricted on the cycle
C(a, f) obtained by G, can be obtained by f and the transposition (uv) (if such exists) for
u, v ∈ C(a, f) such that s|p and (s, p) > 1 is the smallest one with that property, where s
is the smallest positive integer which satisfies fs(u) = v.

Now let us return to the proof of the conjecture. Note that G acts transitively on Ta for any
a ∈ {a1, . . . , an}. Moreover, sinceG is not a group of the form Sm1×Sm2×· · ·×Smk , at least
one of the subgroups Ga or G

′′
a is not of the form Smi , where G

′′
a = G|Ta = {f |Ta : f ∈ G}.

Thus we have two cases:
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1. There exists g such that there are at least two nonintersecting minimal cycles C(a, g)
and C(b, g) with the same degree q (here ”minimal” is meant in the sense of Property 6
even if the degree can be 2 in this case), on which g acts simultaneously, and thereby there
is no h ∈ G such that h(x) = x for any x 6∈ C(a, g), and h(x) 6= x for any x ∈ C(a, g).
Indeed, h moves only the points of the cycle C(a, g) and thereby the cycle C(a, h) is a
subcycle of C(a, g).

2. There is no g ∈ G with the previous property.

In both cases we will prove that Mn/G is not a manifold, where M is a 2-dimensional
manifold.

Case 1.
Assume that the degree of the cycles C(a, g) and C(b, g) is 2. There exist u, v, x, y such
that the composition (uv)(xy) enters in the decomposition of g but the transpositions (uv)
and (xy) are not elements of G. Let g be chosen such that the number of its cycles of
degree 2 over which g acts simultaneously is r > 1. The number r will be called pairwise
degree of g. Let g be chosen with the smallest possible value of r.
If we choose a point x = (x1, x2, . . . , xn) ∈Mn such that the coordinates correspond-

ing to the same cycle of degree 2 of g are equal, i.e. xg(i) = xi for all indices i with the
property g2(i) = i, then the points of different cycles are different and the remaining points
are completely different. Here g is a bijection on the index set {1, 2, . . . , n}.
The set Gg = {f ∈ G| f acts invariantly on the point x} = {f ∈ G|f acts invariantly

on any cycle of g} is a group. Therefore, the minimality of r implies that if g and f have
the same pairwise degree r, then f = g. Hence we obtain that Gg = {id, g}.
Now we note that the tangent space at the point corresponding to x in the factor

space is homeomorphic to

(R2)n/Gg ∼= ((R2)r)[2] ×R2 × · · · ×R2

which is not homeomorphic to R2n and hence the space Mn/G is not a manifold.
If the cycles C(a, g) and C(b, g) have degree q > 2 with the previous property and if

we have in mind Properties 1 and 2, then C(a, g) and C(b, g) can be chosen such that q is
a prime number. Further, from Property 4 we can conclude that there is no subcycle of
degree 2, i.e. transposition for none of the previous cycles. Otherwise, Property 4 would
imply that any bijection on the corresponding cycle could be obtained and hence g would
not satisfy the conditions from 1, i.e. there does exist h as in 1.
Further, let us assume that g is chosen such that there exists the smallest possible

number r > 1 for nonintersecting cycles on which g acts simultaneously as above.
We choose a point x = (x1, x2, . . . , xn) ∈Mn such that all coordinates corresponding

to the same cycle of the previous r cycles of g are equal. There the points of different cycles
are different and the remaining points are completely different. In this case the tangent
space at the point x≈ ∈ Mn/G which corresponds to x is homeomorphic to (R2)n/Gg,
where Gg = {f |f(C(x′, g)) = C(x′, g) for any cycle C(x′, g) of g}. By the minimality of
q and r and from Property 6, it follows that Gg = <g> = Zr, since any f ∈ Gg acts
similarly to g on any cycle of g, i.e. over any such cycle fs = g restricted on it, for some
positive integer s. Thus we get that

(R2)n/Gg ∼= ((R2)r)[q] ×R2 × · · · ×R2
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where R2 appears n − qr times. This space is not homeomorphic to R2n and thus we
obtain that Mn/G is not a manifold.

Case 2.
In this case for any cycle C(x, g) there exists f ∈ G such that C(x, g) = C(x, f) and
thereby f(y) = y for any y /∈ C(x, f), i.e. any cycle can be considered separately and the
cycle C(x, f) is called unical. Because of this argument we obtain that Ga = G for any a.
Further we will need the following property.

Property 8. Under the assumptions in case 2, if for any unical cycle obtained from G
any bijection on that cycle is contained in G, then Ga = G ∼= Smi , where mi = |Ta|.

Proof. Since G acts transitively on Ta, it follows that for any u, v ∈ Ta there exist f and
g ∈ G such that g(u) = v and C(u, g) = C(u, f), and thereby the cycle C(u, f) is unical.
But since v ∈ C(u, f), there exists a positive integer s such that fs(u) = v. According to
the assumption that any bijection on the cycle C(a, f) belongs to G, we obtain that also
the transposition (uv) belongs to G. Since u and v are arbitrary elements of the set Ta, it
follows that any bijection in Ta can be generated because f acts trivially on the elements
not in Ta.
Thus there exists at least one cycle C(a, f) as above for which not all transpositions

(uv); u, v ∈ C(a, f), belong to G. We choose G(a, f) with degree p > 2 which is minimal
with this property. Note that in this case p may not be prime. According to Properties 3
and 5, there are two possibilities:

a) The cycle C(a, f) does not contain u, v such that the transposition (uv) belongs to G.

b) Suppose the transposition (uv) belongs to G for some u, v ∈ C(a, f). If s is the smallest
positive integer such that fs(u) = v, then (p, s) = p1 > 1.

We consider now both of these possibilities.

a) From the minimality of the degree of the cycle C(a, f) and from Property 6, we obtain
that for any g ∈ G such that C(a, f) = C(a, g), there is a positive integer s such that
g = fs, i.e. f and g act similarly on C(a, f).
We choose a point x = (x1, . . . , xn) ∈ Mn such that all coordinates corresponding to

the previous cycle of f are equal. There the points of different cycles are different and the
remaining points are completely different.
In this case the tangent space at the point x≈ ∈ Mn/G which corresponds to x is

homeomorphic to (R2)n/Gf , where Gf = {g|g(C(a, f)) = C(a, f)}. Using Property 6
and the minimality of p, it follows that Gf = <f> = Zp, which implies that M

n/Gf is
homeomorphic to (R2)[p] × R2 × · · · × R2. Since this space is not homeomorphic to R2n

for p > 2, the factor space Mn/G is not a manifold.

b) In this case since G is not of the form Sm1 ×Sm2 ×· · ·×Smk it follows that there exists
a cycle C(a, f) such that f contains only the cycle C(a, f) as non-trivial and thereby G
does not contain all permutations of that cycle. According to Property 7, there exists a
transposition (uv) ∈ G, u, v ∈ C(a, f) such that for any g ∈ G such that g(C(a, f)) =
C(a, f) is generated by f and (uv), and thereby fs(u) = v, for which (s,m) = p1 > 1 and
p1 < p. Thus G|C(a,f) is isomorphic to <f, (uv)>.
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Thus we consider a point x = (x1, . . . , xn) ∈ Mn where the coordinates corre-
sponding to the points of the cycle C(a, f) are equal. There the points of different
cycles are different and the remaining points are completely different. Then the tan-
gent space over the corresponding point of Mn/G is homeomorphic to (R2)n/Gf , where
Gf = {g ∈ G|g(C(a, f)) = C(a, f)} ∼= G|C(a,f) ∼= <f, (uv)>. But (R

2)n/Gf is homeomor-

phic to ((R2)(p1))[p/p1] × R2 × · · · × R2. Since p1 > 1 and p/p1 > 1, this space is not a
manifold. Thus Mn/G is not a manifold.
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