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Abstract. Given a point M in Euclidean 3-space we show that there exists a
polygon without self-intersection and not containing M such that viewed from
M each vertex of the polygon is hidden behind an edge of the polygon. As an
application, we construct a toric 4-variety which has peculiar compactification
properties.

Let P1P2 · · ·Pm be a polygon P without self-intersection in Euclidean space En (so P =
[P1, P2] ∪ [P2, P3] ∪ · · · ∪ [Pm−1, Pm] where [Pi, Pi+1] is the line segment with end points
Pi, Pi+1, i = 1, . . . ,m − 1). Given a point M not on P we say that viewing from M the
vertex Pj is hidden behind [Pi,Pi+1 ] if [M,Pj ] ∩ [Pi, Pi+1] is relative interior to [Pi, Pi+1].

Problem 1. Given M , does there exist a polygon P = P1P2 · · ·Pm such that viewing
from M each vertex Pj is hidden behind some edge [Pi, Pi+1] of P?

For n = 1 one can “see” from M either P1 or Pm , hence Problem 1 has no solution. For
n = 2 we shall prove (Theorem 1) that also no solution exists. In Theorem 2 we present a
solution for n = 3 and m = 14. It also provides an example for n > 3.

The following question remains open:

Problem 2. What is the minimal number m for which, in case n = 3, Problem 1 has a
solution?

M must lie in the interior of conv P (convex hull), as one can see as follows: If this is not
so, consider the point U of conv P next to M , and let H be a supporting hyperplane of
conv P in U . If M = U we apply Theorem 1’ below to H ∩ convP. If M 6= U we choose
H perpendicular to the line joining M and U . Now we can “see” from M the vertices of
conv P lying in H ∩ convP.
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As a consequence, P must have at least four vertices which are not coplanar. Since
each of these vertices is hidden behind an edge, it is readily seen that four further vertices
exist. So if mmin is the least possible m we obtain

8 ≤ mmin ≤ 14.

We conjecture that mmin is closer to 14 than to 8.

Theorem 1. Problem 1 has no solution for n = 2.

Proof. Suppose P = P1P2 · · ·Pm does solve Problem 1 for n = 2. Let κ be the largest
circle with center M whose interior is not intersected by P. Since P is a closed set, κ
contains a point P of P. If P were a vertex of P we could “see” this vertex from M . So P
lies in the relative interior of an edge [Pi, Pi+1]. The edge behind which Pi is hidden, has
one end point, Pr say, inside the triangle MPPi (Figure 1).

Figure 1.

Among all vertices of P in this triangle there is one, Ps say, such that the line through
M and Ps intersects [Pi, P ] in a point U for which inside the triangle MUP there is no
further vertex of P. There may be more such vertices on [M,Ps]; the one closest to M
can be “seen” from M , a contradiction. The proof applies without change to the following
more general statement:

Theorem 1’. Theorem 1 remains true if the polygon is replaced by a finite set of non-
crossing line segments, their end points, and further points.

Theorem 2. Problem 1 has a solution for n = 3 and m = 14.

Proof. LetM lie in the origin of a Cartesian coordinate system. We present the coordinates
of each Pi and express it as a positive linear combination of the end points of some edge
of P (Figure 2):

P1 =(0, 10, 10) = 5
16P10 +

15
16P11 P8 =(0, 15, 15) = 15

32P10 +
45
32P11

P2 =(−10, 0,−10) =
5
16P5 +

15
16P6 P9 =(−12,−3,−9) =

6
5P2 +

3
10P3

P3 =(0,−10, 10) =
15
16P10 +

5
16P11 P10 =(0,−16, 8) = 4

15P13 +
4
3P14
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P4 =(10, 0,−10) =
15
16P5 +

5
16P6 P11 =(0, 16, 8) = 4

3P12 +
4
15P13

P5 =(16, 0,−8) =
4
3P7 +

4
15P8 P12 =(−3, 12, 9) =

6
5P1 +

3
10P2

P6 =(−16, 0,−8) =
4
15P8 +

4
3P9 P13 =(15, 0,−15) =

45
32P5 +

15
32P6

P7 =(12,−3,−9) =
3
10P3 +

6
5P4 P14 =(−3,−12, 9) =

3
10P2 +

6
5P3

Figure 2.

Let Σ be a fan in Rn , that is, a system of finitely many rational convex polyhydral cones
with apex 0 such that if a cone is in Σ also its faces lie in Σ, and such that the intersection
of two cones is always a common face of the cones (conditions of a cell complex). To Σ
an n-dimensional algebraic variety XΣ is assigned, called a toric variety (see, for example,
[1], [2], [3]). We remind in the following facts:

(a) XΣ is complete (compact) if Σ covers all of R
n.

(b) If ρ is a k-dimensional cone of Σ, then to the star of ρ in Σ there corresponds an (n−k)-
dimensional subvariety XΣ/ρ of XΣ which is again toric. If Σ/ρ is isomorphic to the fan

{{0}} we obtain an algebraic torus (K\{0})n−k if K is the field under consideration.

We say XΣ′ is a special partial completion of XΣ if Σ is a subfan of Σ
′ and if Σ,Σ′ have

the same 1-cones. By the positive hull posX of a set X we mean the set of all linear
combinations of elements of X with nonnegative coefficients. |Σ| denotes the set of all
points contained in some cone of Σ.
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Theorem 3. There exists a 4-dimensional toric variety XΣ with pos|Σ| = R4 and a
3-dimensional algebraic torus XΣ/ρ (ρ a 1-cone) in it such that for each special partial
completion XΣ′ of XΣ we have XΣ′/ρ = XΣ/ρ.

Remark 1. As a consequence of Theorem 3 we find: XΣ cannot be completed (compact-
ified) without increasing the number of 1-cones in Σ. This, however, can also be shown by
using simpler fans, for example one easily constructed from a polyhedron presented in [4].

Remark 2. Theorem 3 and Remark 1 have no analogues for three-dimensional toric
varieties.

Proof of Theorem 3. We construct a fan Σ as follows. Let the polygon P lie in the
hyperplane {x4 = 1} of R4. We set P ′i := (Pi, 1), i = 1, . . . , 14, and M

′ := (M, 1). Let
pos{P ′i}, i = 1, . . . , 14, pos{M

′}, and pos{−M ′} be the 1-dimensional cones of Σ, and
let pos[P ′i , P

′
i+1], i = 1, . . . , 14, be the 2-dimensional cones of Σ. No 3- and 4-dimensional

cones are assumed to belong to Σ.
If we look for a fan Σ′ which contains Σ and has the same 1-cones as Σ has, we see

that a new cone cannot contain both, pos{M ′} and pos{−M ′} (it would not have 0 as
apex), also not pos{M ′} and pos{P ′i}, by construction of P. So choosing ρ = pos{M

′} we
obtain the theorem.
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