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Abstract. We give an idea of constructing irreducible unitary representations of
Lie groups by using Fedosov deformation quantization in the concrete case of the
group Aff(R) of affine transformations of the real line. By an exact computation of
the star-product and the operator ˆ̀Z , we show that the resulting representations
exhausted all the irreducible representations of this groups.

1. Introduction

Quantization normally means a procedure associating to each classical mechanical system
some quantum systems, namely in the Heisenberg model or Schrödinger one. More precisely,
the usual formulation of a quantization procedure is a correspondence associating to each
symplectic manifold (M,ω) a Hilbert space H of so called quantum states and to each clas-
sical observable (i.e. each complex-valued function) f a quantum observable (i.e. a normal
operator) Q(f), in such a way that the following relations hold

Q(1) = IdH (1)

[Q(f), Q(g)] =
~
i
Q({f, g}) (2)

1This work was supported in part by the Vietnam National Foundation for Fundamental Science Research
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To attack this general problem there are some approaches, such as Feynman path integral
quantization, pseudo-differential operator quantization, Weyl quantization, geometric quanti-
zation, etc. . . . . Following the geometric quantization procedure, at first one restricts oneself
to consider the set of observables to be quantized and secondly interpret the geometric quan-
tization procedure operators, see e.g. [4],

Q(f) := f +
~
i
∇ξf

as operators up to the second order approximation in powers of ~, satisfying the relation
(2). From this point of view the so called Fedosov deformation quantization can be viewed
as higher order approximates of operators satisfying the relation (2). The last interpretation
is the main idea behind deformation quantization. This deformation quantization essentially
differs from the geometric quantization initiated by A. Kirillov, B. Kostant and J.-P. Souriau,
see [1], [10].
Many mathematicians attempted to construct quantum objects related with classical

ones: The first object created was the so called Podles quantum spheres. Interpreting the
classical upper half-plane as the principal affine space of the special linear group SL2(R), one
introduces the quantum upper half-plane as some C*-algebra generated by some generators
and relations. We are concerned with this upper half-plane from another point of view.
It is well-known that co-adjoint orbits are homogeneous symplectic manifolds with respect

to the natural Kirillov form on orbits. A natural question is to associate to these orbits some
quantum systems, which could be called quantum co-adjoint orbits. In the most general
context, some quantum co-adjoint orbits appeared in [1]–[2]. Still it is difficult to calculate
exactly the ?-product and the corresponding representations in concrete cases. In this paper
we give such a construction for the group Aff(R) of affine transformations of the real line. The
main difficulty is the fact that in the concrete case, we should find out explicit formulae. This
group has only two nontrivial 2-dimensional orbits which are the upper and lower half-planes.
We shall use the same notion of star-product, introduced by M. Flato and A. Lichnerowicz,
see [1]. Our main result is the fact that by an exact computation we can find out explicit
star-product formula and then by using the Fedosov deformation quantization, the full list
of irreducible unitary representations of this group. These results show the effectiveness of
the Fedosov quantization, which is not known up to now.
We introduce some notations in §2, in particular, the canonical coordinates are found in

Proposition 2.1. The operators ˆ̀Z which define the representation of the Lie algebra aff(R)
are found in §3. By exponentiating we obtain the corresponding unitary representation of
the Lie group Aff0(R) in Theorem 4.2 of §4.

2. Canonical coordinates on the upper half-planes

Recall that the Lie algebra g = aff(R) of affine transformations of the real straight line is
described as follows, see for example [4]: The Lie group Aff(R) of affine transformations of
type

x ∈ R 7→ ax+ b, for some parameters a, b ∈ R, a 6= 0.



Do Ngoc Diep, Nguyen Viet Hai: Quantum Half-Planes via Deformation Quantization 409

It is well-known that this group Aff(R) is a two-dimensional Lie group which is isomorphic
to the group of matrices

Aff(R) ∼=
{(

a b
0 1

)
| a, b ∈ R, a 6= 0

}
.

We consider its connected component

G = Aff0(R) =
{(

a b
0 1

)
| a, b ∈ R, a > 0

}

of identity element. Its Lie algebra

g = aff(R) ∼=
{(

α β
0 0

)
| α, β ∈ R

}

admits a basis of two generators X, Y with the only nonzero Lie bracket [X, Y ] = Y , i.e.

g = aff(R) ∼=
{
αX + βY | [X, Y ] = Y, α, β ∈ R

}
.

The co-adjoint action of G on g∗ is given (see e.g. [2], [8]) by

〈K(g)F,Z〉 = 〈F,Ad(g−1)Z〉, ∀F ∈ g∗, g ∈ G and Z ∈ g.

Denote the co-adjoint orbit of G in g∗, passing through F by

Ω = K(G)F := {K(g)F | g ∈ G}.

Because the group G = Aff0(R) is exponential (see [4]), for F ∈ g∗ = aff(R)∗, we have

Ω = {K(exp(U)F | U ∈ aff(R)}.

It is easy to deduce that

〈K(expU)F,Z〉 = 〈F, exp(− adU)Z〉.

This gives
K(expU)F = 〈F, exp(− adU)X〉X

∗ + 〈F, exp(− adU)Y 〉Y
∗.

For a general element U = αX + βY ∈ g, we have

exp(− adU) =
∞∑

n=0

1

n!

(
0 0
β −α

)n
=

(
1 0
L e−α

)
,

where L = α+ β + α
β
(1− eβ). This means that

K(expU)F = (λ+ µL)X∗ + (µeα)Y ∗.

From this formula one deduces from [4] the following description of all co-adjoint orbits of G
in g∗:
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• If µ = 0, each point (x = λ, y = 0) on the horizontal axis corresponds to a 0-dimensional
co-adjoint orbit

Ωλ = {λX
∗}, λ ∈ R.

• For µ 6= 0, there are two 2-dimensional co-adjoint orbits: the upper half-plane
{(λ, µ) | λ, µ ∈ R, µ > 0} corresponds to the co-adjoint orbit

Ω+ := {F = (λ+ µL)X
∗ + (µe−α)Y ∗ | µ > 0}, (3)

and the lower half-plane {(λ, µ) | λ, µ ∈ R, µ < 0} corresponds to the co-adjoint orbit

Ω− := {F = (λ+ µL)X
∗ + (µe−α)Y ∗ | µ < 0}. (4)

We shall work from now on for the fixed co-adjoint orbit Ω+. The case of the co-adjoint
orbit Ω− can be treated similarly. First we study the geometry of this orbit and introduce
some canonical coordinates in it. It is well-known from the orbit method [8] that the Lie
algebra g = aff(R) can be realized as the complete right-invariant Hamiltonian vector fields
on co-adjoint orbits Ω ∼= GF \G with flat (co-adjoint) action of the Lie group G = Aff0(R).
On the orbit Ω+ we choose a fix point F = Y ∗. It is well-known from the orbit method
that we can choose an arbitrary point F on Ω. It is easy to see that the stabilizer of this
(and therefore of any) point is trivial, GF = {e}. We identify therefore G with GY ∗ \ G.
There is a natural diffeomorphism IdR× exp(.) from the standard symplectic space R2 with
symplectic 2-form dp ∧ dq in the canonical Darboux (p, q)-coordinates, onto the upper half-
plane H+ ∼= RoR+ with coordinates (p, eq), which is, from the above coordinate description,
also diffeomorphic to the co-adjoint orbit Ω+. We can therefore use (p, q) as the standard
canonical Darboux coordinates in ΩY ∗ . There are also non-canonical Darboux coordinates
(x, y) = (p, eq) on ΩY ∗ . We show now that in these coordinates (x, y), the Kirillov form looks
like ωY ∗(x, y) =

1
y
dx ∧ dy, but in the canonical Darboux coordinates (p, q), the Kirillov form

is just the standard symplectic form dp∧dq. This means that there are symplectomorphisms
between the standard symplectic space (R2, dp∧dq), the upper half-plane (H+, 1ydx∧dy) and
the co-adjoint orbit (ΩY ∗ , ωY ∗). Each element Z ∈ g can be considered as a linear functional
Z̃ on co-adjoint orbits, as subsets of g∗, Z̃(F ) := 〈F,Z〉. It is well-known that this linear
function is just the Hamiltonian function associated with the Hamiltonian vector field ξZ ,
which represents Z ∈ g following the formula

(ξZf)(x) :=
d

dt
f(x exp(tZ))|t=0,∀f ∈ C

∞(Ω+).

The Kirillov form ωF is defined by the formula

ωF (ξZ , ξT ) = 〈F, [Z, T ]〉,∀Z, T ∈ g = aff(R). (5)

This form defines the symplectic structure and the Poisson brackets on the co-adjoint orbit
Ω+. For the derivative along the direction ξZ and the Poisson bracket we have relation ξZ(f) =
{Z̃, f},∀f ∈ C∞(Ω+). It is well-known in differential geometry that the correspondence
Z 7→ ξZ , Z ∈ g defines a representation of our Lie algebra by vector fields on co-adjoint
orbits. If the action of G on Ω+ is flat [4], we have the second Lie algebra homomorphism
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from strictly Hamiltonian right-invariant vector fields into the Lie algebra of smooth functions
on the orbit with respect to the associated Poisson brackets.
Denote by ψ the indicated symplectomorphism from R2 onto Ω+

(p, q) ∈ R2 7→ ψ(p, q) := (p, eq) ∈ Ω+

Proposition 2.1. 1. The Hamiltonian function fZ = Z̃ in canonical coordinates (p, q) of the
orbit Ω+ is of the form

Z̃ ◦ ψ(p, q) = αp+ βeq, if Z =

(
α β
0 0

)
.

2. In the canonical coordinates (p, q) of the orbit Ω+, the Kirillov form ωY ∗ is just the standard
form ω = dp ∧ dq.

Proof. 1. Each element F ∈ (aff(R))∗ is of the form F = xX∗ + yY ∗. This means that the
value of the function fZ = Z̃ on the element Z = αX + βY is

Z̃(F ) = 〈F,Z〉 = 〈xX∗ + yY ∗, αX + βY 〉 = αx+ βy.

It follows therefore that

Z̃ ◦ ψ(p, q) = αp+ βeq, if Z =

(
α β
0 0

)
. (6)

2. In canonical Darboux coordinates (p, q), F = pX∗+ eqY ∗ ∈ Ω+, and for Z =

(
α1 β1
0 0

)
,

T =

(
α2 β2
0 0

)
, we have

〈F, [Z, T ]〉 = 〈pX∗ + eqY ∗, (α1β2 − α2β1)Y 〉 = (α1β2 − α2β1)e
q,

i.e.
ωF (ξZ , ξT ) = (α1β2 − α2β1)e

q. (7)

Let us consider two vector fields

ξZ = α1
∂

∂q
− β1e

q ∂

∂p
and ξT = α2

∂

∂q
− β2e

q ∂

∂p
.

We have

ξZ ⊗ ξT = α1α2
∂

∂q
⊗

∂

∂q
+ (α1β2 − α2β1)e

q ∂

∂p
⊗

∂

∂q
+ β1β2e

2q ∂

∂p
⊗

∂

∂p
. (8)

From (7) and (8) we conclude that in the canonical coordinates the Kirillov form is just the
standard symplectic form ω = dp ∧ dq.
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3. Computation of generators ˆ̀Z

Let us denote by Λ the 2-tensor associated with the Kirillov standard form ω = dp ∧ dq in
canonical Darboux coordinates. We use also the multi-index notation. Let us consider the
well-known Moyal ?-product of two smooth functions u, v ∈ C∞(R2), defined by

u ? v = u.v +
∑

r≥1

1

r!

( 1
2i

)r
P r(u, v),

where
P r(u, v) := Λi1j1Λi2j2 . . .Λirjr∂i1i2...iru∂j1j2...jrv,

with

∂i1i2...ir :=
∂r

∂xi1 . . . ∂xir
, x := (p, q) = (p1, . . . , pn, q

1, . . . , qn)

as multi-index notation. It is well-known that this series converges in the Schwartz distri-
bution spaces S(Rn). We apply this to the special case n = 1. In our case we have only
x = (x1, x2) = (p, q).

Proposition 3.1. In the above mentioned canonical Darboux coordinates (p, q) on the orbit
Ω+, the Moyal ?-product satisfies the relation

iZ̃ ? iT̃ − iT̃ ? iZ̃ = i[̃Z, T ], ∀Z, T ∈ aff(R).

Proof. Consider the elements Z = α1X + β1Y and T = α2X + β2Y . Then as noted above
the corresponding Hamiltonian functions are Z̃ = α1p+ β1e

q and T̃ = α2p+ β2e
q. It is easy

then to see that P 0(Z̃, T̃ ) = Z̃.T̃ ,

P 1(Z̃, T̃ ) = {Z̃, T̃} = ∂pZ̃∂qT̃ − ∂qZ̃∂pT̃ = (α1β2 − α2β1)e
q,

P 2(Z̃, T̃ ) = Λ12Λ12∂ppZ̃∂qqT̃ + Λ
12Λ21∂pqZ̃∂qpT̃ + Λ

21Λ12∂qpZ̃∂pqT̃ + Λ
21Λ21∂qqZ̃∂ppT̃ = 0.

By analogy we have P k(Z̃, T̃ ) = 0,∀k ≥ 2. Thus,

iZ̃ ? iT̃ − iT̃ ? iZ̃ =
1

2i
[P 1(iZ̃, iT̃ )− P 1(iT̃ , iZ̃)] = i(α1β2 − α2β1)e

q,

on one hand.
On the other hand, because [Z, T ] = ZT − TZ = (α1β2 − α2β1)Y , we have

i[̃Z, T ] = i(α1β2 − α2β1)e
q = iZ̃ ? iT̃ − iT̃ ? iZ̃.

The proposition is hence proved.
Consequently, to each adapted chart ψ in the sense of [2], we associate a G-covariant

?-product.

Proposition 3.2. (See [6].) Let ? be a formal differentiable ?-product on C∞(M,R), which
is covariant under G. Then there exists a representation τ of G in AutN [[ν]] such that

τ(g)(u ? v) = τ(g)u ? τ(g)v.
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Let us denote by Fpu the partial Fourier transform of the function u from the variable p to
the variable η, i.e.

Fp(u)(η, q) :=
1
√
2π

∫

R
e−ipηu(p, q)dp.

Let us denote by F−1p (u) the inverse Fourier transform.

Lemma 3.3. We have

1. ∂pF−1p (u) = iF
−1
p (η.u),

2. Fp(p.v) = i∂ηFp(v),

3. P k(Z̃,F−1p (u)) = (−1)
kβeq

∂kF−1p (u)
∂kp

, with k ≥ 2.

Proof. The first two formulas are well-known from theory of Fourier transforms. We repro-
duce them to locate notation.

1. ∂pF−1p (u) = ∂p(
1√
2π

∫
R e
ipηu(η, q)dη) = 1√

2π

∫
R iηe

ipηu(η, q)dη = iF−1p (η.u).

2. i∂ηFp(v) = i∂η(
1√
2π

∫
R e
−ipηv(p, q)dp = i 1√

2π

∫
R−ipe

−ipηv(p, q)dp =

= 1√
2π

∫
R e
−ipηpv(p, q)dp = Fp(p.v).

3. Remark that Λ =

(
0 −1
1 0

)
in the standard symplectic Darboux coordinates (p, q) on

the orbit Ω+ and we have had Z̃ = αp+ βe
q, then

P 2(Z̃,F−1p (u)) = Λ
12Λ12∂ppZ̃∂qqF

−1
p (u)) + Λ

12Λ21∂pqZ̃∂qpF
−1
p (u))+

Λ21Λ12∂qpZ̃∂pqF
−1
p (u)) + Λ

21Λ21∂qqZ̃∂ppF
−1
p (u)) = (−1)

2βeq∂2ppF
−1
p (u)).

By analogy we obtain

P k(Z̃,F−1p (u)) = (−1)
kβeq∂kp...pF

−1
p (u)),∀k ≥ 3.

The lemma is therefore proved.

For each Z ∈ aff(R), the corresponding Hamiltonian function is Z̃ = αp + βeq and we can
consider the operator `Z acting on dense subspace L

2(R2, dpdq
2π
)∞ of smooth functions by left ?-

multiplication by iZ̃, i.e. `Z(u) = iZ̃ ? u. It is then extended to the whole space L
2(R2, dpdq

2π
).

It is easy to see that, because of the relation in Proposition 3.1, the correspondence Z ∈
aff(R) 7→ `Z = iZ̃ ? . is a representation of the Lie algebra aff(R) on the space N [[ i

2
]] of

formal power series in the parameter ν = i
2
with coefficients in N = C∞(M,R), see e.g. [6]

for more detail.
We study now the convergence of the formal power series. In order to do this, we look

at the ?-product of iZ̃ as the ?-product of symbols and define the differential operators
corresponding to iZ̃. It is easy to see that the resulting correspondence is a representation
of g by pseudo-differential operators.
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Proposition 3.4. For each Z ∈ aff(R) and for each compactly supported C∞-function u ∈
C∞c (R2), we have

ˆ̀
Z(u) := Fp ◦ `Z ◦ F

−1
p (u) = α(

1

2
∂q − ∂η)u+ iβe

q− η
2u.

Proof. For each Z ∈ g = aff(R), we have

ˆ̀
Z(u) := Fp ◦ `Z ◦ F

−1
p (u) = Fp(iZ̃ ? F−1p (u)) = iFp(

∑

r≥0

(
1

2i

)r
P r(Z̃,F−1p (u)).

Remark that

P 1(Z̃,F−1p (u)) = {Z̃,F
−1
p (u)} = α∂qF

−1
p (u)− βe

q∂pF
−1
p (u)

and applying Lemma 3.3, we obtain:

iFp
(∑

r≥0

1

r!

( 1
2i

)r
P r(Z̃,F−1p (u)

)
=

= iFp[(αp+ βeq)F−1p (u) +
1
2i
α∂qF−1p (u)−

1
2i
βeq∂pF−1p (u)+

+ 1
2!

(
−1
2i

)2
βeq∂2pF

−1
p (u) + . . .+

1
n!

(
−1
2i

)n
βeq∂npF

−1
p (u) + . . .]

= i[αi∂ηu+ βe
qu+ 1

2i
α∂qu−

1
2i
βeqFp(iF−1p (η.u))+

+ 1
2!

(
− 1
2i

)2
βeqFp(i2F−1p (η

2.u)) + . . .+ 1
n!

(
− 1
2i

)n
βeqFp(inF−1p (η

n.u)) + . . .]

= i[iα∂ηu+
1
2i
α∂qu+ βe

qu− βeq η
2
u+

+ 1
2!
βeq
(
η
2

)2
u+ . . .+ 1

n!
(−1)nβeq

(
η
2

)n
u+ . . .]

= α(1
2
∂q − ∂η)u+ iβeq[1−

η
2
+ 1
2!

(
η
2

)2
+ . . .+ (−1)n 1

n!

(
η
2

)n
+ . . .]

= α(1
2
∂q − ∂η)u+ iβeq−

η
2u.

The proposition is therefore proved.

Remark 3.5. Set s = q − η
2
, t = q + η

2
, we have

ˆ̀
Z(u) = α

∂u

∂s
+ iβesu, i.e. ˆ̀Z = α

∂

∂s
+ iβes, (9)

which provides a representation of the Lie algebra aff(R).

4. The associate irreducible unitary representations

Our aim in this section is to exponentiate the obtained representation ˆ̀Z of the Lie algebra
aff(R) to the corresponding representation of the Lie group Aff0(R). We shall prove that the
result is exactly the irreducible unitary representation TΩ+ obtained from the orbit method
or Mackey small subgroup method applied to the group Aff(R). Let us recall first the well-
known list of all the irreducible unitary representations of the group of affine transformation
of the real line.
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Theorem 4.1. [7] Every irreducible unitary representation of the group Aff(R) of all the
affine transformations of the real line, up to unitary equivalence, is equivalent to one of the
pairwise nonequivalent representations:

• the infinite-dimensional representation S, realized in the space L2(R∗, dy|y|), where R
∗ =

R \ {0} and defined by the formula

(S(g)f)(y) := eibyf(ay), where g =

(
a b
0 1

)
,

• the representation U ελ, where ε = 0, 1, λ ∈ R, realized in the 1-dimensional Hilbert space
C1 and given by the formula

U ελ(g) = |a|
iλ(sgn a)ε.

Let us consider now the connected component G = Aff0(R). The irreducible unitary repre-
sentations can be obtained easily from the orbit method machinery.

Theorem 4.2. The representation exp(ˆ̀Z) of the group G = Aff0(R) is exactly the irre-
ducible unitary representation TΩ+ of G = Aff0(R) associated following the orbit method
construction, to the orbit Ω+, which is the upper half-plane H ∼= Ro R∗, i.e.

(exp(ˆ̀Z)f)(y) = (TΩ+(g)f)(y) = e
ibyf(ay),∀f ∈ L2(R∗,

dy

|y|
),

where g = expZ =

(
a b
0 1

)
.

Proof. We choose an admissible Lie sub-algebra h = 〈X〉. Let us denote by H the corre-
sponding analytic subgroup of G with Lie algebra h. The corresponding representation is
IndGH χF = Ind

G
H χY ∗ . The homogeneous space H \G is homeomorphic to R∗ = R \ {0} with

the quasi-invariant measure dy|y| . The corresponding representation TΩ+ is given exactly by
the same formula as the representation S in Theorem 4.1. More precisely, for the element

Z =

(
α β
0 0

)
∈ g = aff(R),

expZ = exp

(
α β
0 0

)
=

(
a b
0 0

)
=






(
eα β

α
(eα − 1)

0 0

)
if α 6= 0

(
1 β
0 1

)
if α = 0

It is reasonable to simplify the notation, to consider the second case. Remark that because
y = eq is the natural but non-canonical coordinate in R∗ ∼= H \G we can write the induced
representation obtained from the orbit method construction as

TΩ+(expZ)f(e
s) = exp(i

β

α
(eα − 1)es)f(eα+s). (10)
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Therefore for the one-parameter subgroup exp(tZ), t ∈ R, the action is given by the formula

TΩ+(exp tZ)f(e
s) = exp(i

β

α
(etα − 1)es)f(etα+s).

By a direct computation, we obtain

∂

∂t
TΩ+(exp tZ)f(e

s) = (11)

= iβ
α
esαetα exp(iβ

α
(etα − 1)es)f(ets+s) + exp(iβ

α
(etα − 1)es)αetα+s.∂sf

= etα+s exp(iβ
α
(etα − 1)es)[iβf(etα+s) + α.∂sf ],

on one hand. On the other hand, we have

ˆ̀
ZTΩ+(exp tz)f(e

s) = (12)

= (iβes + α.∂s)[exp(i
β
α
(etα − 1)es)f(etα+s)] = iβes exp(iβ

α
(etα − 1)es)f(etα+s)+

+α[iβ
α
(etα − 1)es exp(iβ

α
(etα − 1)es)f(etα+s) + exp(iβ

α
(etα − 1)es)etα+s.∂sf ]

= etα+s exp(iβ
α
(etα − 1)es)[iβf(etα+s) + α.∂sf ].

From (11) and (12) follows that

∂

∂t
TΩ+(exp(tZ))f(y) =

ˆ̀
ZTΩ+(exp(tZ))f(y).

Obviously, TΩ+(exp(tZ))f(y)|t=0 = f(y). This means that TΩ+(exp(tZ))f(y) is the unique
solution of the Cauchy problem

{
∂
∂t
U(t, y) = ˆ̀ZU(t, y)
U(0, y) = Id

This gives exp(ˆ̀Z)f(y) ≡ TΩ+(expZ)f(y). The proof of the theorem is therefore achieved.

By analogy, we have also

Theorem 4.3. The representation exp(ˆ̀Z) of the group G = Aff0(R) is exactly the irre-
ducible unitary representation TΩ− of G = Aff0(R) associated following the orbit method
construction, to the orbit Ω−, which is the lower half-plane H ∼= Ro R∗, i.e

(exp(ˆ̀Z)f)(y) = (TΩ−(g)f)(y) = e
ibyf(ay),∀f ∈ L2(R∗,

dy

|y|
),

where g = expZ =

(
a b
0 1

)
.

Remark 4.4.
1. We have demonstrated how all the irreducible unitary representations of the con-

nected group of affine transformations could be obtained from deformation quantization. It
is reasonable to refer to the algebras of functions on co-adjoint orbits with this ?-product as
quantum ones.
2. In a forthcoming work, we shall do the same calculation for the group of affine

transformations of the complex straight line C. This achieves the description of quantum
MD co-adjoint orbits, see [4] for definition of MD Lie algebras.
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