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Abstract. Let k be a commutative ring, H a finitely generated projective Hopf
algebra over k and R a k-algebra which is a left H-module algebra. Assume that for
every H-invariant left ideal I of R and every x+ I ∈ (R/I)H there exists s ∈ RH ,
such that s−x ∈ I. The main result of the paper is that R is left FBN if and only
if R is left Noetherian and RH is left FBN. This result generalizes [4, Theorem 8]
and [6, Theorem 2.3].

0. Introduction

A ring A is left bounded if every essential left ideal of A contains a nonzero two-sided ideal.
The ring A is left fully bounded if for every prime ideal P of A, A/P is left bounded. We
say that A is left FBN if it is left Noetherian and left fully bounded. The best known class
of left FBN rings are left Noetherian P.I. rings. Right FBN rings are defined in a symmetric
fashion.
Let k be a field, G a finite group and R an associative unitary k-algebra which is also a

right G-module. Assume that the following condition holds:
(?) For every G-invariant right ideal I of R and every x+ I ∈ (R/I)G, there exists r ∈ RG,
such that r − x ∈ I.

Then J. J. Garcia and A. Del Rio [6, Theorem 2.3] have shown that R is right FBN if and
only if R is right Noetherian and RG is right FBN.
If there exists an r ∈ R such that tr(r) = 1 (this is the case if |G|, the order of G is

invertible in R), then condition (?) holds. So [6, Theorem 2.3] gives a positive answer to
Fisher and Osterburg’s question for right Noetherian rings [4, Question 7 page 367].
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Let k be a commutative ring, H a finitely generated projective Hopf algebra over k and
R a right Noetherian left H-module algebra with an element of trace 1. Then Dǎscǎlescu,
Kelarev and Torrecillas proved that R is right FBN if and only if the subalgebra of invariants
RH is right FBN [4, Theorem 8]. This result generalizes partially [6, Theorem 2.3], since an
example in [6] shows that condition (?) doesn’t imply that R has an element of trace 1. Our
aim is to generalize [4, Theorem 8] and [6, Theorem 2.3] in the case where the action comes
from a finitely generated projective Hopf algebra over k.
Throughout the paper, k is a commutative ring, H is a Hopf k-algebra with comultipli-

cation ∆, counit ε, and antipode s and R is an H-module algebra, i.e. an associative unitary
k-algebra which is also a left H-module such that h.(ab) =

∑
h(h1.a)(h2.b) for all h ∈ H and

a, b ∈ R. We denote by R#H the associated smash product. The expression rh means r#h.
The multiplication in R#H is defined by the rule (ah)(bg) =

∑
h a(h1.b)(h2g).

The group algebra kG of a finite group G is a finite-dimensional cocommutative Hopf
algebra and R#kG is the usual skew group algebra R#G.
For further informations about Hopf algebras and the ring R#H, the reader is referred

to [1, 8, 13].
In the remainder of the paper, all modules are left modules. An R-moduleM which is an

H-module such that h.(am) =
∑
h(h1.a)(h2.m) is an R#H-module. Conversely, if M is an

R#H-module,M may be thought of as an R-module with an action of H such that the above
formula holds. It is clear that R is an R#H-module defined by (ah).b = a(h.b); a, b ∈ R. If
M is an H-module, denote by MH = {m ∈ M | h.m = ε(h)m ∀h ∈ H} the subspace of
invariant elements of M . Clearly, RH is a subring of R called the fixed subring of R (or the
subring of invariants of R). The elements of RH commute with H. If P is an R#H-module,
PH is an RH-module with trivial H-action.

From now on, H is a finitely-generated projective k-module. Let us denote by x1, x2, . . . , xn
a generator set for H. We know from [7, Proposition 1.1] that H has a nonzero left integral
and that the antipode s is a bijective antimorphism of algebras and an antimorphism of
coalgebras. Also, R#H is finitely generated R-free module with generators x1, x2, . . . , xn. If
R is left Noetherian, then clearly so is R#H.
The main result of this article states that if for every H-invariant left ideal I of R and

every x+ I ∈ (R/I)H there exists s ∈ RH such that s−x ∈ I, then R is left FBN if and only
if R is left Noetherian and RH is left FBN. The main tool to prove this result is the basic fact
that R has a canonical structure of R#H-module such that HomR#H (R,R) is isomorphic to
RH . We use the same techniques as in [6].

1. Preliminary results

We recall briefly some basic definitions. Let A be a ring, P and M two A-modules. We say
that M is
− finitely P -generated if there exists an epimorphism P (I) →M for some finite set I;

− P -faithful if HomA(P ,M ′) 6= 0 , for every nonzero submodule M ′ of M .

If M is finitely generated, clearly M is finitely A-generated.
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For every subset X of M (resp. of HomA(P ,M )), we set

lA(X) = {a ∈ A | am = 0 for all m ∈M} (resp. lP (X) = ∩f∈XKerf).

Let A be a ring. An A-module M is said to be quasi-projective if for every submodule N of
M and every homomorphism f : M → M/N there is an endomorphism g : M → M such
that p ◦ g = f where p :M →M/N is the canonical epimorphism.

If R is finitely generated as RH-module and if M is a finitely generated R-module, then M
is a finitely generated R-faithful RH-module.

A subset I of R is H-invariant if H.I ⊆ I. Clearly, the H-invariant left ideals of R are
just the R#H-submodules of R. If I is an H-invariant two-sided ideal of R, then R/I is an
H-module algebra.
The left integral space of H is defined by

∫

H
= {t ∈ H | ht = ε(h)t for all h ∈ H}.

We always fix an element 0 6= t ∈
∫
H . Let M be an R#H-module. If m ∈ M , the H-

submodule Hm ofM is a finitely generated k-submodule ofM containing m. More precisely,
Hm is generated over k by the xim.

Lemma 1.1. An R#H-module is finitely generated as R#H-module if and only if it is
finitely generated as R-module.

Proof. Let M be an R#H-module finitely generated as R#H-module. For every m ∈ M ,
(R#H)m = R(Hm) =

∑
R(xim). So M is generated as R-module by the ximj; 1 ≤ i ≤ n,

1 ≤ j ≤ l; where m1,m2, . . . ,ml ∈M is a generator set for M as R#H-module. 2

The following lemma is the analogue of Nǎstǎsescu and Dǎscǎlescu’s result [9] used in the
proof of [6, Theorem 2.3].

Lemma 1.2. If R is left FBN, then so is R#H.

Proof. By Lemma 1.1, R#H is finitely R-generated. By [6, Corollary 1.9], R is an FBN
left R-module. Let M be a finitely generated R#H-module. Then M is a finitely generated
R#H-faithful R-module. Consider the subsetM = HomR#H (R#H ,M ) of HomR(R#H ,M ).
By [6, Corollary 1.8], there exists a finite subset F of M such that lR#H(M) = lR#H(F ).
Since R#H is left Noetherian, the result follows from [6, Theorem 1.2]. 2

2. The main results

We continue with the preceding notations. The map t̃ : R → R given by t̃(r) = t.r is an
RH-bimodule morphism with values in RH . Consider the following two conditions:

(C1) For every H-invariant left ideal I of R and every x+ I ∈ (R/I)H , there exists s ∈ RH ,
such that s− x ∈ I.

(C2) There exists an r ∈ R, such that t̃(r) = 1.
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Lemma 2.1. (C2)⇒ (C1).

Proof. Let r ∈ R such that t̃(r) = 1, I be an H-invariant left ideal of R and x+ I ∈ (R/I)H .
Then t̃(rx) − x = t̃(rx) − t̃(r)x = t.(rx) − (t.r)x =

∑
t(t1.r)(t2.x − ε(t2)x) ∈ I. Since

t̃(rx) ∈ RH , the result follows. 2

An example in [6] shows that (C1) doesn’t imply (C2).

Lemma 2.2. The following statements are equivalent.
(a) R is R#H-quasi-projective.
(b) Condition (C1) is satisfied.
(c) For every H-invariant left ideal I of R, (R/I)H = (RH + I)/I.

Proof. The equivalence (b) ⇔ (c) is obvious.

(a)⇒(b) Let I be anH-invariant left ideal of R and x+I ∈ (R/I)H . Then right multiplication
by x+I is an R#H- morphism f : R→ R/I. Let π : R→ R/I be the canonical epimorphism.
Since R is R#H-quasi-projective, there exists g ∈ HomR#H (R,R) such that π ◦ g = f . Take
s = g(1), then s ∈ RH and s− x ∈ I.

(b)⇒(a) Let f : R → R/I be an R#H-morphism, where I is an R#H-submodule of R.
Then I is an H-invariant left ideal of R and f(1) + I ∈ (R/I)H . Let s ∈ RH , such that
f(1)+I = s+I and g : R→ R be the right multiplication by smap. Then g ∈ HomR#H (R,R)
and if we denote by π the canonical epimorphism R→ R/I, then π ◦ g = f . 2

Lemma 2.3. Let M be an R#H-module.
(a) The map f 7→ f(1) defines an isomorphism of RH-modules between HomR#H (R,M )
and MH .

(b) EndR#H(R) is isomorphic to R
H .

(c) R is RH-isomorphic to (R#H)H , where R#H is considered as left R#H-module via
left multiplication.

Proof. (a) and (b) follow from [11, Corollary 3.5] and [12, Definition 3.1].

(c) The map R → tR; r 7→ tr is an RH-isomorphism. By [8, Proof of Theorem 8.3.3 page
139], tR = (R#H)H . Note that in [8, 11, 12], k is a field but there is no problem with k
being now only a commutative ring. 2

We can now state the main theorem of the paper.

Theorem 2.4. Assume condition (C1) holds. Then the following statements are equivalent:

(a) R is left FBN.

(b) R is left Noetherian and RH is left FBN.

Proof. By assumption and Lemma 2.2, R is R#H-quasi-projective.

(a)⇒(b) Assume that R is left FBN. By Lemma 1.2 , R#H is left FBN too and, by [6,
Corollary 1.9], R is FBN as R#H-module. Now [6, Theorem 1.7] and Lemma 2.3 (b) imply
that RH ' EndR#H(R) is left FBN.
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(b)⇒(a) Since R is R#H-quasi-projective and R#H is left Noetherian, Lemma 2.3 and [2,
Corollary 4.11] imply that R is a Noetherian RH-module. So R is finitely generated as RH-
module. Let M be a finitely generated R-module. Then M is a finitely generated R-faithful
RH-module. Consider the subsetM = HomR(R,M ) of HomRH (R,M ). Since R

H is left FBN,
there exists a finite subset F of M such that lR(F ) = lR(M) (see [6, Corollary 1.8]). Since R
is left Noetherian, the result follows from [6, Theorem 1.2]. 2

Corollary 2.5. Assume that 1 ∈ t̃(R). Then the following statements are equivalent.

(a) R is left FBN.

(b) R is left Noetherian and RH is left FBN.

Proof. By Lemma 2.1, condition (C1) is satisfied. 2

We close the paper by the following remark:

Remark 2.6. If the map t̃ is surjective, 1 ∈ t̃(R). If k is a field, then H is a finite-
dimensional Hopf algebra over k. If H is semisimple, then the map t̃ is surjective [8, page 55].
If H has a finite global dimension, H is semisimple [3, Corollary 1.7]. If k has characteristic
0, then H is semisimple if and only if s is involutive [10, Theorem 5.4]. If H is cocommutative
or commutative, then s is involutive.
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