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Abstract. In this paper, we derive some subordination results for

certain classes of analytic functions defined by a generalized differen-
tial operator using the principle of subordination and a subordination
theorem. Relevant connections of the results presented here with those
obtained in earlier works are also pointed out.

1 Introduction and preliminaries

Let A denote the class of functions f(z) of the form

f2) =243 ane™ M

n—

which are analytic in the open unit disk &/ = {z : z € C and |z] < 1}. We
denote by S, §*, K and C, the class of all functions in A which are, respectively,
univalent, starlike, convex and close-to-convex in . For functions f given by
(1) and g given by

o0
g(z) =z+ 3 buz",

n=2
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the Hadamard product (or convolution) of f and g is defined by

(fxg)(z) =2+ ) anbnz™

n=2

Let 7 (v, «) denote the class of functions in A satisfying the inequality

/ 2cn
%<( zf'(z) + yz=f"(z)

T—v)f(z) +vzf’(2)> > zel,

for some o (0 < < 1)andy (0 <y < 1), and let C(y, «) denote the class of

functions in A satisfying the inequality

m<yz3f’”(z) + 2y + 122" (2) + zf'(2)
vz (z) + zf!(z)

)>oc, zelU,

for some & (0 < @ < 1) and vy (0 <<y < 1). We note that
felly,a) & zf' € T(y, «).

The classes 7 (v, &) and C(y, &) were introduced and investigated by O. Altintas
[2], and M. Kamali and S. Akbulut [4], respectively.
Let M(B) be the subclass of A consisting of functions f which satisfy the

inequality
zf'(z)
i)%< 2] ) <P, zeU,

for some B (B > 1), and let N(B) be the subclass of A consisting of functions
f which satisfy the inequality

zf"(z)
9‘%(1 + () ) <PB,zel,

for some B (B > 1). The classes M(pB) and N(B) were introduced and
investigated by S. Owa and H. M. Srivastava [6] (see also J. Nishiwaki and S.
Owa [5], S. Owa and J. Nishiwaki [7], H. M. Srivastava and A. A. Attiya [9]).

Let oy, 002,...,xq and B1,B2,...,Ps (4,8 € NU{0},q < s+ 1) be complex
numbers such that By # 0,—1,-2,... for k € {1,2,...,s}. The generalized
hypergeometric function 4Fs is given by

. o) - (“1)n(cx2)n---((xq)n£
qu((Xl,(XZ,...,OCq,f)],Bz,...,BS,Z)T;)(B”n(ﬁz)n.”(ﬁs)n 7 (zelU),
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where (x)n, denotes the Pochhammer symbol defined by
X)n=x(x+1Nx+2)---(x+n—1)forne Nand (x)g=1.

Corresponding to a function G s(a1; B1;z) defined by

Ga,s(x, B1;2) =z gFslog, oz, . ooy g5 B, B2y - -, Bsi 2),
we now define the following generalized differential operator:
DS, (o1, B1)f(2) = f(z) * Gqs(ot1, B1;2),
Diu(or, B1)f(z) = Dapl(as, B1)f(z) = Apz?(f(z) * Gg,s(ar, B1;2)) "+
+ (A = Wz(f(z) * Gqs(ar, B152)) +
+ (T =A 4 p)(f(z) * Gq,s(x1, B152)), and
DRh(ea, B1)f(z) = Dau(DR (o1, B1)f(2)),
where 0 < p <A <1and m e Ny =NU{0}.

If f(z) € A, then we have

Dxu(or, Br)f(z) =z + Zﬁ?on anz™, (2)
n=2
where
In=T+Aumn+A—p)(n—1) (3)
and

(1) n—1(a2)n-1...(xg)n-1

(B1)n—]([32)n—1 cee (Bs)n—1 (TL— ])!.

It can be seen that, by specializing the parameters the operator D;\‘L(oq ,B1)f(2)
reduces to many known and new differential operators. In particular, when
m = 0 the operator D}\’L(oq, 1)f(z) reduces to the well- known Dziok-Srivastava
operator [3] and for up=0,q =2,s =1, a1 = 1, and ay = 1, it reduces to
the operator introduced by F. M. Al-Oboudi [1]. Further we remark that, when
A=1,u=0,q=2,s=1, 1 =1, and xy = 1 the operator DRL(oq,B])f(z)
reduces to the operator introduced by G. S. Salagean [8].

Oon =

(4)

For simplicity, in the sequel, we will write D}\’Lf (z) instead of D}IL( 1, B1)f(z).

Motivated by the above mentioned function classes, we now introduce the
following subclasses of A involving the generalized differential operator D;\‘:Lf (z).
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Definition 1 A function f € A is said to be in the class S)T\T:L(y, o) if it satisfies
the following inequality

{ (1 —v)D3f(z) +yD3,*f(z

(1 —¥)DRLf(z) + YD ()

)
}>oc, zelU,

where
meNy, 0<y<1l 0<ax<l.

It is easy to see that the classes 7 (y,«) and C(y, &) are special cases of the
class S;j:t(y, o).

Definition 2 A function f € A is said to be in the class M%(%B) if it
satisfies the following inequality
1 2
{(1 —y)D M (z) + YD (2)
(1—y)Df(z) + YD ()

}<{3, zeU,

where
meNy, 0<y<1, pB>1.

It is also easy to see that the classes M(B) and N () are special cases of the
class M}\Th(v, B).

We now provide some coefficient inequalities associated with the function
classes S;\":L(y, o) and Mﬁ(y, B).

2 Coefficient inequalities

Theorem 1 Let 0 < a <1 and 0 <y < 1. If f € A satisfies the following
coefficient inequality

o
> (1= +¥9n) (00— ) O onlan < T -« (5)

n=2

where 9y, and oy are given by (3) and (4) respectively, then f € S;\r:t(v, o).

Proof. It is suffices to show that
‘ (1 —v)DR1(2) + yDR ?f(2)

-1 <1T—q, z€eU.
(1—v)DIf(z) + YD ()
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Now we note that for any z € U,

+ _ _ m n—1
(1R i) +yDR M) || ST Y YOO T onanz
m m+1 - - o]
(1= Y)DR, f(z) +yDJ (2] T+ 3 (1—y+ vy ) onan zn!
n=2
Z (1 =y +v9)On — 1) onlan|

n=2

IN

1—

M2

(1—vy ""‘Yan)ﬁ;&no—n‘aﬂ
2

It follows from (5) that the last expression is bounded by 1 — «. This completes the
proof of the theorem. O

Theorem 2 Let B > 1 and 0 < v < 1. Iff € A satisfies the following
coefficient inequality

(o¢]

D> (T=y +¥90)(On + 190 — 2B)) O o an| < 2(B — 1), (6)

n=2

where ¥y, and on are given by (3) and (4) respectively, then f € M}&(y, B).

Proof. It is sufficient to show that

— 2B,
(7)

‘ (1—y)DJf(z) + YD (2)

‘ (1 =)D (2) + YD 2H(2)
(1 —v)DRLf(2) + YD ' (2)

(1 —v)DRf(2) + YDy '(2)

where z € U.
Now, we define M € R by

M:=|(1—y)DRf(z) +yDf(2) |-
— |(1 =)D f(z) +¥yDR 2 (2) — 2B (1 —v)DRf(2) + ¥yDRy H(2) | =

(e.¢]

=|z+ Z (1 =yt + 32| onanz™|—
n:OO
—lz+ Z (1 =y + v onanz™—
n=2
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Thus, for |z] =1 < 1, we have

(T—v +yo) 00 onlan™—

M2

M<r+
=2

2p—1r—Y (1—v +vsn)|sn—zs|sman|an|r“] <

n=2

— 3

< (Zu ¥ YO B+ B0 — 2B Owlan] — 2(B —n)r.

n=2
It follows from (6) that M < 0, which implies that (7) holds. This completes
the proof of the theorem. O

In view of Theorem (1) and Theorem (2), we now introduce the subclasses

Shy, ) CSP(y,«)  and  MT(y,B) € MPL(v, B),

which consist of functions f € A whose Taylor-Maclaurin coefficients satisfy
the inequalities (5) and (6) respectively. We now derive some subordination
results for the function classes S{t(y, ) and M%(y, B).

~

3 Subordination result for the class ;\“:L(‘y, B)

We will use of the following definitions and lemma to prove our result.

Definition 3 (Subordination Principle) Let f(z) and g(z) be analytic in U.
Then we say that the function f(z) is subordinate to g(z) in U, and write

f<g or f(z) < g(z)
if there exists a Schwarz function w(z), analytic in U with
w(0) =0, w(z)|<1 (zel),

such that
f(z) = g(w(z)) (zeU).

In particular, if the function g(z) is univalent in U, then

f(z) < g(z) (zelU) < f(0)=g(0) and f(U) C g(UU).
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Definition 4 (Subordinating Factor Sequence) A sequence {bn}>>_; of complex
numbers is said to be a subordinating factor sequence if, whenever f(z) of the
form (1) is analytic, univalent and conver in U, we have the subordination
given by

Zanbnz“—<f(z) (zel; a;:=1).
n=1

Lemma 1 (See Wilf [11]) The sequence {bn}% ; is a subordinating factor
sequence if and only if

[ee}
m<1 —I—Zanzn> >0 (zelU).
n=1

Theorem 3 Let the function f(z) defined by (1) be in the class g{’;(y, o). If
g(z) € K, then

(1T—=v+vd2)(P2 — )0 02
2[00 —o) + (1 =y +vy92) (92 — )T 02

(zeU, meNy, 0<y<1,0<a<1)

] (f*g)(z) < g(z) (8)

and
(=) + (0 =y +y9)[B2— a)df 0,
A > 50, — a9 ©)

where ¥ and oy, are given by (3) and (4) respectively. The constant factor in
the subordination result (8)

(1 —v+v92)(¥2 — x)0) 02
2[(1 = o) + (1 =y +vD2) (V2 — a)D3 02

cannot be replaced by a larger one.

Proof. Let f(z) € g;\“:t(y, «) and suppose that

g(z) =z + chzn e K.

n=2
Then we readily have
(1=v+vd2)(P2— x)dT 02
2[(1 = o) + (1 =y +vy92) (2 — a)9F 02

_ (1—v+v92)(d2— a)d3 02 ( 00 n)
C2[(T— o) + (T =y +vd2) (92 — ¥)85 02 Z+nZza“C“Z ‘

(fxg)(z) =
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Thus, by Definition 4, the subordination result (8) will holds if

{ (1 =y +v92)P2— x)d 02 a }“’
20— )+ (1 =y +v92) (92— x)O o]

n=1

is a subordinating factor sequence, with a; = 1. In view of Lemma 1 this is
equivalent to the following inequality:

- (1—=v+vyd2)(D2 — )0 02
{ Z (1T—oa)+

anz s >0 zecU).
(T—v+v92) (2 — )0y } ( )

1

(10)

Since (T—y+vyd)(On—a) I on (N> 2, m e Np) is an increasing function
of n, we have

(1T—v+v92)P2—«)dT 02
] mn
{ +Z -+ (1 -y +792)(92 — )00, ™"
_ {1+ (1—=v+vd2)d2— ) 02 )
(1—o) + (T =y +vy92) (D2 — )0 02
1
(=) + (1 —y+vy82) (02— )0z

C Y (=7 +v82)(92 — a9F anz“}

_|_

n=2
. (1—v+v92)P2— «)9T 02 .
T (T=a+ (1 =y +vyd2)(P2— «)d) 02
1
(1—o)+ (1T =y +v92) (D2 — x)0F 02
C Y (1 =y +¥0) (O — )OI o fan| "
n=2
S (1—v+v92)P2— «)9T 02 .
(1—o)+ (1T =y +vd2) D2 — x0T 02
1—x
o)+ (1—y +v82) (32— )85 0z
=1-r>0 (lzZl =r < 1),

where we have also made use of the assertion (5) of Theorem 1. This evidently
proves the inequality (10), and hence also the subordination result (8) asserted
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by Theorem 3. The inequality (9) follows from (8) upon setting

z

g(z) =7 =z+) "€k
n=2

Next we consider the function

_ T—« 2
(1T—=v+v9)d2—x)d0r

q(z) =z (11)

(MeNy, 0<y<1,0<5a< 1),

where 9, and oy are given by (3) and (4) respectively, which is a member of
the class Sy, (v, «). Then, by using (8), we have

(1 =y +v92)(d2— x)d) 02 (2) < -2
A0 — o)+ (1 —y +v92) (92 — a9 o] T—2

(zelU).

One can easily verify for the function q(z) defined by (11) that

: (T =y +v92) (02 — )97 02 1
mm{m<2[(1—0¢)+(1—Y+Y32)(92—06)192“02]q(z))}_ ;=)

which completes the proof of Theorem 3. g

Remark 1 Seitingy =0,A=1,u=0,g=2,s=1, 01 = p1, and &y = 1
in Theorem 3, we get the corresponding result obtained by S. Stimer Eker et
al. [10].

—~

4 Subordination result for the class M} (v, 8)

The proof of the following subordination result is similar to that of Theorem
3. We, therefore, omit the analogous details involved.

Theorem 4 Let the function f(z) defined by (1) be in the class //\;IJRL(Y, B).
If g(z) € K, then

(1 —=v+vd2)(D2 + 92— 2B[)0) 02
2B =1+ (1 =y +vd2) (D2 + B2 — 2B[)05 03]

(fxg)(z) <g(z) (12)

(zeU, meNy,, 0<y<T,0<a<1)
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and

2B 1)+ (1 v +¥92) (92 + 192 — 2B} 0
U 0=y +v0,) 02 + 92— 28050,

where ¥ and oy are given by (3) and (4) respectively. The constant factor

(1T =y +vd2)(O2+ D2 —2B|)0F 02
2B =1+ (1 =y +vd2) (D2 + B2 — 2B1)0T 02]

in the subordination result (12) cannot be replaced by a larger one.

Remark 2 Setting m = 0, ory =0,A =1, u=0,g=2,s =1, 01 =
B1 and 0 =1 in Theorem 3, we get the corresponding results obtained by H.
M. Srivastava and A. A. Attiya. [9].
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