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Introduction

The first part of this paper is devoted to an analysis of moment problems
in Rn, n ≥ 1, with supports contained in a closed set defined by finitely many
polynomial inequalities. The second part of the paper uses the representation
results of positive functionals on certain spaces of rational functions developed
in the first part, for decomposing a polynomial which is positive on such a
semi-algebraic set into a canonical sum of squares of rational functions times
explicit multipliers.

Let n ≥ 1 be a fixed integer. Due to the fact that for n > 1 not every
nonnegative polynomial in Rn can be written as a sum of squares of poly-
nomials (see, for instance, [2, §6.3]), the moment problems in n variables are
more difficult than the classical one variable problems. This very intriguing
territory has been investigated by many authors (see [2], [7], [12] and their
references), although characterizations for measures whose support lies in an
arbitrary (generally unbounded) semi-algebraic set do not seem to exist.

The present paper starts from an idea of the second author, see [19], about
solving moment problems by a change of basis via an embedding of Rn into
a submanifold of a higher dimensional Euclidean space. Rougly speaking we
prove that certain (n + 1)-dimensional extensions of a moment sequence are
naturally characterized by positivity conditions and moreover, these extensions
parametrize all possible solutions of the moment problem. To be more specific,
let

γα =
∫

Rn
xαdµ(x), α ∈ Zn+,

be the moment sequence of a positive Borel measure µ on Rn, rapidly decaying
at infinity, where x is the current variable in Rn. Up to the present, for n > 1,
there is no known intrinsic characterization of the moment sequence (γα) in
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terms of one or several positivity conditions (contrary to the case n = 1 where
Hamburger’s condition (γp+q)∞p,q=0 ≥ 0 gives such a characterization; see for
instance [1]). The starting observation in the first part of our paper is that,
instead, the extended sequence:

δα,m =
∫

Rn

xα

(1 + ‖x‖2)m
dµ(x), (α,m) ∈ Zn+ × Z+,

can be characterized by a single positivity condition. In addition, on these
extensions of the moment sequence one can naturally impose semi-algebraic
restrictions on the support of the representing measures.

Our approach, like that from [19], relies only on elementary facts of algebra
and operator theory. The main new ingredient is Nelson’s celebrated criterion
of (strong) commutativity of a tuple of essentially selfadjoint operators (see
[8]).

The second part of the paper represents an algebraic counterpart to the
first one. As is by now well understood, moment problems are in natural
duality with additive decompositions of nonnegative polynomials into squares
of polynomials or rational functions. This latter subject is a central topic in real
algebraic geometry (cf. [3]); several algebraic, geometric or analytic methods
have recently contributed to refining such decompositions into sums of squares;
cf. [4], [11], [13]. The proofs we propose below use, besides the above-mentioned
base change in the related moment problems, only the separation theorem of
convex sets in finite dimensional spaces.

One of the motivations of the contents of Section 4 is a new proof for
the representation of a positive polynomial as a sum of squares of rational
functions, allowing as denominators only powers of 1 + ‖x‖2 (which also occur
in the first part of the paper). This result, recently proved in an elegant way
by B. Reznick, extends and improves older assertions due to Polya, Habicht,
Delzell etc. (see [11], where a more complete list of references is given).

As a matter of fact, our method permits a description, in this spirit, of
every homogeneous polynomial that is positive on a semi-algebraic set given
by a simultaneous system of homogeneous polynomial inequalities (see also
[3] and [16] for similar statements). And slightly more general results, valid
for nonhomogeneous polynomials, when control of the highest degree term on
the hyperplane at infinity is imposed, are also derived. It is interesting that
the universal denominator 1 + ‖x‖2, or its square root, is good not only for
representing positive polynomials on the whole Rn, but also for these more
general representations. The homogeneity assumption makes possible, after
dimensional extension, a reduction of the supports of the representing measures
to a Euclidean sphere. Then a refined convexity method due to Cassier [4]
comes naturally into the proofs.
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In contrast to most known decomposition theorems of a polynomial p(x)
which is positive on the semi-algebraic set {x ∈ Rn; qj(x) ≥ 0, 1 ≤ j ≤ d}, our
results in Section 4 provide, modulo the denominator 1 +‖x‖2 and possibly its
square root, representations of p(x) as a sum of squares of polynomials times
each generator qj , and not times general products qi1qi2 . . . qip ; cf. [3].

We have not included here a discussion of the uniqueness of the represent-
ing measures of the moment problems we investigate. In this respect we refer
to [1, Th. 2.3.4 and Prob. 14, Chap. 5] for two different general uniqueness
criteria applicable to moment problems in any dimension.

1. Preliminaries

First we fix some notation and terminology.
LetR be an algebra of complex-valued functions, defined on the Euclidean

space Rn, such that the constant function 1 ∈ R, and if f ∈ R then f̄ ∈ R.
A linear map L : R → C is said to be positive semi-definite if L(ff̄) ≥ 0 for
all f ∈ R. If L is positive semi-definite on R, we shall always assume that
L(1) > 0 (i.e., L is not degenerate).

Let R be an algebra as above, and let L : R → C be positive semi-definite.
This pair can be associated, in a canonical way, with a certain pre-Hilbert space
(see [6], [7] etc.). To recall this construction, let N = {f ∈ R; L(ff̄) = 0}.
Since L satisfies the Cauchy-Schwarz inequality, it follows that N is an ideal of
R. Moreover, the quotient R/N is a pre-Hilbert space, whose inner product
is given by

(1.1) 〈f +N , g +N〉 = L(fḡ), f, g ∈ R.

Note also that R/N is an R-module.
An arbitrary map L : R → C is said to be a moment map if there exists a

positive measure µ on Rn such that R ⊂ L2(µ), and L(f) =
∫
fdµ, f ∈ R. In

this case, the measure µ is said to be a representing measure for the (necessarily
linear) map L. Clearly, every moment map is positive semi-definite. The
moment problem on R is to characterize those positive semi-definite maps on
R which are moment maps. A solution of a moment problem is said to be
determined if the corresponding representing measure is uniquely determined.

In this paper, following the classical case, we shall be particularly inter-
ested by the following framework. Let us denote by Zn+ the set of all multi-
indices α = (α1, . . . , αn), where Z+ is the set of nonnegative integers. Let Pn
be the algebra of all polynomial functions on Rn, with complex coefficients.
We shall denote by tα the monomial tα1

1 · · · tαnn , where t = (t1, . . . , tn) is the
current variable in Rn, and α ∈ Zn+. Therefore, using standard notation, we
have Pn = C[t].
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An n-sequence γ = (γα)α∈Zn+
is said to be positive semi-definite if the

associated linear map Lγ : Pn → C is positive semi-definite, where Lγ(tα) =
γα, α ∈ Zn+.

Similarly, an n-sequence γ = (γα)α∈Zn+
is said to be a moment sequence

if the associated map Lγ is a moment map. In this case, the representing
measure of Lγ is also called a representing measure for γ.

The paper is organized as follows. In the next section we propose solu-
tions to the moment problem for the algebra Pn, which is usually called the
Hamburger moment problem (in several variables). When one seeks, in this
context, representing measures whose support is concentrated in Rn

+, then the
corresponding moment problem is known as the Stieltjes moment problem (in
several variables). Solutions to these problems are provided by Theorems 2.8
and 2.9. These results are consequences of a general assertion, which character-
izes those moment sequences that have a representing measure concentrated in
an arbitrary semi-algebraic set given by simultaneous polynomial inequalities
(see Theorem 2.7).

The structure of the moments of a positive, slowly decreasing measure at
infinity in Rn is briefly analyzed in Section 3.

The description, mentioned in the introduction, of all polynomials that are
positive on a semi-algebraic set is provided by Theorem 4.2, while the result by
Reznick is the statement of Corollary 4.3. A couple of other related statements
illustrate the potential applications of the functional analytic technique we
develop.

Finally, a thorough discussion concerning various moment problems in one
variable, as well as many historical remarks, can also be found in the mono-
graphs [1] and [15]. The interested reader might find additional information,
related to some special moment problems, in the recent work [5].

2. Moment results

Let H be a complex Hilbert space whose scalar product (resp. norm) will
be denoted by 〈∗, ∗〉 (resp. ‖ ∗ ‖).

An operator in H is a linear map S, defining a linear subspace D(S) ⊂ H,
with values in H. We use the standard terminology concerning (unbounded)
operators.

Proposition 2.1. Let T1, . . . , Tn be symmetric operators in H. Assume
that there exists a dense linear space D ⊂ ∩nj,k=1D(TjTk) such that TjTkx =
TkTjx, x ∈ D, j 6= k; j, k = 1, . . . , n. If the operator (T 2

1 + · · · + T 2
n)|D is

essentially selfadjoint, then the operators T1, . . . , Tn are essentially selfadjoint,
and their canonical closures T̄1, . . . , T̄n commute.
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The proof of this result, stated for n = 2, can be found in [8, Cor. 9.2].
We only note that the proof from [8] can be extended to an arbitrary number
of symmetric operators (see also [9, Th. 4]) .

Lemma 2.2. Let A be a positive densely defined operator in H, such that
AD(A) ⊂ D(A). Suppose that I +A is bijective on D(A). Then the canonical
closure Ā of A is a selfadjoint operator.

Proof. For every x = (I +A)y ∈ D(A) we have:

〈(I +A)−1x, x〉 = 〈(I +A)−1(I +A)y, (I +A)y〉 ≥ 0,

implying that (I +A)−1 is positive on D(A). In addition,

〈(I +A)−1x, x〉 ≤ 〈(I +A)y, (I +A)y〉 ≤ 〈x, x〉,

showing that (I + A)−1 has a bounded extension, say B, to H, which is also
positive.

It is easily seen that B(I+Ā)x = x, x ∈ D(Ā), and that (I+Ā)By = y for
all y ∈ H. Thus B = (I + Ā)−1, and we have B∗ = ((I + Ā)−1)∗ = (I +A∗)−1.
Hence B = B∗ = (I + Ā)−1 = (I +A∗)−1, and so Ā = A∗.

Lemma 2.3. Let p = (p1, . . . , pm) be a given m-tuple of real polynomials
from Pn, and let

θp(t) = (1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)−1, t ∈ Rn.

Denote by Rθp the C-algebra generated by Pn and θp. Let ρ : Pn+1 → Rθp
be given by ρ : p(t, s) → p(t, θp(t)). Then ρ is a surjective unital algebra
homomorphism, whose kernel is the ideal generated by the polynomial

σ(t, s) = s(1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)− 1.

Proof. That ρ is a surjective unital algebra homomorphism is obvious. We
have only to determine the kernel of ρ.

Let p ∈ Pn+1 be a polynomial with the property p(t, θp(t)) = 0, t ∈ Rn.
We write p(t, s) =

∑
β∈Z+

qβ(t)sβ , with qβ ∈ Pn \ {0} only for a finite number
of indices β. Then we have

p(t, s) = p(t, s)− p(t, θp(t)) =
∑
β 6=0

qβ(t)(sβ − θp(t)β)

= (s− θp(t))`(t, s, θp(t)),

where ` is a polynomial.
Let b = max{β; pβ 6= 0}, and let

τ(t) = (1 + t21 + · · ·+ tn + p1(t)2 + · · ·+ pm(t)2)b.
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Then, from the above calculation, we deduce the equation

(2.1) τ(t)p(t, s) = (s(1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)− 1)q(t, s),

with q ∈ Pn+1.
If b = 0 for all j, then p(t, s) = p0(t) = p(t, θp(t)) = 0. Therefore, with no

loss of generality, we may assume b 6= 0.
It is obvious that the polynomials τ, σ, have no common zeroes in Cn+1.

By a special case of Hilbert’s Nullstellensatz (see, for instance, [16, §16.5]),
there are polynomials τ̃ , σ̃ in Pn+1 such that

(2.2) τ τ̃ + σσ̃ = 1.

If we multiply (2.2) by p, and use (2.1), we obtain the relation

p = σ(qτ̃ + σ̃p),

which is precisely our assertion.

Remark 2.4. Set θ(t) = (1 + t21 + · · · + t2n)−1, t = (t1, . . . , tn) ∈ Rn,
and let Rθ be the C-algebra of rational functions generated by Pn and θ. Let
ρ : Pn+1 → Rθ be given by ρ : p(t, s)→ p(t, θ(t)). Then ρ is a surjective unital
algebra homomorphism, whose kernel is the ideal generated by the polynomial
σ(t, s) = s(1+t21 + · · ·+t2n)−1. This is a particular case of the previous lemma,
obtained for p = (0).

The key result of this paper is the following.

Theorem 2.5. Let p = (p1, . . . , pm) be a given m-tuple of real polyno-
mials from Pn, and let

θp(t) = (1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)−1, t ∈ Rn.

Denote by Rθp the C-algebra generated by Pn and θp. Let Λ be a positive
semi -definite map on Rθp such that Λ(pk|r|2) ≥ 0, r ∈ Rθp , k = 1, . . . ,m.
Then Λ has a uniquely determined representing measure whose support is in
the set ∩mk=1p

−1
k (R+). Moreover, the algebra Rθp is dense in L2(µ).

Proof. Step 1. If Λ is as in the statement, we define a sesquilinear form
on Rθ via the equation

(2.3) 〈r1, r2〉Λ = Λ(r1r̄2), r1, r2 ∈ Rθp.

Let N = {r ∈ Rθ; Λ(rr̄) = 0}. Then (2.3) induces a scalar product 〈∗, ∗〉 on
the quotient Rθp/N (corresponding to (1.1)) and H is the completion of the
quotient Rθp/N with respect to this scalar product.

We define in H the operators

(2.4) Tj(r +N ) = tjr +N , r ∈ Rθp , j = 1, . . . , n,
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which are symmetric and densely defined on Rθp/N for all j. In addition, set

(2.4′) Sk(r +N ) = pkr +N , r ∈ Rθp, k = 1, . . . ,m,

which are also densely defined and symmetric operators.
Let B = T 2

1 + · · · + T 2
n + S2

1 + · · · + S2
m be defined on D(B) = Rθp/N .

The domain D(B) is clearly invariant under B.
We shall show that B satisfies the conditions of Lemma 2.2. Let

τ(t) = t21 + · · · + t2n + p1(t)2 + · · · + pm(t)2, t = (t1, . . . , tn) ∈ Rn. Since
Λ(τ | r |2) ≥ 0, r ∈ Rθp, it follows that B is positive.

If r ∈ Rθp is arbitrary, then the function u(t) = θp(t)r(t) ∈ Rθp satisfies
the equation (1 + τ(t))u(t) = r(t), whence we infer that the map I + B is
bijective on D(B).

According to Lemma 2.2, the operator B is essentially selfadjoint. By
virtue of Proposition 2.1, this implies that the operators T1, . . . , Tn, S1, . . . , Sm
are essentially selfadjoint, and their canonical closures mutually commute. In
particular, A1, . . . , An, where Aj = T̄j for all j, have a joint spectral measure
(see for instance [18]). If E is the joint spectral measure of A1, . . . , An, then
µ(∗) = 〈E(∗)(1+N ), 1+N〉 is a representing measure for Λ. We have, in fact,
the equality

(2.5) Λ(r) =
∫

Rn
r(t)d〈E(t)(1 +N ), 1 +N〉, r ∈ Rθp.

Indeed, if r(T ) is the linear map onRθp/N given by r(T )(f+N ) = rf+N ,
for all r, f ∈ Rθp, then r(A) ⊃ r(T ), where r(A) is given by the functional
calculus of A = (A1, . . . , An). Indeed, as θ(A)β ⊃ θ(T )β , which follows from
the obvious relations θ(A)−β ⊃ θ(T )−β, and θ(A)−β(θ(A)β − θ(T )β) = 0, we
infer easily that r(A) ⊃ r(T ) for an arbitrary r. Therefore:

Λ(r) = 〈r(t)1, 1〉Λ = 〈r(T )(1 +N ), 1 +N〉 = 〈r(A)(1 +N ), 1 +N〉

=
∫

Rn
r(t)d〈E(t)(1 +N ), 1 +N〉.

Step 2. We next discuss the uniqueness of the representing measure of Λ.
Let ν be an arbitrary representing measure of Λ. Then the space H

can be identified with a subspace of L2(ν), since Λ(r1r̄2) =
∫
r1r̄2dν(t) for all

r1, r2 ∈ Rθp. Therefore, as the functions from N are null ν-almost everywhere,
the space H is identified with the closure of Rθp in L2(ν).

We proceed now as in [7, Th. 7]. The operators (Hjf)(t) = tjf(t),
t = (t1, . . . , tn) ∈ Rn, f ∈ L2(ν), j = 1, . . . , n, are commuting selfadjoint in
L2(ν). Clearly, Hj ⊃ Tj , and so Hj ⊃ Aj for all j. Therefore, as (Aj + iu)−1 =
(Hj + iu)−1|H for all u ∈ R, it follows that the spectral measure Ej of
Hj leaves invariant the space H, as a consequence of [6, Th. XII.2.10], for
all j. If EH is the joint spectral measure of H = (H1, . . . , Hn), then we have
EH(B1×· · ·×Bn) = E1(B1) · · ·En(Bn) for all Borel sets B1, . . . , Bn in R. This
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implies that the space H is invariant under EH . Hence, χB = EH(B)1 ∈ H for
all Borel subsets B of Rn, where χB is the characteristic function of B. This
shows that L2(ν) = H, since the simple functions form a dense subspace of
L2(ν). In particular, we have the equalities Hj = Aj , j = 1, . . . , n. Therefore,
with µ and E as above, µ(B) = 〈E(B)1, 1〉 = 〈EH(B)1, 1〉 =

∫
χBdν, for all

Borel sets B. Consequently, µ = ν, showing that the representing measure is
unique.

The assertion concerning the density of the algebra Rθp in L2(µ) is now
obvious.

Step 3. We have only to prove the assertion concerning the support of the
representing measure. Note that S̄k = pk(A), k = 1, . . . ,m, where pk(A) is
given by the functional calculus of A. Indeed, as we clearly have Sk ⊂ pk(A),
and Sk is essentially selfadjoint, we must have S̄k = pk(A) for all k. Condition
Λ(pk|r|2) ≥ 0, r ∈ Rθp , k = 1, . . . ,m, implies that Sk is positive for all k.
Therefore, pk(A) is positive for all k. The spectral measure Fk of pk(A) is
given by Fk(B) = E(p−1

k (B)) for all Borel sets B ⊂ R. Since the spectral
measure Fk must be concentrated in R+ for all k, it follows that the spectral
measure E of A is concentrated in the set ∩mk=1p

−1
k (R+), which implies that the

representing measure of Λ itself is concentrated in the same set ∩mk=1p
−1
k (R+).

This completes the proof of the theorem.

The preceding proof can be used to obtain the following assertion (see also
[19, Remarks 2.4, 2.7] for similar results).

Corollary 2.6. Let Rθ be the C-algebra generated by Pn and θ(t) =
(1 + t21 + · · ·+ t2n)−1, t = (t1, . . . , tn) ∈ Rn, and let Λ : Rθ → C be an arbitrary
positive semi -definite map. Then Λ has a uniquely determined representing
measure µ in Rn, and the algebra Rθ is dense in L2(µ).

Moreover, if Λ(tj |r|2) ≥ 0, r ∈ Rθ, j = 1, . . . , n, then support of µ is
contained in Rn

+.

Proof. We apply the previous proof with p = (0). Proceeding as in Step 1,
we obtain the existence of a representing measure µ for Λ, while Step 2 insures
its uniqueness, as well as the density of Rθ in L2(µ).

The assertion concerning the support of µ follows as in Step 3, when
we use the fact that the operators A1, . . . , An are already positive, via the
equalities Aj = T̄j for all j, given by Step 1, and the assumed conditions
Λ(tj |r|2) ≥ 0, r ∈ Rθ, j = 1, . . . , n.

The next result is a general moment theorem, valid on arbitrary semi-
algebraic sets.
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Theorem 2.7. Let γ = (γα)α∈Zn+
(γ0 > 0) be an n-sequence of real num-

bers, and let p = (p1, . . . , pm) ∈ Pmn , where pk(t) =
∑
ξ∈Ik akξt

ξ,
k = 1, . . . ,m, with Ik ⊂ Zn+ finite for all k. Then γ is a moment sequence, and
it has a representing measure whose support is in the set ∩mk=1p

−1
k (R+), if and

only if there exists a positive semi-definite (n+ 1)-sequence

δ = (δ(α,β))(α,β)∈Zn+×Z+

with the following properties:
(1) γα = δ(α,0) for all α ∈ Zn+.
(2) δ(α,β) = δ(α,β+1) +

∑n
j=1 δ(α+2ej ,β+1) +

∑m
k=1

∑
ξ,η∈Ik akξakηδ(α+ξ+η,β+1)

for all α ∈ Zn+, β ∈ Z+.
(3) The (n+1)-sequences (

∑
ξ∈Ik akξδ(α+ξ,β))(α,β)∈Zn+×Z+

are positive semi-
definite for all k = 1, . . . , n.

The n-sequence γ has a uniquely determined representing measure on
∩mk=1p

−1
k (R+) if and only if the (n+ 1)-sequence δ is unique.

Proof. We prove first that conditions (1), (2), (3) are necessary. Assume
that the sequence γ = (γα)α∈Zn+

has a representing measure µ whose support
is in the set Σp = ∩mk=1p

−1
k (R+) . Define

(2.6) δ(α,β) =
∫

Σp

tαθp(t)β dµ(t), α ∈ Zn+, β ∈ Z+,

where θp is as in Lemma 2.3. Clearly, δ = (δ(α,β))(α,β)∈Zn+×Z+
is a positive

semi-definite (n+ 1)-sequence, satisfying (1). Next, since

(2.7)
∫

Σp

(θp(t)(1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)− 1)tαθ(t)β dµ(t) = 0

for all α ∈ Zn+, β ∈ Z+, we infer (2). Moreover, since

(2.8)
∫

Σp

pk(t) | p(t, θp(t)|2 dµ(t) ≥ 0

for all p ∈ Pn+1, k = 1, . . . ,m, we also have (3).
Conversely, assume that the (n+ 1)-sequence δ = (δ(α,β))(α,β)∈Zn+×Z+

ex-
ists. Let Rθp be as in Lemma 2.3. We define a positive semi-definite map Λ
on Rθp , via the equality

(2.9) Λ(r) = Lδ(p), r ∈ Rθp ,

where Lδ is the linear map associated with δ, and p ∈ Pn+1 satisfies r(t) =
p(t, θp(t)), t ∈ Rn.
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Notice first that Λ is correctly defined. Indeed, by virtue of Lemma 2.3,
the algebra Rθp is isomorphic to the quotient Pn+1/Iσ, where Iσ is the ideal
generated in Pn+1 by the polynomial

σ(t, s) = s(1 + t21 + · · ·+ t2n + p1(t)2 + · · ·+ pm(t)2)− 1.

Note that (2) implies Lδ | Iσ = 0. Therefore, the map Λ, which can be
identified with the map induced by Lδ on the quotient Pn+1/Iσ, is correctly
defined, and positive semi-definite, on Rθp .

Condition (3) implies Lδ(pk|p|2) ≥ 0, p ∈ Pn+1, and so Λ(pk|r|2) ≥ 0,
r ∈ Rθp for all k = 1, . . . ,m.

By virtue of Theorem 2.5, there exists a uniquely determined representing
measure µ for Λ, whose support is in Σp. In particular

γα = δ(α,0) = Lδ(tα) =
∫

Σp

tαdµ(t), α ∈ Zn+,

i.e., γ has a representing measure.
If δ is uniquely determined, and if µ′, µ′′ are two representing measures

for γ, then we must have∫
Σp

tαθ(t)βdµ′(t) =
∫

Σp

tαθ(t)βdµ′′(t)

by the uniqueness of δ. Therefore
∫

Σp
r(t)dµ′(t) =

∫
Σp
r(t)dµ′′(t) for all

r ∈ Rθp , implying µ′ = µ′′, by Theorem 2.5.
Conversely, if the representing measure µ of γ is unique, and if the se-

quences δ′, δ′′ satisfy (1), (2), (3), then we have δ′α,β =
∫

Σp
tαθ(t)βdµ(t) = δ′′α,β

for all indices α, β, via (2.5), which completes the proof of the theorem.

Theorem 2.7 shows that for a given n-sequence γ = (γα)α∈Zn+
there exists

a one-to-one correspondence between the convex set Mγ,p of all representing
measures of γ, with support in Σp, and the convex set Eγ,p of all extensions
δ = (δ(α,β))(α,β)∈Zn+×Z+

with the properties (1), (2), (3) from this theorem.
This correspondence obviously preserves the extremal points. In addition, if
ε : Rn → Rn+1 is given by ε(t) = (t, θp(t)), t ∈ Rn, then for every µ ∈ Mγ,p

the measure µε(B) = µ(ε−1(B)), B a Borel set in Rn+1, is a representing
measure for δ.

Theorem 2.7 applies, in particular, for compact semi-algebraic sets, pro-
viding alternate solutions to the corresponding moment problems (see [13] for
a different solution).

We shall denote by ej ∈ Zn+, j = 1, . . . , n, the multi-index whose coordi-
nates are null except for the jth-coordinate, which is equal to one.
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A solution of the Hamburger moment problem in several variables is given
by the following (see also [19, Th. 2.3] for an equivalent statement).

Theorem 2.8. An n-sequence γ = (γα)α∈Zn+
(γ0 > 0) is a moment

sequence if and only if there exists a positive semi-definite (n + 1)-sequence
δ = (δ(α,β))(α,β)∈Zn+×Z+

with the following properties:

(1) γα = δ(α,0) for all α ∈ Zn+.

(2) δ(α,β) = δ(α,β+1) + δ(α+2e1,β+1) + · · · + δ(α+2en,β+1) for all α ∈ Zn+,
β ∈ Z+.

The n-sequence γ has a uniquely determined representing measure in Rn

if and only if the (n+ 1)-sequence δ is unique.

Proof. This is a consequence of Theorem 2.7, with p = (0). We only
note that, for a direct proof, one should replace θp by the function θ, the
algebra Rθp by the algebra Rθ (see Remark 2.4), and the set Σp by the set
Rn, respectively. The corresponding versions of (2.6) and (2.7) show that
conditions (1), (2) from the above statement are necessary.

Conversely, using the corresponding version of (2.9), as well as Remark
2.4 and Corollary 2.6, we obtain the existence and uniqueness of a representing
measure for γ.

The next result is a solution to the Stieltjes moment problem in several
variables (see also [19, Th. 2.6] for an equivalent statement).

Theorem 2.9. An n-sequence γ = (γα)α∈Zn+
(γ0 > 0) is a moment se-

quence, and has a representing measure in Rn
+, if and only if there exists a

positive semi -definite (n+ 1)-sequence δ = (δ(α,β))(α,β)∈Zn+×Z+
with the follow-

ing properties:

(1) γα = δ(α,0) for all α ∈ Zn+.

(2) δ(α,β) = δ(α,β+1) + δ(α+2e1,β+1) + · · · + δ(α+2en,β+1) for all α ∈ Zn+,
β ∈ Z+.

(3) (δ(α+ej ,β))(α,β)∈Zn+×Z+
is a positive semi -definite (n + 1)-sequence for

all j = 1, . . . , n.

The n-sequence γ has a uniquely determined representing measure in Rn
+

if and only if the (n+ 1)-sequence δ is unique.

Proof. Theorem 2.9 is, in fact, a particular case of Theorem 2.7, with
p(t) = (t1, . . . , tn). As in the case θp(t) = (1 + 2t21 + · · · + 2t2n)−1, conditions
(2), (3) from the above statement are (slightly) different from the corresponding
versions of conditions (2), (3) of Theorem 2.7. Therefore, the solution obtained
via Theorem 2.7 should be combined with a change of variables. Specifically,
the (n+1)-sequence δ = (δ(α,β))(α,β)∈Zn+×Z+

should be replaced by the sequence
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δ̃ = (δ̃(α,β))(α,β)∈Zn+×Z+
, where δ̃(α,β) = (

√
2)−|α|δ(α,β) for all indices α, β. Then

the sequence δ̃ satisfies the conditions of Theorem 2.9, with θp as above, if and
only if δ satisfies the above conditions (1), (2), (3), and each representing
measure µ̃ of the sequence γ̃ = (δ̃(α,0))α is related to a representing measure µ
for γ by the formula dµ(t) = dµ̃(t/

√
2).

3. Moments of slowly decreasing measures at infinity

While the last section dealt with rapidly decreasing measures at infinity,
regarded as continuous functionals on an algebra of rational functions in n real
variables, this section focuses on continuous functionals on a space of uniformly
bounded rational functions. The main results are similar to Theorems 2.5 and
2.7. The only difference in the proofs is a simplification, namely this time we
need to diagonalize a tuple of bounded selfadjoint operators.

With the notation of Sections 1 and 2, we define the rational functions:

φpq(t) = tptqθ(t), 0 ≤ p, q ≤ n,

where t0 = 1 and θ(t) = (1 + ‖t‖2)−1.
Let Qθ be the C-algebra generated by 1 and φpq, 0 ≤ p, q ≤ n. Obviously

Qθ ⊂ Rθ and moreover, since all monomials tαθ(t)s, |α| ≤ 2s, belong to Qθ,

Qθ = {P (t)θ(t)s; P ∈ C[t], 2s ≥ deg(P )},

where deg(P ) is the degree of P .
The functions φpq are not independent. They satisfy a set of algebraic

relations described below. Let x = (xpq)0≤p,q≤n be a system of coordinates in
RN , where N = (n+ 1)2. Let

Φ : Rn −→ RN , Φ(t) = (φpq(t))0≤p,q≤n,

be the map induced by the rational functions φpq.

Lemma 3.1. The map Φ is injective and :

Φ(Rn) = {x = (xpq)0≤p,q≤n; x00 > 0, xpq = xqp,(3.1)

x0px0q = xpqx00, x2
00 + x2

01 + . . .+ x2
0n = x00}.

Proof. To prove relation (3.1) and the injectivity of Φ it suffices to remark
that

tj =
x0j

x00
, 1 ≤ j ≤ n,

and then, with this choice of t, the solution x of (3.1) is precisely xpq = φpq(t).
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From the previous lemma it follows also that

Φ(Rn) ⊂ {x = (xpq)0≤p,q≤n; ‖x‖ = 1, xpp ≥ 0,

xpqxrs = xprxqs, 0 ≤ p, q, r, s ≤ n}.

Our next aim is to identify and represent by measures the class of positive
definite functionals on the algebra Qθ.

Theorem 3.2. Let Λ : Qθ −→ C be a linear, positive semi -definite func-
tional. Then there exists a positive measure µ on Rn, and a positive measure
ν on RN , supported by the semi -algebraic set H = {x; x00 = 0, ‖x‖ = 1,
xpp ≥, xpqxrs = xprxqs, 0 ≤ p, q, r, s ≤ n}, such that for every polynomial
P ∈ C[x],

(3.2) Λ(P ◦ Φ) =
∫

Rn
(P ◦ Φ)dµ+

∫
H
Pdν.

Note that every element f of Qθ can be represented as f = P ◦ Φ, with
P ∈ C[x]. This shows that formula (3.2) covers indeed all values of Λ. However,
the polynomial P in this representation may not be unique.

Proof. In view of relation (3.1), the positivity of Λ (i.e. Λ(|f |2) ≥ 0)
implies Λ(θ|f |2) ≥ 0, f ∈ Qθ.

Let H be the Hilbert space associated to the positive functional Λ, and
let us denote by A = (Apq)0≤p,q≤n the N -tuple of linear operators induced by
the multiplications by φpq, 0 ≤ p, q ≤ n, on H. It is easily seen that all Apq are
bounded commuting selfadjoint operators satisfying the algebraic relations:

0 ≤ App ≤ I, −I ≤ Apq ≤ I,

as well as

Apq = Aqp,
n∑

p,q=0

Apq = I,(3.3)

ApqA00 = A0pA0q, A00 = A2
00 +A2

01 + . . .+A2
0n,

for 0 ≤ p, q ≤ n. Indeed, 1 − φpp can be written as a sum of squares of
monomials times θ; therefore, for every element f ∈ Qθ and 1 ≤ p ≤ n,

Λ(|f |2) ≥ Λ(φpp|f |2) ≥ 0.

Then, for p 6= q we observe that Apq2 = AppAqq, whence −I ≤ Apq ≤ I.
Equivalently, we can start from the relation

∑
p,q A

2
pq = I and reach the same

conclusion.
As the algebraic identities (3.3) are valid on a dense subset, via (3.1), and

since all operators are bounded, the relations (3.3) must be true everywhere
in H. Consequently, by virtue of Gelfand’s theory, the joint spectrum σ(A) of
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A lies on the closure of Φ(Rn), union possibly with other points in the set H
(see also the remark above). In particular,

σ(A) ⊂ Φ(Rn) ∪H.
Let E be the joint spectral measure of the N -tuple A, supported by σ(A).
Let σ0 = σ(A)∩H and σ1 = σ(A) ∩ Φ(Rn), which are two disjoint Borel
sets. Next we define for a Borel set σ ⊂ RN the positive scalar measure
ν(σ) = 〈E(σ ∩ σ0)1,1〉. Note that this measure is supported by H. Finally,
observe that the scalar measure µ′(σ) = 〈E(σ ∩ σ1)1,1〉 has no mass on the
set H. Thus there exists a positive measure µ on Rn with the property that
µ′ = Φ∗µ.

At this point we can invoke the spectral theorem for the N -tuple A. For
a polynomial P ∈ C[x] we obtain:

Λ(P ◦ Φ) = 〈P (A)1,1〉 =
∫

RN
Pd〈E1,1〉

=
∫

RN
P (dµ′ + dν)

=
∫

Rn
P ◦ Φdµ+

∫
H
Pdν.

This completes the proof of Theorem 3.2.

Below, by a real element of the algebra Qθ we mean a polynomial with
real coefficients in the variables x, evaluated at (φpq).

Corollary 3.3. Let τ = (τ1, . . . , τm) be an m-tuple of real elements in
Qθ represented as τj = Tj ◦ Φ, 1 ≤ j ≤ m. Let

Στ = {t ∈ Rn; τj(t) ≥ 0, 1 ≤ j ≤ m}
and

Hτ = {x; x00 = 0, ‖x‖ = 1, xpp ≥ 0, xpqxrs = xprxqs, Tj(x) ≥ 0}.
A functional Λ as in Theorem 3.2, which in addition satisfies the condi-

tions:
Λ(τj |f |2) ≥ 0, 1 ≤ j ≤ m,

can be represented as

Λ(P ◦ Φ) =
∫

Στ
P ◦ Φdµ+

∫
Hτ
Pdν,

where P ∈ C[x] and the measures µ, ν are positive.

Proof. For the proof it suffices to remark that the conditions in the state-
ment mean Tj(A) ≥ 0, 1 ≤ j ≤ m. Thus the spectral measure σ(A) is sup-
ported by the set {x; Tj(x) ≥ 0, 1 ≤ j ≤ m}. In particular, the measure µ
will be supported by the set Στ , and ν by the set Hτ .
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We note that the form of the denominator θ−1 is rather flexible in Theorem
3.2 and Corollary 3.3. Any postive definite quadratic form, uniformly bounded
from below by ε > 0 on the entire Rn, can replace θ−1.

In complete analogy with the above setting we can consider the embed-
ding:

Ψ : Rn −→ Rn+1,

given by the functions

ψp(t) =
tp

(1 + ‖t‖2)1/2
, 0 ≤ p ≤ n,

where we put as before t0 = 1. The range of Ψ lies in the unit sphere of Rn+1.
We denote by yp, 0 ≤ p ≤ n, the coordinates in Rn+1.

Let us denote by Qθ1/2 the algebra C[(ψp)0≤p≤n]. Again, the elements of
Qθ1/2 are uniformly bounded algebraic functions on Rn.

Theorem 3.4. Let Λ : Qθ1/2 −→ C be a linear, positive semi-definite
functional, so that Λ(θ1/2∗) is positive semi -definite, too.

Then there exists a positive measure µ on Rn and a positive measure ν

on Rn+1, supported by the sphere S = {y = (yp)0≤p≤n; ‖y‖ = 1, y0 = 0}, such
that for every polynomial P ∈ C[y],

(3.4) Λ(P ◦Ψ) =
∫

Rn
P ◦Ψdµ+

∫
S
Pdν.

Proof. The proof repeats that of Theorem 3.2 and we omit most of the
details. LetH be the Hilbert space obtained as a separated completion of Qθ1/2

with respect to the functional Λ. Let Bj denote the multiplication operator by
ψj on H. Since B2

0 + B2
1 + · · ·+ B2

n = I on a dense subset of H we infer that
the Bj are all bounded selfadjoint operators. Moreover, they commute, so a
joint diagonalization exists. From the assumption it follows in addition that
B0 ≥ 0. The rest of the proof is unchanged.

4. Structure of positive polynomials

In this section we shall describe the structure of all polynomial functions
that are positive on a semi-algebraic set given by a simultaneous system of
polynomial inequalities (including, after homogenization, the points at infin-
ity). Similar results were obtained, in the case of compact semi-algebraic sets,
in [10]. In fact we work with homogeneous polynomials and sets given by ho-
mogeneous inequalities. This restriction is imposed by the proof and by the
results of Section 3. However, for continuity with the previous section, we state
all results for nonhomogeneous polynomials.
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We start with a few simple algebraic arguments. Let V : Rn+1 → RN ,
N = (n+ 1)2, be the map V (x) = x̃, where x = (xp)0≤p≤n, x̃ = (xpxq)0≤p,q≤n,
whose range can be easily described. Indeed, if x̃ = (xpq)0≤p,q≤n is a point in
RN such that xpp ≥ 0, xpq = xqp, xpqxrs = xprxqs for all 0 ≤ p, q, r, s ≤ n,
then we can find x = (xp)0≤p≤n satisfying xpq = xpxq for all p, q, and therefore
V (x) = x̃. As the map V is related to the Veronese imbedding (see [14, Chap. 1,
§4]), the above assertion follows easily from the elementary properties of the
latter.

Now, let P be a homogeneous polynomial in x = (xp)0≤p≤n of even degree
2d. Then we can find a homogeneous polynomial P̃ of degree d (not unique, in
general) such that P (x) = P̃ (V (x)), x ∈ Rn+1 (see also [14]). In particular, if
P (x) > 0 for all x 6= 0, then we have P̃ (x̃) > 0 for all x̃ 6= 0 in the range of V .

Note also the identity :

(4.1) P (1, t1, t2, . . . , tn) = P̃ ((tptqθ(t))0≤p,q≤n)(1 + ‖t‖2)d,

with θ(t) = (1 + ‖t‖2)−1 for t ∈ Rn.
The following technical assertion is a separation result for vector spaces

possessing a certain graduation. The proof uses a procedure which goes back
to [4, Th. 4].

Lemma 4.1. Let S be a real vector space, and let C ⊂ S be a convex cone
with the property S = C − C.

Assume that C = ∪d≥1Cd, where Cd is a convex cone such that the lin-
ear space Sd = Cd − Cd is of finite dimension, and Cd+1 ∩ Sd = Cd for all
d ≥ 1. Denote by int(Cd) the relative interior of Cd as a subset of the Eu-
clidean space Sd.

Assume that there exists an element ξ ∈ C1 with the property that, for any
d ≥ 1 and any nonzero functional l ∈ S∗d which is nonnegative on Cd one has
l(ξ) > 0.

Let r0 ∈ Sd0 \ int(Cd0) for some index d0. Then there exists a linear
functional L : S → R such that L(r0) ≤ 0 and L|int(Cd) > 0, d ≥ d0. In
particular L|C ≥ 0.

Proof. The equality Sd = Cd − Cd implies int(Cd) 6= ∅ for all d ≥ 1.
Fix r0 ∈ Sd0 \ int(Cd0). We shall construct by recurrence a sequence

(Lk)k≥0 such that Lk is a linear functional on Sd0+k, Lk(r0) ≤ 0, Lk|int(Cd0+k)
> 0, and Lk+1|Sd0+k = Lk for all k ≥ 0.

Note that the property Lk|int(Cd0+k) > 0 implies Lk|Cd0+k ≥ 0 for all
k ≥ 0, since the closure of int(Cd0+k) coincides with the closure of Cd0+k (as
the latter is a convex cone with nonempty interior).

We choose first a linear functional L0 on Sd0 such that L0(r0) ≤ 0 and
L0(u) > 0 for all u ∈ int(Cd0).
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Assume that the functionals L0, . . . , Lk have been constructed. To con-
struct Lk+1, we note that

ker(Lk) ∩ int(Cd0+k+1) ⊂ ker(Lk) ∩ int(Cd0+k) = ∅,
which follows from the condition Cd+1∩Sd = Cd, d ≥ 1. Therefore, there exists
a linear functional Λ on Sd0+k+1 such that ker(Lk) ⊂ ker(Λ), and Λ positive
on int(Cd0+k+1). In view of our assumption, Λ(ξ) > 0 as well as Lk(ξ) > 0.
Then we must have Λ|Sd0+k = cLk for some c > 0. Hence, the functional
Lk+1 = c−1Λ has the desired properties.

It is easily seen that S = ∪d≥1Sd. Therefore, we may define a linear
functional L on S, by setting L|Sd0+k = Lk, k ≥ 0. Then L|C ≥ 0, since
Lk|Cd0+k ≥ 0 for all k, and L(r0) = L0(r0) ≤ 0. This completes the proof of
Lemma 4.1.

Recall for later use how to associate each polynomial p ∈ C[t], t ∈ Rn,
deg(p) = d, with its homogenization P ∈ C[x], x ∈ Rn+1, by the formula:

P (x0, x1, . . . , xn) = xd0p(
x1

x0
, . . . ,

xn
x0

), x0 6= 0.

Theorem 4.2. Let (p1, . . . , pm) be an m-tuple of real polynomials in
t ∈ Rn, and let

θ(t) = (1 + t21 + · · ·+ t2n)−1, t ∈ Rn.

Let p be a real polynomial on Rn. Suppose that the degrees of pj ’s and p are
all even.

Let P1, . . . , Pm, P be the corresponding homogenizations of the polynomi-
als p1, . . . , pm, p, and assume that P (x) > 0 whenever x ∈ ∩mk=1P

−1
k (R+),

x 6= 0.
Then there exists an integer b ≥ 0, and a finite collection of real polyno-

mials {q`, qk`}, ` ∈ L, k = 1, . . . ,m, such that :

(4.2) p(t) = θ(t)2b(
∑
`∈L

q`(t)2 +
m∑
k=1

∑
`∈L

pk(t)qk`(t)2), t ∈ Rn.

Proof. We use the notation introduced in Section 3. Let S be the R-
algebra of real elements of Qθ. That is, S is the R-algebra generated by 1 and
the rational functions φij , 0 ≤ i ≤ j ≤ n.

Let 2d, 2dj be the degrees of p, respectively pj . Relation (4.2) is implied
by:

(4.3) pθd =
∑
`∈L

f2
` +

m∑
k=1

∑
`∈L

[pkθdk ]f2
k`,

with elements f`, fk` ∈ S. According to relation (4.1), there are homogeneous
polynomials P̃ , P̃j in RN satisfying, with the notation of Section 3, pθd = P̃ ◦Φ,
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pkθ
dk = P̃k ◦ Φ, 1 ≤ k ≤ m. Moreover, the positivity assumptions in the

statement imply that P̃ > 0 on the set {V (x);x ∈ Rn+1, x 6= 0, P̃j(V x) ≥ 0,
1 ≤ j ≤ m}, where V is the map defined at the beginning of this section.

With these preparations we can return to Lemma 4.1. Let C be the positive
cone in S consisting of finite sums of elements of the form r2, pjθ

djr2
j , with

r, rj ∈ S, j = 1, . . . ,m. For every integer d ≥ 0 we define the linear subspace
Fd as the collection of all r ∈ S which have a representation of the form
r(t) =

∑
α,β cαβt

αθ(t)β with |α| ≤ 2β ≤ 4d.
Put also Cd = C ∩ Fd, Sd = Cd − Cd, d ≥ 0. The inclusion Sd ⊂ Fd shows

that Sd is a finite-dimensional vector space.
Notice that S = C − C. Indeed, any element f ∈ S can be written as

(1+f)2−(1−f)2

4 . We also have Cd ⊂ Cd+1, and Cd+1∩Sd ⊂ Cd+1∩Fd = Cd. Hence
Cd+1 ∩ Sd = Cd, d ≥ 0. Clearly, C = ∪d≥0Cd.

Our next aim is to prove that the constant function ξ = 1 satisfies the
condition in Lemma 3.1. Indeed, fix an integer d ≥ 1 and let l ∈ S∗d be a
nonnegative functional on Cd which, by way of contradiction, vanishes at 1.
Let us denote:

∆ = (1 + t21 + · · ·+ t2n).

Remark that ∆2d is a polynomial of degree 4d which can be written as a
sum of squares of monomials, each with positive integral coefficients. Moreover,
any monomial t2α, with |α| ≤ 2d, explicitly appears in this decomposition.
Consequently,

1− t2α

∆2d
∈ Cd, |α| ≤ 2d.

Since l(1) = 0 and l|Cd ≥ 0, it follows that:

l(
t2α

∆2d
) = 0, |α| ≤ 2d.

We choose next multi-indices α, β satisfying |α|, |β| ≤ 2d. Let λ be an
arbitrary real number. Since all three terms in the binomial expansion below
belong to Sd, we must have:

l[(
tα

∆d
+ λ

tβ

∆d
)2] ≥ 0.

As λ is arbitrary, this implies l(tα+β/∆2d) = 0 whenever |α|, |β| ≤ 2d . There-
fore, via an obvious decomposition of an arbitrary multi-index α with |α| ≤ 4d,
we deduce:

l(
tα

∆2d
) = 0, |α| ≤ 4d.

Finally, if we write tα/∆2k = tα∆2d−2k/∆2d if |α| ≤ 4k ≤ 4d, and tα/∆2k+1

= tα∆/∆2k+2 if |α| ≤ 4k + 2 ≤ 4d, we infer tαθ(t)β ∈ Sd if |α| ≤ 2β ≤ 4d, and

l(tαθ(t)β) = 0,

showing that l = 0 and that Lemma 3.1 can be applied.
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Note that the above discussion implies, in fact, the equality Fd = Sd.
With p as in the statement, we clearly have pθd ∈ Fd = Sd. Assume

pθd /∈ int(Cd) . By virtue of Lemma 3.1, there exists a linear functional L on
S, which is nonnegative on C, such that L(pθd) ≤ 0.

We can extend the functional L by linearity to the complex space Qθ.
By Corollary 3.3, there exist a positive measure µ, with support in Σ0 =
∩mk=1p

−1
k (R+), and a measure ν supported by the set H0 = {(xpq) = V x;

‖V x‖ = 1, x00 = 0, P̃j(V x) ≥ 0, 1 ≤ j ≤ m}, such that:

0 ≥ L(pθd) =
∫

Σ0

pθddµ+
∫
H0

P̃ dν > 0,

which is impossible. Consequently, pθd ∈ Cd and the representation (4.3)
follows. By simplifying the denominators we finally obtain relation (4.2).

Remark. It follows from the previous proof that the decomposition (4.3)
actually takes place in the space Fd, where 2d = deg(p).

The next result is one of the main assertions from [11].

Corollary 4.3. Let p be a polynomial such that its homogenization P

satisfies P (x) > 0, x ∈ Rn+1 \ {0}. Then there exist an integer b ≥ 0, and a
finite collection of real polynomials {q`}`∈L, such that

p(t) = θ(t)2b
∑
`∈L

q`(t)2, t ∈ Rn,

where θ(t) = (1 + t21 + · · ·+ t2n)−1.

A variety of particular cases of Theorem 4.2 can at this point be discussed.
We mention only one. Namely, assume for instance that p(t) = ‖t‖2d + q(t)
and deg(q) < 2d; then the associated homogeneous polynomial P (x) is auto-
matically strictly positive on the hyperplane at infinity x0 = 0. Therefore we
can repeat the proof and obtain the following result.

Corollary 4.4. Let (p1, . . . , pm) be an m-tuple of real polynomials in
t ∈ Rn, and let

θ(t) = (1 + t21 + · · ·+ t2n)−1, t ∈ Rn.

Let g1(t), g0(t) be real polynomials with deg(g0) < deg(g1), such that the
homogeneous polynomial G1 attached to g1 satisfies G1(x) > 0, x ∈ Rn+1\{0}.
Let p = g0 + g1. Assume that p(t) > 0, whenever t ∈ ∩mk=1p

−1
k (R+).

Then there exist an integer b ≥ 0 and a finite collection of real polynomials
{q`, qk`}, ` ∈ L, k = 1, . . . ,m, such that :

p(t) = θ(t)2b(
∑
`∈L

q`(t)2 +
m∑
k=1

∑
`∈L

pk(t)qk`(t)2), t ∈ Rn.
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The preceding result is the first place where the explicit decomposition of
the functional Λ (cf. Corollary 3.3) into two integrals is needed by the proof.
Otherwise, for Theorem 4.2 and Corollary 4.3 we could have worked as well on
the bigger space RN , without explicitly decomposing the functional Λ.

The case of polynomials p and pj of arbitrary degree requires Theorem 3.4
and a repetition of the above proof. The novel fact this time is the occurrence
of θ1/2 as a necessary factor in the decomposition of p. We simply state the
result.

Theorem 4.5. Let (p1, . . . , pm) be an m-tuple of real polynomials in
t ∈ Rn, and let

∆(t) = (1 + t21 + · · ·+ t2n), t ∈ Rn.

Let p be a real polynomial on Rn. Let P1, . . . , Pm, P, be the corresponding
homogenizations of the polynomials p1, . . . , pm, p. Assume that P (x) > 0, x ∈
∩mk=1P

−1
k (R+), x 6= 0.

Then there exist an integer b ≥ 0 and a finite collection of real polynomials
in t,

√
∆, {q`, qk`, r`, rk`}, (` ∈ L, k = 1, . . . ,m), such that

∆bp(t) =
∑
`∈L

[q`(t,
√

∆)2 +
√

∆r`(t,
√

∆)2]

+
m∑
k=1

∑
`∈L

pk(t)[qk`(t,
√

∆)2 +
√

∆rk`(t,
√

∆)2], t ∈ Rn.

Final remarks. 1. We have encountered above several rational or algebraic
embeddings:

R : Rn −→ RN ,

which had the quality that the positive definite maps on the polynomial algebra
in N variables, which are supported by a natural closure of the range of R, are
easily representable by positive measures. By pull-back on Rn we have thus
obtained the moment results and the structure of positive polynomials. This
scheme can obviously be applied to other embeddings of the affine space, with
similar consequences.

2. Returning to Theorem 2.8 and Corollary 4.4, we remark that the
semigroup tαθ(t)β , α ∈ Z+

n, β ∈ Z+, is finitely generated. Consequently
Theorem 6.1.11 of [2] applies and it shows that any polynomial p satisfying
p(t) ≥ 0, t ∈ Rn , can be approximated in the finest locally convex topology of
R[t, θ] by elements in the convex cone Σ of squares of polynomials multiplied
by powers of θ. Indeed, p(t) + ε(1 + ‖t‖2)d, with ε > 0 and 2d > deg(p) will
satisfy the positivity condition in Corollary 4.4. However, as mentioned in [11],
there are such polynomials p which do not belong to Σ. Therefore the cone Σ
is not closed in the finest locally convex topology of the algebra R[t, θ].
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3. While this paper was circulating as a preprint and partially under
its influence, a purely algebraic approach to decomposition results such as
Theorem 4.2 above was developed by Thomas Jacobi, under the supervision
of Alexander Prestel. See T. Jacobi: A representation theorem for certain
partially ordered commutative rings, preprint, Konstanz, 1999. We thank
them both for informing us early about their work.
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Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France

E-mail address: fhvasil@gat.univ-lille1.fr

References

[1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis,
Oliver and Boyd, Edinburgh, 1965.

[2] C. Berg, J. P. R. Christensen, and P. Ressel, Harmonic Analysis on Semigroups, Grad.
Texts in Math. 100, Springer-Verlag, New York, 1984.

[3] J. Bochnak, M. Coste, and M.-F. Roy, Géométrie Algébrique Réele, Springer-Verlag,
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