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Abstract. All rings are commutative with identity and all modules are unitary.
In this note we give some properties of a finite collection of submodules such that
the sum of any two distinct members is multiplication, generalizing those which
characterize arithmetical rings. Using these properties we are able to give a con-
cise proof of Patrick Smith’s theorem stating conditions ensuring that the sum
and intersection of a finite collection of multiplication submodules is a multiplica-
tion module. We give necessary and sufficient conditions for the intersection of a
collection (not necessarily finite) of multiplication modules to be a multiplication
module, generalizing Smith’s result. We also give sufficient conditions on the sum
and intersection of a collection (not necessarily finite) for them to be multiplica-
tion. We apply D. D. Anderson’s new characterization of multiplication modules
to investigate the residual of multiplication modules.
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0. Introduction

Let R be a ring and M an R-module. For submodules K and L of M, the residual of K
by L, denoted by [K : L], is the set of all x in R such that xL ⊆ K. An R-module M
is called a multiplication module if for each submodule N of M there exists an ideal I of
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R such that N = IM [3]. It is clear that every cyclic module is multiplication, and that a
multiplication module over a local ring is cyclic [3]. Let N be a submodule of a multiplication
module M. There exists an ideal I of R such that N = IM. Note that I ⊆ [N : M ] and
N = IM ⊆ [N : M ]M ⊆ N so that N = [N : M ]M. It follows that M is a multiplication
R-module if and only if N = [N : M ]M for all submodules N of M. An ideal A of R which
is a multiplication module is called a multiplication ideal.
In Section 2 (Theorem 2.1) we establish several properties of a finite collection of sub-

modules Ni of an R-module M which satisfy the condition that Ni+Nj is multiplication for
all i < j. The interest in these properties lies in the fact that they generalize the standard
characterization of arithmetical rings, see [6], [9] and [10]. Using these properties, we offer a
short proof of Patrick Smith’s result giving conditions for the sum and intersection of a finite
collection of multiplication modules to be a multplication module [18, Theorem 8]. Some
examples will be given to highlight these properties by showing that they fail without the
assumption of finiteness and that their converses are not true in general.
In Section 3 we give (see Theorem 3.2) necessary conditions for the intersection of a

collection (not necessarily finite) of multiplication modules to be a multiplication module.
We also give (see Theorems 3.6 and 4.2) conditions on the sum and intersection of an arbitrary
collection of modules sufficient for them to be multliplication modules, generalizing Smith’s
theorem.
In Section 4 we apply D.D. Anderson’s new characterization of multiplication modules,

[2, Theorem 2.1], to obtain yet another characterization. In Theorem 4.3 we apply it to
residuals of multiplication modules.
For the basic concepts we refer the reader to [5], [7], [11], [12] and [17].

1. Preliminaries

Let R be a ring and Ni(1 ≤ 1 ≤ n) a finite collection of submodules of an R-module M.
Throughout this note we use the following notation:

S =
n∑
l=1

Nl, N =
n⋂
l=1

Nl, Ŝi =
∑
j 6=i

Nj and N̂i =
⋂
j 6=i

Nj.

Lemma 1.1. Let R be a ring and Ni(1 ≤ i ≤ n) a finite collection of submodules of an
R-module M such that

[Ni : Nj] + [Nj : Ni] = R for all i < j.

Then
(i)

n∑
i=1

[Ŝi : S] = R, (ii)
n∑
i=1

[N : N̂i] = R.

Proof. (i) From the assumption we obtain
n∑
i=1

∑
j 6=i

[Nj : Ni] = R. Obviously

∑
j 6=i

[Nj : Ni] ⊆ [Ŝi : Ni] for all 1 ≤ i ≤ n.

Hence
n∑
i=1

[Ŝi : Ni] = R. But [Ŝi : Ni] = [Ŝi : S], and hence (i) is proved. The second part is

similar. �
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Compare the following result with [18, Proposition 4] and [7, Theorem 25.2].

Corollary 1.2. Let R be a ring and Ni(1 ≤ i ≤ n) a finite collection of submodules of an
R-module M such that [Ni : Nj] + [Nj : Ni] = R for all i < j. Then

(i) [S : K] =
n∑
i=1

[Ni : K] for every submodule K of M,

(ii)
n∑
i=1

[Ni : S] = R,

(iii) [K : N ] =
n∑
i=1

[K : Ni] for every submodule K of M,

(iv)
n∑
i=1

[N : Ni] = R,

(v) K
⋂
S =

n∑
i=1

(K
⋂
Ni) for every submodule K of M,

(vi) K +N =
n⋂
i=1

(K +Ni) for every submodule K of M,

(vii) IN =
n⋂
l=1

INl for every ideal I of R.

Proof. We prove (i) by induction on n. The result is true for n = 2 [18, Proposition 4].
Assume n > 2 and the result is true for n− 1, i.e. for every submodule K of M,

[Ŝi : K] =
∑

j 6=i

[Nj : K], for all 1 ≤ i ≤ n.

Suppose K is a submodule of M. Clearly
n∑
l=1

[Nl : K] ⊆ [S : K]. By Lemma 1.1, there exists

xi ∈ [Ŝi : S] such that 1 =
n∑
i=1

xi. Let z ∈ [S : K]. Then z =
n∑
i=1

zxi and zxiK ⊆ xiS ⊆

Ŝi for all 1 ≤ i ≤ n. It follows that

z ∈
n∑

i=1

[Ŝi : K] =
n∑

i=1

[Ni : K]

so that [S : K] ⊆
n∑
i=1

[Ni : K], and (i) is proved. For (ii) take K = S in (i). (iii) is similar to

(i). For (iv) take K = N in (iii).

To prove (v), let K be any submodule of M. Clearly
n∑
l=1

K
⋂
Nl ⊆ K

⋂
S. Using part (ii), there

exist xi ∈ [Ni : S] such that 1 =
n∑
i=1

xi. Let u ∈ K
⋂
S. Then u =

n∑
i=1

uxi and uxi ∈ K
⋂
Ni

for all 1 ≤ i ≤ n. Thus u ∈
n∑
i=1

K
⋂
Ni and hence K

⋂
S ⊆

n∑
i=1

K
⋂
Ni.
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To prove (vi), assume that K is a submodule of M. Then clearly K +N ⊆
n⋂
l=1

(K +Nl). By

part (iv) there exist xi ∈ [N : Ni] such that 1 =
n∑
i=1

xi. Let v ∈
n⋂
j=1

(K+Nj). Then v = kj +nj

for some kj ∈ K, nj ∈ Nj and all 1 ≤ j ≤ n. It follows that xjv = xjkj + xjnj ∈ K +N, and

hence v =
n∑
j=1

xjv ∈ K +N so that
n⋂
l=1

(K +Nl) ⊆ K +N and (vi) follows.

Finally, let I be an ideal of R. Clearly IN ⊆
n⋂
l=1

INl. Again by (vi), 1 =
n∑
i=1

xi for some

xi ∈ [N : Ni]. Let y ∈
n⋂
r=1

INr. Then y ∈ INr for all 1 ≤ r ≤ n. Hence y =
m∑
k=1

urknrk where

urk ∈ I and nrk ∈ Nr for all 1 ≤ r ≤ n and all 1 ≤ k ≤ m. It follows that

y =
n∑

r=1

yxr =
m∑

k=1

n∑

r=1

urk(nrkxr).

But nrkxr ∈ N and hence urk(nrkxr) ∈ IN for all 1 ≤ r ≤ n and all 1 ≤ k ≤ m. This implies
that y ∈ IN and thus completes the proof of (vii). �

We observe that if R is a ring and Ni(1 ≤ i ≤ n) is a finite collection of finitely generated
submodules of an R-module M such that Ni + Nj is multiplication for all i < j, then
the conclusions of Corollary 1.2 are satisfied, see [16, Lemma 3.3] and [18, Corollary 3 of
Theorem 1].
An R-module M is called a weak-cancellation module if, for all ideals I and J of R, if

IM ⊆ JM then I ⊆ J + ann(M). It is clear that every cyclic module is weak-cancellation,
from which it follows that finitely generated multiplication modules are weak-cancellation,
see [4, Theorem 3.1] and [18, Corollary of Theorem 9]. However, the following holds for
multiplication modules in general.

Lemma 1.3. Let R be a ring and M a multiplication R-module. Let I and J be ideals of R.
Then IM ⊆ JM if and only if I ⊆ J + ann(m) for all m ∈M.

Proof. Suppose first that I and J are ideals such that IM ⊆ JM. By [18, Theorem 9]
either I ⊆ J +ann(M) and the result follows immediately, or M = [(J +ann(M)) : I]M. Let
m ∈M. Then Rm = AM for some ideal A of R. Now

Rm = AM = A[(J + ann(M)) : I]M

= [(J + ann(M)) : I]AM = [(J + ann(M)) : I]m,

and hence R = [(J + ann(M)) : I] + ann(m). Finally

I = RI = [(J + ann(M)) : I]I + ann(m)I

⊆ J + ann(M) + ann(m)I ⊆ J + ann(m),

as required. The converse is trivial. �
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Corollary 1.4. Let R be a ring and Nλ(λ ∈ Λ) a collection of submodules of an R-module
M, and let S =

∑
λ∈ΛNλ be a multiplication module. Then

(i)
∑
λ∈Λ[NλP : SP ] = RP for every maximal ideal P of R.

(ii)
∑
λ∈Λ[Nλ : S] + ann(a) = R for every a ∈ S.

In particular, if K and L are submodules of an R-moduleM such that K+L is multiplication,
then

(i) [KP : LP ] + [LP : KP ] = RP for every maximal ideal P of R.

(ii) [K : L] + [L : K] + ann(a) = R for every a ∈ K + L.

Proof. (i) As S is a multiplication module, we have Nλ = [Nλ : S]S for all λ ∈ Λ. Hence
S =

∑
λ∈Λ[Nλ : S]S. Assume P is a maximal ideal of R. Then SP is a weak-cancellation

RP -module. It follows that

RP =
∑

λ∈Λ

[Nλ : S]P + ann(SP ) ⊆
∑

λ∈Λ

[NλP : SP ] + ann(SP ).

But ann(SP ) ⊆ [NλP : SP ] for all λ ∈ Λ. Thus (i) is proved.

Part (ii) follows immediately by the preceding Lemma, since S =
∑
λ∈Λ[Nλ : S]S. �

We remark that Patrick Smith [18, Theorem 2] proved (ii) under the additional assumption
that the submodules Nλ of M are multiplication.

2. Finite collections

The following theorem shows several properties of a finite collection of submodules Ni(1 ≤
i ≤ n) such that Ni + Nj is multiplication for all i < j. These properties generalize the
characteristic properties of Prüfer domains (see for example [7, Theorem 25.2], [12, Theorem
6.6]) and of arithmetical rings (see [9, Lemma 2] and [10, Theorem 3]). Later we use these
properties to give a concise proof of Smith’s theorem [18, Theorem 8].

Theorem 2.1. Let R be a ring and Ni(1 ≤ i ≤ n) a finite collection of submodules of an
R-module M such that Ni +Nj is multiplication for all i < j. Then

(i)
n∑
i=1

[Ŝi : S] + ann(a) = R for all a ∈ S,

(ii)
n∑
i=1

[N : N̂i] + ann(a) = R for all a ∈ S,

(iii) [S : K] =
n∑
i=1

[Ni : K] (mod ann(a)) for all submodules K of M and all a ∈ S,

(iv)
n∑
i=1

[Ni : S] + ann(a) = R for all a ∈ S,

(v) [K : N ] =
n∑
i=1

[K : Ni] (mod ann(a)) for all submodules K of M and all a ∈ S,

(vi)
n∑
i=1

[N : Ni] + ann(a) = R for all a ∈ S,
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(vii) K
⋂
S =

n∑
i=1

(K
⋂
Ni) for every submodule K of M,

(viii) K +N =
n⋂
i=1

(K +Ni) for every submodule K of M,

(ix) IN =
n⋂
l=1

INl for every ideal I of R.

Proof. As Ni +Nj is multiplication for all i < j, we infer from Corollary 1.4 that

[Ni : Nj] + [Nj : Ni] + ann(a) = R for all a ∈ Ni +Nj.

It follows that
n∑

i=1

n∑

j=1

[Ni : Nj] + [Nj : Ni] + ann(a) = R,

and hence by Lemma 1.1 we get that
n∑

i=1

[Ŝi : S] + ann(a) = R for all a ∈ Nk +Nl, k < l.

Let m ∈ S. Then m =
∑
k<l

akl where akl ∈ Nk +Nl. Hence

R =
n∑

i=1

[Ŝi : S] +
⋂
k<l

ann(akl) =
n∑

i=1

[Ŝi : S] + ann(
∑

k<l

Rakl) ⊆
n∑

i=1

[Ŝi : S] + ann(m),

so that

R =
n∑

i=1

[Ŝi : S] + ann(m) for all m ∈ S.

(ii) is similar. For (iii), let K be a submodule ofM . By induction it suffices to assume n = 2.
By (i),

[N1 : N1 +N2] + [N2 : N1 +N2] + ann(a) = R for all a ∈ N1 +N2.

Let a ∈ N1 +N2. Clearly

[N1 : K] + [N2 : K] + ann(a) ⊆ [N1 +N2 : K] + ann(a).

Now let w ∈ [N1 + N2 : K] + ann(a). Then w = w1 + w2 where w1 ∈ [N1 + N2 : K] and
w2 ∈ ann(a). Also, there exist x1, x2, z ∈ R such that x1 ∈ [N1 : N1+N2], x2 ∈ [N2 : N1+N2],
z ∈ ann(a) and 1 = x1+x2+z. But w = w1(x1+x2+z)+w2 and w1x1K ⊆ x1(N1+N2) ⊆ N1,
and hence w1x1 ∈ [N1 : K]. Similarly, w1x2 ∈ [N2 : K]. Also, w1z + w2 ∈ ann(a), and this
shows that

[N1 +N2 : K] + ann(a) ⊆ [N1 : K] + [N2 : K] + ann(a).

For (iv), take K = S in (iii). (v) is similar to (iii), and for (vi), take K = N in (v).

The last three parts of the theorem are true locally as seen by using Corollary 1.2 (parts (v),
(vi), and (vii)) and Corollary 1.4, and hence they are true globally. �

Lüneburg [14, Theorem 3] proved that for ideals I, J of a domain R, if I + J is invertible,
then (I + J)(I

⋂
J) = IJ. The following corollary extends this result.
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Corollary 2.2. Let R be a ring and I, J ideals of R such that I + J is a multiplication ideal
of R. Then

IJ = (I + J)(I
⋂
J).

Proof. As I + J is multiplication, we infer from Theorem 2.1 that

(I + J)(I
⋂
J) = (I + J)I

⋂
(I + J)J ⊇ JI

⋂
IJ = IJ.

The other inclusion is always satisfied. �

We apply Theorem 2.1 to give a concise proof of a theorem of P. Smith.

Theorem 2.3. [18, Theorem 8] Let R be a ring and Ni(1 ≤ i ≤ n) a collection of submod-
ules of an R-module M such that Ni +Nj is multiplication for all i < j. Then:

(i) S is multiplication.

(ii) If each Ni is multiplication, then N is multiplication.

Proof. (i) Let k ∈ {1, . . . , n}. It follows from Theorem 2.1(i) that

Ŝk = (
n∑

i=1

[Ŝi : S])Ŝk.

Then

Ŝk = [Ŝk : S]Ŝk + (
∑

i6=k

[Ŝi : S])Ŝk = [Ŝk : S]Ŝk + (
∑

i6=k

[Ŝi : Ŝk])Ŝk.

By induction suppose that Ŝj is multiplication for all j ∈ {1, . . . , n}. Then [Ŝi : Ŝk]Ŝk = [Ŝk :
Ŝi]Ŝi = [Ŝk : S]Ŝi for all i 6= k, and hence

Ŝk = [Ŝk : S]Ŝk +
∑

i6=k

[Ŝk : S]Ŝi = [Ŝk : S]S.

Let K be any submodule of M. Then by Theorem 2.1 (vii) we have that

K
⋂
S =

n∑

i=1

K
⋂
Ni ⊆

n∑

i=1

K
⋂
Ŝi =

n∑

i=1

[K : Ŝi]Ŝi =
n∑

i=1

[K : Ŝi][Ŝi : S]S ⊆ [K : S]S ⊆ K
⋂
S,

so that K
⋂
S = [K : S]S. This shows that S is a multiplication module.

For the second part, let K be any submodule of M. By Theorem 2.1 (viii),

K
⋂
N =

n⋂
i=1

K
⋂
Ni =

n⋂
i=1

[K : Ni]Ni ⊆
n⋂
i=1

[K : N ]Ni = [K : N ]N ⊆ K
⋂
N,

so that K
⋂
N = [K : N ]N, and N is a multiplication module. �

We prove two corollaries. The first is a generalization of [16, Corollary 3.4] and [18, Propositon
12], and the second shows that Theorem 2.1(vii) is true for an arbitrary collection of modules.
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Corollary 2.4. Let R be a ring and Ni(1 ≤ i ≤ n) a finite collection of finitely generated
multiplication submodules of an R-module M that can be generated by mi elements respec-

tively, and let N =
n⋂
i=1

Ni. If Ni + Nj is multiplication for all i < j, then N is a finitely

generated multiplication module that can be generated by
n∑
i=1

mi elements.

Proof. As Ni + Nj is multiplication, it follows from the remark made after Corollary 1.2

that
n∑
i=1

[N : Ni] = R. Then there exist elements xi ∈ [N : Ni] such that
n∑
i=1

xi = 1. It follows

that

N =
n∑

i=1

xiN ⊆
n∑

i=1

xiNi ⊆ N,

so that N =
n∑
i=1

xiNi is a submodule of M generated by
n∑
i=1

mi elements. That N is mul-

tiplication follows by Theorem 2.3(ii). Alternatively, we may observe that xiN ⊆ xiNi for

all i, and hence xi ∈ [xiNi : N ]. It follows that
n∑
i=1

[xiNi : N ] = R. But N =
n∑
j=1

xjNj,

and xiNi is multiplication [4, Corollary 1.4]. Thus by [18, Corollary 1 of Theorem 1], N is
multiplication. �

Corollary 2.5. Let R be a ring and Nλ(λ ∈ Λ) a collection of submodules of an R-moduleM

such that Nλ +Nµ is multiplication for all λ 6= µ. Let S =
∑
λ∈Λ

Nλ. Then K
⋂
S =

∑
λ∈Λ

K
⋂
Nλ

for every submodule K of M. In particular, if Nλ(λ ∈ Λ) is a collection of multiplication
modules such that

[Nλ : Nµ] + [Nµ : Nλ] = R for all λ 6= µ,

then the result holds.

Proof. Let K be a submodule ofM. Clearly
∑
λ∈Λ

(K
⋂
Nλ) ⊆ K

⋂
S. For each x ∈ K

⋂
S there

exists a finite subset Λx of Λ such that x ∈
∑
λ∈Λx

Nλ. It follows thatK
⋂
S⊆

∑
x∈K

⋂
S

(K
⋂ ∑
λ∈Λx

Nλ).

As Nλ + Nµ is multiplication for all λ, µ ∈ Λx (λ 6= µ), we infer from Theorem 2.1(vii)

that K
⋂ ∑
λ∈Λx

Nλ =
∑
λ∈Λx

(K
⋂
Nλ). Therefore K

⋂
S ⊆

∑
λ∈Λ

K
⋂
Nλ, and the proof of the first

assertion is complete. The second assertion follows now by [18, Corollary 3 of Theorem 2]. �

Examples 1–3 below show that the conclusions of Theorem 2.1 (other than (vii)) are not
valid without the finiteness assumption, and Example 4 shows, among other things, that
their converses are not true.

Example 1. Let R = C[[x]]. R is a Noetherian local domain and the unique maximal ideal
of R is Rx. Let Nk = Rx

k. Then Nk is a multiplication ideal of R for each k ≥ 1 and so
too is Nk + Nn for any positive integers k < n, because Nk + Nn = Nk. On the other hand

N =
⋂
k≥1

Nk = 0 and hence
∑
l≥1

[N : Nl] = 0 6= R.
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Example 2. Let R = [Z Q], the commutative ring of all matrices of the form
(
n r
0 n

)

with n ∈ Z, r ∈ Q.

(i) For s ∈ Q, let Ns = R
(
0 s
0 0

)
= [0 Zs]. Ns is a multiplication ideal of R (being

principal). If s, t ∈ Q, say s = u
v
, t = x

y
with gcd(u, v) = gcd(x, y) = 1, then let r = gcd(s, t) =

1
vy
gcd(u, x) gcd(v, y). (See [13] for properties of gcd in this sense.) Then for any s, t ∈ Q,

Ns+Nt is multiplication because Ns+Nt = Nr, r = gcd(s, t). But S =
∑
s∈Q
Ns = [0 Q] which

is neither finitely generated nor multiplication, and
∑
s∈Q
[Ns : S] 6= R since [Ns : S] = [0 Q]

for all s ∈ Q.

(ii) For i ≥ 1, let Ni = R

(
i 0
0 i

)
= [Zi Q]. Then Ni is multiplication and so too is

Ni +Nj for all i, j ≥ 1 because Ni +Nj = Nd where d = gcd(i, j). But N =
⋂
i≥1
Ni = [0 Q]

is not multiplication, and
∑
j≥1
[N : Nj] = 0 6= R.

(iii) Let p be an odd prime integer and Np = [Zp Q]. Then
⋂
p6=2

Np = [0 Q], and hence

N2 +
⋂
p6=2

Np = N2. But
⋂
p6=2

(N2 + Np) = [Z Q] = R. Also it is easy to verify that [N2 :
⋂
p6=2

Np] = R but
∑
p6=2

[N2 : Np] = N2.

Example 3. [8, Example 31] Let R be a Prüfer domain which is not Noetherian. There
is a maximal ideal P of R which is not finitely generated. P is not multiplication, and

hence R 6= θ(p) =
∑
p∈P
[pR : P ], [1, Theorem 1] and [2, Theorem 2.1]. However, aR + bR is

multiplication for all a, b,∈ R.

Example 4. Let Q be the ring of all sequences of elements of Z2, and put
en = (0, 0, . . . , 1, 0, . . . ). Let R = Q[x, y]. Then I =

∑
n≥1
enR is a multiplication ideal of R

since it is generated by idempotents, [1] and [4]. Let In = (e1, . . . , en, en+1x, en+1y)R. We
show that In is not a multiplication ideal by showing that In is not locally principal, [1].
Let Mn+1 = (1 − en+1, x, y)R. Mn+1 is a maximal ideal of R (in fact R/Mn+1 ≈ Z2). For
f =
∑
i,j

fijx
iyj ∈ R, define ϕ(f) =

∑
(fij)n+1x

iyj, where (fij)k is the k
th term of the sequence

fij. Then ϕ : R→ Z2[x, y] is a homomorphism, and ker ϕ = (1− en+1)R ⊂Mn+1. Moreover,
ϕ(Mn+1) = (x, y)Z2[x, y]. So ϕ extends to a homomorphism ϕ : RMn+1 → Z2[x, y](x,y), and
ϕ(In) = (x, y)Z2[x, y](x,y) is not principal, hence neither is InRMn+1 . Now, I1 ⊂ I2 ⊂ · · · , and
I =

⋃
n≥1
In. One may show directly that, as Corollary 1.4(ii) concludes,

∑
n≥1
[In : I]+ann(a) = R

for all a ∈ I, a conclusion which does not follow from Smith’s theorem [18, Theorem 2]. It
also shows that the converse of Corollary 1.4 is not true, because

[Ii : Ij] + [Ij : Ii] + ann(a) = R
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for all i 6= j and all a ∈ Ii + Ij, but Ii + Ij = Ik where k = max{i, j}, which is not
multiplication. This example further shows that the converses of Theorem 2.1 and Corollary

2.2 are not true. For this purpose, let S =
n∑
i=1

Ii and N =
n⋂
i=1

Ii. Then S = In and N = I1 are

not multiplication. Also, for all i, j, Ii + Ij is not multiplication.

3. Infinite collections

Naoum and Hasan [16] gave a sufficient condition for the intersection of two multiplication
modules to be multiplication. That result was generalized by Smith [18] to a finite collection
of multiplication modules. Using different methods, we extend the results to intersections of
arbitrary collections of modules. First, we need a lemma.

Lemma 3.1. Let R be a ring and Nλ(λ ∈ Λ) a collection of submodules of an R-module M

and let N =
⋂
λ∈Λ

Nλ. If
∑
λ∈Λ

[N : Nλ] = R, then IN =
⋂
λ∈Λ

INλ for every ideal I of R.

Proof. Let I be an ideal of R. Clearly IN ⊆
⋂
λ∈Λ

INλ. If the condition is satisfied, there

exist a finite subset Λ′ of Λ and elements xλ ∈ [N : Nλ](λ ∈ Λ′) such that
∑
λ∈Λ′
xλ = 1. Let

w ∈
⋂
λ∈Λ

INλ. Then w ∈ INλ for all λ ∈ Λ′. For each λ ∈ Λ′, there exists a finite set Λλ such

that w =
∑
µ∈Λλ

uµyλµ where uµ ∈ I and yλµ ∈ Nλ. It follows that w =
∑
λ∈Λ′

∑
µ∈Λλ

uµ(xλyλµ). But

xλyλµ ∈ N for all λ ∈ Λ′ and all µ ∈ Λλ. Thus w ∈ IN, and the result follows. �

Theorem 3.2. Let R be a ring and Nλ(λ ∈ Λ) a collection of multiplication submodules of

an R-module M and let N =
⋂
λ∈Λ

Nλ. Then

∑

λ∈Λ

[N : Nλ] + ann(a) = R for all a ∈ N

if and only if these conditions are satisfied:

(i) IN =
⋂
λ∈Λ

INλ for every ideal I of R.

(ii) N is a multiplication module.

Proof. Suppose first that

∑

λ∈Λ

[N : Nλ] + ann(a) = R for all a ∈ N.

We can prove (i) even without the assumption that the Nλ are multiplication. It suffices to
prove it locally. Thus we may assume that R is a local ring. If N = 0, there is nothing to
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prove. Otherwise N 6= 0, and hence there exists 0 6= a ∈ N so that ann(a) 6= R. It follows
that ∑

λ∈Λ

[N : Nλ] = R,

and the result follows from Lemma 3.1. To prove (ii), let K be any submodule of M. Then

K
⋂
N =

⋂
λ∈Λ

(K
⋂
Nλ) =

⋂
λ∈Λ

[K : Nλ]Nλ ⊆
⋂
λ∈Λ

[K : N ]Nλ = [K : N ]N ⊆ K
⋂
N,

so that K
⋂
N = [K : N ]N, and N is multiplication. Conversely, assume that (i) and (ii) are

satisfied. As Nλ is multiplication for all λ ∈ Λ, we infer that

N = [N : Nλ]Nλ ⊆ (
∑

µ∈Λ

[N : Nµ])Nλ for all λ ∈ Λ.

Hence

N ⊆
⋂
λ∈Λ

(
∑

µ∈Λ

[N : Nµ])Nλ = (
∑

µ∈Λ

[N : Nµ])N.

By Lemma 1.3, the result follows. �

In the following example, condition (i) but not (ii) of Theorem 3.2 holds.

Example 5. Let R = Q[[x]], I = Rx. (R, I) is a discrete valuation ring. Let D = Z + I.
Then I is a Prüfer domain [7, p.319]. Let Ni = Dpi where p1 < p2 < · · · is the sequence

of positive primes of Z. Let N =
⋂
i≥1
Dpi. Then N is not a finitely generated ideal of R and

hence it is not multiplication. One can easily verify that for all i, [N : Ni] = N and hence∑
i≥1
[N : Ni] 6= D.

We mention three corollaries to Theorem 3.2. The first is an immediate consequence while
the second and third give sufficient conditions for the radical of a module to be multiplication.

Corollary 3.3. Let R be a ring and Nλ(λ ∈ Λ) a collection of multiplication submodules of

an R-module M and let N =
⋂
λ∈Λ

Nλ. If
∑
λ∈Λ

[N : Nλ] = R, then N is a multiplication module.

Let R be a ring and M an R-module. A submodule P of M is called a prime submodule if
whenever rm ∈ P, for some m ∈ M, r ∈ R, then m ∈ P or r ∈ [P : M ]. The M -radical of
a submodule N of M is defined as the intersection of all prime submodules of M containing
N, (see [15]).

Corollary 3.4. Let R be a ring and N a submodule of an R-module M such that

∑
[rad N : P ] = R,

where the sum is over all prime submodules P of M containing N.
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(i) If every P is multiplication, then so too is rad N.

(ii) If every P is finitely generated, then so too is rad N.

(iii) If every P is faithful, then so too is rad N.

Proof. (i) Corollary 3.3.

(ii) There exist a finite set of prime submodules {P1, P2, . . . , Pn} of M containing N and

elements xi ∈ [rad N : Pi] such that
n∑
i=1

xi = 1. It follows that rad N =
n∑
i=1

xiPi, and hence is

finitely generated.

(iii) As in (ii), 1 =
n∑
i=1

xi with xi ∈ [rad N : Pi]. Let w ∈ ann(radN). Then wxiPi = 0, and

wxi ∈ ann(Pi) = 0. But w =
∑
wxi = 0. So radN is faithful. �

The Jacobson radical of a module M over a ring is defined [11] to be the intersection of all
maximal submodules of M .

Corollary 3.5. Let R be a semi-local ring with maximal ideals P1, . . . , Pn. If each Pi is
multiplication (i.e. principal), then J(R), the Jacobson radical of R is multiplication (i.e.
principal). If M is a multiplication R-module (i.e. cyclic) with PiM 6= M, then J(M), the
Jacobson radical of M is also multiplication (i.e. cyclic).

Proof. The first assertion is clear by Theorem 2.3(ii). On the other hand, by [4, Theorem 2.5],
PiM is a maximal submodule of M and by [4, Corollary 1.4], PiM is multiplication. In fact
PiM are the only maximal submodules of M. For, if Q is any maximal submodule different
from PiM, then again by [4, Theorem 2.5] there exists a maximal ideal P ∈ {P1, P2, . . . , Pn}
such that Q = PM. Hence PiM 6= PM and hence Pi 6= P, a contradiction. It follows

that J(M) =
n⋂
i=1

PiM. Since PiM + PjM = M for all i 6= j, the result is clear by Theorem

2.3(ii). �

Let R be a ring such that every maximal ideal P of R is multiplication and
∑

P maximal

[J(R) :P ]=

R. Then by Corollary 3.3, J(R) is multiplication. Suppose thatM is a multiplication module

such that for all maximal ideals P of R, PM 6=M. Then J(M) =
⋂

P maximal

PM, and PM is a

multiplication submodule of M. Also it is easy to verify that
∑

P maximal

[J(M) : PM ] = R, and

hence again by Corollary 3.3, J(M) is multiplication.

Example 6. Contrary to what happens in the finite case, in Example 2(ii) and Example
5 an intersection of multiplication modules is not multplication. On the other hand, let
R = k[x, y], k an infinite field. Then R has an infinite number of maximal ideals Mλ, λ ∈ Λ.

The Jacobson radical J =
⋂
λ∈Λ

Mλ = 0 is a multiplication ideal. Also Mλ + Mµ = R, a

multiplication ideal for all λ 6= µ, but the Mλ are not all multiplication ideals. Thus an
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intersection of modules may be multiplication even if the components are not. In each of
these examples, however, the sum of any two distinct modules is multiplication.

The next theorem establishes necessary and sufficient conditions for the intersection of a
collection (not necessarily finite) of multiplication submodules to be a multiplication module.
It is a generalization of [18, Theorem 8 (ii)].

Theorem 3.6. Let R be a ring and Nλ(λ ∈ Λ) a collection of submodules of an R-module

M. Let N =
⋂
λ∈Λ

Nλ and S =
∑
λ∈Λ

Nλ. Suppose that Nλ +Nµ is a multiplication module for all

λ 6= µ. Let A =
∑
λ∈Λ

[N : Nλ], and suppose that A + ann(n) = R for all n ∈ S. Then N is

multiplication if and only if Nλ is multiplication for all λ ∈ Λ.

Proof. Suppose first that N is multiplication. Let λ ∈ Λ and K a submodule of M such
that K ⊆ Nλ. Clearly [K : Nλ]Nλ ⊆ K. Let x ∈ K and set

H = {r ∈ R | rx ∈ [K : Nλ]Nλ}.

If H 6= R, then there exists a maximal ideal P of R such that H ⊆ P. We discuss two cases.

Case 1: A ⊆ P. As A + ann(n) = R for all n ∈ S, we have Nλ + Nµ = A(Nλ + Nµ) for all
µ 6= λ. Then

Nλ +Nµ = A(Nλ +Nµ) ⊆ P (Nλ +Nµ) ⊆ Nλ +Nµ

so that Nλ + Nµ = P (Nλ + Nµ). Also Nλ + Nµ is multiplication for all µ 6= λ. Thus Rx =
I(Nλ +Nµ) for some ideal I of R and hence

Rx = I(Nλ +Nµ) = IP (Nλ +Nµ) = Px.

There exists p ∈ P such that (1− p)x = 0, and hence 1− p ∈ H ⊆ P, a contradiction.

Case 2: A 6⊆ P. Then

[N : Nλ] +
∑

µ 6=λ

[N : Nµ] 6⊆ P.

If [N : Nλ] 6⊆ P, there exists q ∈ P such that (1− q)Nλ ⊆ N, and hence (1− q)K ⊆ N. Since
N is multiplication, there exists an ideal J of R such that (1− q)K = JN. Now

(1− q)JNλ = J(1− q)Nλ ⊆ JN = (1− q)K ⊆ K

so that (1− q)J ⊆ [K : Nλ]. It follows that

(1− q)2x ∈ (1− q)2K = (1− q)JN ⊆ (1− q)JNλ ⊆ [K : Nλ]Nλ.

Hence (1−q)2 ∈ H ⊆ P, a contradiction. Finally, if
∑
µ 6=λ

[N : Nµ] 6⊆ P, then there exists µ 6= λ,

such that [N : Nµ] 6⊆ P, and hence there exists q′ ∈ P such that (1− q′)Nµ ⊆ N ⊆ Nλ. Then
(1− q′)(Nλ +Nµ) ⊆ Nλ. Next

K = [K : (Nλ +Nµ)](Nλ +Nµ) ⊆ [K : Nλ](Nλ +Nµ),
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and hence

(1− q′)x ∈ (1− q′)K ⊆ [K : Nλ](1− q
′)(Nλ +Nµ) ⊆ [K : Nλ]Nλ.

But this gives (1 − q′) ∈ H ⊆ P, a contradiction. Thus H = R and x ∈ [K : Nλ]Nλ so that
K = [K : Nλ]Nλ and this proves that Nλ is a multiplication module. The converse follows
by Theorem 3.2. �

4. Applications of Anderson’s new characterization of multiplication modules

D. D. Anderson [2, Theorem 2.1] has proved that a submodule A of an R-module M is
multiplication if and only if for each maximal ideal P of R with AP 6= 0P , AP is cyclic and
[N : A]P = [NP : AP ] for each submodule N ofM.We use this new characterization to obtain
two further characterizations of multiplication modules which we then apply to investigate
the residual of multiplication modules. We further illustrate uses of the characterization by
providing alternative proofs of some of our results in Sections 2 and 3.

Proposition 4.1. Let R be a ring and A a submodule of an R-module M . The following
conditions are equivalent:

(i) A is a multiplication module.

(ii) For each maximal ideal P of R with AP 6= 0P , there exists a multiplication submodule
B containing A and an element p ∈ R such that (1− p)B ⊆ A.

(iii) For each maximal ideal P of R with AP 6= 0P , there exists a multiplication submodule
B of A and an element p ∈ P such that (1− p)A ⊆ B.

Proof. (i) ⇒ (ii) and (i) ⇒ (iii) are obvious by [2, Theorem 2.1 Part 5] and by taking
A = B, B = Ra for some a ∈ A respectively.

(ii) ⇒ (i): Let P be a maximal ideal of R such that AP 6= 0P . There exists a multiplication
submodule B of M containing A and an element p ∈ P such that (1 − p)B ⊆ A. It follows
that AP = BP and for each submodule N of M ,

[NP : AP ] = [NP : BP ] = [N : B]P ⊆ [N : A]P ⊆ [NP : AP ],

and by [2, Theorem 2.1], A is multiplication.

(iii) ⇒ (i): Let P be a maximal ideal of R such that AP 6= 0P . There exists a multiplication
submodule B of A and an element p ∈ P such that (1− p)A ⊆ B. Hence AP = BP and for
each submodule N of M ,

[N : B]P ⊆ [N : (1− p)A]P
= [[N : A] : (1− p)R]P = [[N : A]P : (1− p)RP ] = [N : A]P ⊆ [N : B]P ,

and therefore [N : A]P = [N : B]P = [NP : BP ] = [NP : AP ], and again by [2, Theorem 2.1],
A is multiplication. �
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In Example 4 at the end of Section 2, we showed that a sum of modules may be multiplication
even if no summand is multiplication. It is known [4, Theorem 2.2] that if a multiplication
module S is a direct sum of submodules, then all of the summands are multiplication. We
show that the same conclusion follows if the assumption of directness is weakened by assuming
only that the intersection of distinct summands is multiplication.

Theorem 4.2. Let R be a ring and Nλ(λ ∈ Λ) a collection of submodules of an R-module

M and let S =
∑
λ∈Λ

Nλ. If S is multiplication and Nλ∩Nµ is multiplication for all λ 6= µ, then

all Nλ are multiplication.

Proof. Let P be a maximal ideal of R. Let λ ∈ Λ, and suppose that NλP 6= 0P . Then

SP 6= 0P , and hence for some a ∈ S, ann(a) ⊆ P. By Corollary 1.4,
∑
µ∈Λ
[Nµ : S] * P, and

hence there exist µ ∈ Λ and p ∈ P such that (1− p)S ⊆ Nµ. Let K be a submodule of M. If
λ = µ, then

[KP : NλP ] = [KP : SP ] = [K : S]P ⊆ [K : Nλ]P ⊆ [KP : NλP ],

and by [2, Theorem 2.1], Nλ is multiplication. Otherwise, λ 6= µ, and hence (1 − p)Nλ ⊆
Nλ ∩Nµ. It follows that (Nλ ∩Nµ)P = NλP , and hence

[KP : NλP ] = [KP : (Nλ ∩Nµ)P ]

= [K : (Nλ ∩Nµ)]P ⊆ [K : (1− p)Nλ]P = [K : Nλ]P ⊆ [KP : NλP ],

and again by [2, Theorem 2.1], Nλ is multiplication. �

We remark that this same method applying Anderson’s new characterization of multiplication
modules may be used for example to give alternative proofs for our results 2.3, 3.2 and 3.6.
Naoum and Hasan [16, Theorem 2.5] proved that if R is an arithmetical ring and A and

B are finitely generated ideals in R such that ann(B) is finitely generated, then [A : B] is
finitely generated and hence a multiplication ideal. Patrick Smith [18, Theorem 10] showed
that if M is a finitely generated faithful multiplication module, then N is a multiplication
submodule of M if and only if [N :M ] is multiplication. Compare Smith’s theorem with the
following in which Anderson’s characterization of multiplication modules is applied to give
an alternative proof. An R-module M is torsion if ann(m) 6= 0 for all m ∈ M, otherwise it
is called non-torsion [17]. Clearly every non-torsion module is faithful.

Theorem 4.3. Let R be a ring and B a non-torsion multiplication submodule of an R-mo-
dule M. Then

(i) I = [IB : B] for every ideal I of R,

(ii) a submodule A of B is multiplication if and only if [A : B] is a multiplication ideal of
R,

(iii) IB is a multiplication module if and only if I is a multiplication ideal of R,

(iv) a submodule A of B is non-torsion if and only if [A : B] is non-torsion.
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Proof. (i) Let P be a maximal ideal of R. Since B is non-torsion, BP 6= 0P . Since B is
multiplication, it follows that IB = [IB : B]B, and from [2, Theorem 2.1] that ann(BP ) =
ann(B)P = 0P . Hence, IPBP = [IB : B]PBP . Since BP is cyclic, we conclude from [18,
Corollary to Theorem 9] that IP + ann(BP ) = [IB : B]P + ann(BP ). But ann(BP ) = 0P , so
IP = [IB : B]P . Since the equality holds locally, it holds globally.

(ii) Assume A is a multiplication submodule of B, and suppose P is a maximal ideal of R
with [A : B]P 6= 0P . Since B is non-torsion, we infer that BP 6= 0P and [A : B]P = [AP : BP ].
Hence, AP 6= 0P . It is easy to show that [AP : BP ] is multiplication, and hence [A : B]P is
principal. Let I be an ideal of R. Since B is non-torsion and multiplication, it is easy to
show that [IB : A] = [I : [A : B]]. Since A is multiplication,

[IP : [A : B]P ] = [IP : [AP : BP ]] = [IPBP : AP ] = [IB : A]P = [I : [A : B]]P .

It follows from [2, Theorem 2.1] that [A : B] is multiplication. The converse follows by [4,
Corollary 1.4].

(iii) follows from (i) and (ii), (iv) is routine. �

Finally, we observe that it follows easily from Lemma 1.3 that every non-torsion multiplication
module over any ring R is a cancellation module and hence is finitely generated. On the other
hand if R is an integral domain, then any faithful multiplication R-module M is non-torsion.
In fact, since M is multiplication, M = Mθ(M), so that θ(M) 6= 0. For some m ∈ M,
[Rm :M ] 6= 0. Hence rM ⊆ Rm for some 0 6= r ∈ R, so that ann(m) ⊆ ann(rM) = 0.
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[6] Fuchs, L.: Über die Ideale arithmetischer Ringe. Comment. Math. Helv. 23 (1949),
334–341.

[7] Gilmer, R.: Multiplicative Ideal Theory. Kingston, Queen’s 1992.

[8] Hutchins, H. C.: Examples of Commutative Rings. New Jersey 1981.

[9] Jensen, C. U.: A remark on arithmetical rings. Proc. Amer. Math. Soc. 15 (1964),
951–954.

[10] Jensen, C. U.: Arithmetical rings. Acta Math. Acad. Sci. Hungar. 17 (1966), 115–123.

[11] Kaplansky, I.: Commutative Rings. Boston 1970.

[12] Larsen, M. D.; McCarthy, P. J.: Multiplicative Theory of Ideals. New York 1971.



Majid M. Ali, David J. Smith: Finite and Infinite Collections of Multiplication Modules 573
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di Matematica 38 (1989), 249–259.

[15] McCasland, R. L.; Moore, M. E.: On radicals of submodules of finitely generated modules.
Canad. Math. Bull. 29 (1986), 37–39.

[16] Naoum, A. G.; Hasan, M. A. K.: The residual of finitely generated multiplication mod-
ules. Arch. der Math. 46 (1986), 225–230.

[17] Ribenboim, P.: Algebraic Numbers. Wiley 1972.

[18] Smith, P. F.: Some remarks on multiplication modules. Arch. der Math. 50 (1988),
223–235.

Received February 7, 2000; revised version November 23, 2000


