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Q-STARLIKE FUNCTIONS OF ORDER a AND TYPE j

S. KANT AND P.P. Vvas

ABSTRACT. In the present investigation, we introduce two new subclasses S; («, )
and 7. (a, B) for g-starlike functions of order a and type . We establish Sev-
eral inclusion relationships and study various characteristic properties for the class
7'q*(a, B). Further application of fractional g-calculus are illustrated.
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1. INTRODUCTION AND DEFINITIONS

Let A denote the family of normalized functions of the form
[e.9]
f(z) = z+2anz” (1)
n=2

which are analytic in the open unit disk U= {z : |z] < 1}. A function f in A is said
to be univalent in U if f is one to one. As usual, we denote by S the subclass of A
consisting of univalent functions in U. A function f € A is said to be in the class
S*(«) of starlike functions of order « in U if it satisfies

Re{z}c;g)}>a 0<a<lzel).

On the other hand a function f € A is said to be in the class C(«) of convex functions
of order « in U if it satisfies

2f(2)
Re{l—i— f'(z)}>a 0<a<l1,zel).

In particular, we set S*(0) = S* for a class of starlike functions and C(0) = C for a
class of convex functions. Let g and f be two analytic functions in U, then function
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g is said to be subordinate to f if there exists an analytic function w in the unit
disk U with w(0) = 0 and |w(z)| < 1 such that g(z) = f(w(z)) (2 € U). We denote
this subordination by g < f. In particular, if the function f is univalent in U the
above subordination is equivalent to ¢(0) = f(0) and f(U) C ¢g(U).

For 0 < ¢ < 1, the g-derivative of a function f is defined by (see [3, 5, 6, 7])

[Efe (2 £0)

Dyf(z) = (2)

provided that f'(0) exists.

The g-integral of a function f is defined by

| =20 -0 S s 3)
n=0

From (2), it can be easily obtain that

[o@)
Zanz = Z n)ganz",
n=1 n=1
where
_1-4
[n]q 1—q°

As q— 17, [n]q — n and limqﬁl— qu(z) = f/(z)

By making use of the g-derivative of a function f € A, Agrawal and Sahoo [1]
introduced a class S; () of g-starlike functions of order « in the following manner:
A function f € A is said to belong to the class S;(«) if it satiesfies

‘f(ZZ)qu(z)—oz_ ‘
11—« 1—¢ql~ 1—¢q

0<a<l1,zel). (4)

Equivalent form of the condition (4) is

‘ Lz qf( )_
(1 + Q){ﬁ Z Oé} {f(z qf

In particular, when o = 0, the class Sj (@) coincides with the class S; = S;(0), which
was introduced by Ismail et al. [4] in 1990. Moreover, the class C,(a) of g-convex

1}‘<1 0<a<l1,zel).
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functions can be defined in the form of Alexander type relation between C4(a) and
S, (a) as

feCya) & 2Dy f € S)(a).
We note that lim,_,;- S;(a) = §*(a) and lim,_,;- Cy(a) = C(a).
Motivated essentially by the work of Juneja and Mogra [8], Owa [12] and recent
works on g¢-derivative especially [1, 2, 10, 11|, [14]-[20], we introduce the classes
S;(a, B) of g-starlike functions of order o and type S for functions f € A and
T, (o, B) of g-starlike functions of order o and type § for analytic functions with
negative coefficients.

Definition 1. For0 <a <1 and 0 < 8 <1, a function f € A is said to belong to
the class Sy (v, B), if it satisfies

‘ Dyf(z) —1
L+ 0B{ 75 Daf(2) — a} — {75 Duf (2)
Definition 2. For0 < a <1 and 0 < 8 <1, an analytic function f of the form

‘ <1, (zel). (5)

z) :alz—Zanz" (a1 >0, ap, >0 and z € U) (6)

is said to belong to the class T}

4 (@, B), if it satisfies the condition (5).

Here, we note that

(i) Timg_;- S (0, B) = S*(

(i)limg_y; - Sy ( %) = S*(a, 1) (see McCarty [9])

(iii)lim, ;- S (1 H7) = 8*(172,54%); (0 <y < 1) (See Padmanabhan [13])
(

T
iv)lim,,_,;- T*(a,ﬁ) Sg(a, B) (see Owa [12]).

a, B) (see Juneja and Mogra [8])

Il v

In the present paper we derive several properties including coefficient estimates,
inclusion theorems, distortion theorem, convolution theorem etc. for the functions
belong to the class 7. (a, B). Applications of fractional g-calculus associated with
the class 7, (a, B) have also been obtained.

2. MAIN RESULTS

Theorem 1. Let 0 < a<1land 0 < < ﬁq. Then a function f of the form (6)
belongs to the class T, (v, B) if and only if

o0

> [{2- A+ )8}l — 1+ @aplan < (1+9)B(1 - a)ar. (7)

n=2
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The result is sharp for the function
B(1 —a)ay 2
2= (1+q)f—ab

Proof. Suppose that f € 7 (a, ). Making the use of series expansion of f in the
inequality (5), we obtain

f(z)=a1z —

(8)

‘ ﬁqu(Z)*l ‘
(1+0)8{ 725 Da f(2)—a } —{ 755 Do f(2)-1}

‘ > pes([nlg—Danz"
(I+q)B(1—a)arz=3 277 o {1-(1+q)af+([nlg—(1+q)Bln]s tanz"

<1 (9)
Since |Re(z)| < |z| for any z, choosing z to be real and letting z — 1~ through

real values, (9) yields

o0

> (Inlg—1Dan < (1+9)B1—a)ar =Y {1+[nly— (1+q)aB— (1+q)B[nls}tan (10)
n=2

n=2

which leads us immediately to the desired inequality (7).
In order to prove the converse, we assume that the inequality (7) holds true. We
have

12Dqf(2) — f(2)] = |1 + @) B{2Dq f (2) — af(2)} — 2Dqf(2) + f(2)]
= | 0ol = [n]g)anz"|=|(1+ ¢)B(1 — a)arz — {(1 +q)8 — 1} 3272 [ngan="
—{1 = (14 q)af} >0, anz"|
< Yonea(lnlg = Danlz" = (1 4+ @)B(1 — a)as|z]

+{1 - 1+ )8} Xnlalnlganl2" + {1 = (L + q)aB} 3252, anl2|”

IN

[2onis ({2- (1 +@)BYnlg — (1 + @)aB)an — (1 +)B(1 — a)ar]|2|

<0
consequently, by the Maximum Modulus Theorem, f € 7 (a, 3).
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Finally, by observing that the function f given by (8) is indeed an extremal
function for the assertion (7). We complete the proof of Theorem 1.

Theorem 2. Let 0 <a<1land 0 < f) < [y < ?lq. Then we have
7;*(&761) C 7;*(057162)

Proof. Let a function f of the form (6) belongs to the class 7" («, 81) and B2 = 1+,
then we have

> H2— 1+ 9)B}nly — (1 + abilan < (1+@)Bi(1 - a)ay

n=2

which gives us
o0

B1(1 — a)ay
2 < 2—(1+q)b —apr’

n=2

Consequently,

Sonts [{2 = (1+q)B2}nly — (14 @)aps]an
=30 {21+ q)(B1 +0)}nlg — (14 q)a(Br +6)]an

=30, [{2= (1 +q)B1}nlg — (1 + @)aBi]an
=630, [T+ )]y — (1 + @) an

<(1+9)Bi(1 —a)ar —6(1+q)([2lg — @) Yonis an

) —« —a)a
< (14 q)B1(1 —a)ar + (1+q%ﬁ11(iq)ﬂ)1(£2i%1 o

<(1+¢)p(1—a)a +6(1+q)(1—a)a

= (14 q)B2(1 — a)a;.
Thus the proof of Theorem 2 is completed.

Theorem 3. Let 0 < a1 <as<1land << ﬁq. Then we have
7:1*(05175) 37:1*(05275)‘

Proof. Let a function f of the form (6) belongs to the class 7" (a2, 3) and a1 = az—d.
Then we have

o0

> (2= (1+@)BYnlg — (1 + @)azBlan < (1+¢)B(1 — az)a

n=2
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which gives us
oo

B(1 — ag)a;
2 S ST gh-aah <

n=2

Consequentially,

>onee [{2 = (1 + @)BY ) — (1 + g)a flan

=Yt [{2= 1+ @)B} ]y — (1 + q)(a2 — 6)B]an

=20ty [{2 - L+ @)BY ) — (1 + @)azBlan + (1 +q)B X0, an
< (1+¢)B(1 —az)ar +6(1 + q)Bay

=(1+¢pB(1—ai)a.

Thus the proof of Theorem 3 is completed.

Theorem 4. Let 0 < as < a1 <1 and0< 1 < s < fq. Then we have

T, (a1, B1) C T (az, ).
Proof. Let a function f of the form (6) belongs to the class 7 (a1, 81), aa = a1 —
0 and B2 = B1 + €. Then we have

o0

S 2=+ )Bitnlg— 1+ Qarpi]an < (14 @)Bi(1 — ar)an

n=2

which gives us

- B1(1 —ar)ay
nz_:?an = 2—(1+q)p —a1p <o

Consequently,

Yoz {2 = (1 + @)B2}{nlg — (1 + q)azfz]an
=2t {2 (1 + @) (B + )}nlg — (14 g)(e1 = 0)(B1 + ¢)] an

=Y, [{2—= 1+ @)Bitnlg — (1 + q)arBi]an
—e(1+q) Zﬁ'o:z([n]q —a1)a, +0(1+q)(B1 +e) 22022 an

<1+ @)l —a)ar —e(1+q)([2lg — 1) Yonlg an + (1 +q)(B1 + €)as

< (14 q)Bi(1 - an)ay + A L_adBlcles 4 51 4 )(8) + €)ay
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<A+l —a)ar +e(l+q)(1—ar)ar +6(1 4 q)(B1 + €)as

= (1+¢)B(1 — az)ar.
Thus the proof of Theorem 4 is completed.

The Hadamard products: If the functions g and h are of the form

2)=biz— Y bpz" (b1 >0, by >0) (11)

and -
h(z) =c1z — chz" (c1 >0, ¢, >0), (12)

n=2

then the Hadamard product (or Convolution) of the two functions g and h is defined
by

gxh(z) =bic1z — ancnz
Theorem 5. Let 0 < aj,as < 1,, 0 < (1,02 < ? and g € T, (a1,p1), h €

T, (a2, B2), then g* h € T (v, B), where g and h are given by (11) and (12) respec-
tively and o = Min(aq, ), B = Max(B1, 52).

Proof. Since g € T (a1, 1) and h € T (g, B2) so Theorem 1 gives us

i {2 = (1+q)B1}nlg — (1 + @enfr]bn < (14 @)B1(1 — a1)by
i
> H2— 1+ )B2}nlg — (1 + @)azBs)en < (14 q)Ba(1 — an)ey.
Hence -
Zb” < T ) e <"
and

B2(l — az)cy
ch T {2-(1+¢q)B2} —azfe = ¢
Therefore for « = Min(ay, ae) and f = Maz(5, B2),
Sonts [{2 = (1+q)B}nlg — 1+ @)af]bacy
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< Maz{er 2, [(2 - (1+ )8}l — (1 + @)aB]bn,
b1 >0, [{2— (1 +)B}nlg — (1 + q)aBlen}

< (1+9)8(1 - a)brer.
Consequently, g * h € T (a, B).

Theorem 6. Let0 < a<1,0< < ﬁ and f € T (a, B). Then

B(l —a)ay 9 B(l —a)ay 9
- < < + e ).
The result is sharp for the function
. Bl — a)ay 2
A (Rl
Proof. Since f € T, (a, ), then by virtue of Theorem 1, we have
S 2= 1+ 9)BYnlg — 1+ @)aBlan < 1+ ¢)B(1 - a)ay
n=2
which gives
Z 0, < Bl — a)a; '
Therefore, we have
= B(1l —a)ay 9
> — |2/? > - e D).
FE 2 e =Y 0w 2 ailel - =gl (e D)
Similarly, we also get
= Bl — a)ay 2
< + 122 an < + € U).
e S alel+ o S ailel + 5=l (e D)
Which completes the proof.
Theorem 7. Let 0 <a<1,0< < 11Tq and f € T (a, B). Then
1+ l-« 1+ 1—-a)a
a;— ( q)ﬁ( ) | |_ |qu( )| S a1+ ( q)ﬂ( ) 1 ‘Z| (ZEU).

2-(1+q)B—-(1+qapB 2-(1+q)B—-(1+qap

The result is sharp for the function
Bl —a)a 52
2-(1+4q)8—(1+q)ap

f(z) =a1z —
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Proof. Since f € T («a, ), then by virtue of Theorem 1, we have

[e.o]

STH2- A+ q)BYnlg — A+ @)aBla, < (1+q)B(1 - a)ar,

n=2
which gives

1+ @80 —a)ar > 32— (1+0)8 - “[7‘5;) of)[nlyan

n=2

22— 1+ ¢)8 — (1 + q)af][n]gan.

Therefore,

o0

(1+9)5(1 - )
2 lhtn < 5 gjab

n=

Hence,

(1+¢)B(1 —a)a;
2-(14+q)p—-(1+qap

|Dyf(2)| > a1 — z\z nlqan > a1 — |z,

and

(14 q)B(1 — a)ay
2-(1+q)B—(1+qaps

)
D) < ar + 121 S lnlgan < a1 +
n=2

2| (zeU).

Which completes the proof.

In the following theorem, we obtain the radius of ¢-convexity for the class

Ty (e, B).

Theorem 8. Let 0<a<1,0< < 1+q and f € T/ (a,B). Then f is g-convex in

the disc TRy 8
1 — n— l
zl <r=r(a,p) = inf 13
<=l = nt (S (13
Proof. In order to prove the required result, we must show that
Dy(2Dyf(2)) 1
— < zl < r(a, B)). 14
b 1o Sioy (d<r@s) (14)
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We have

Dy(2Dgf(2)) 1 ‘ _ ’Dq(alz — Ymeaan[ngz") 1
Dyf(2) 1—q a1 — Y iy an[n]gz™ ! 1—gq
a1q + Yo nfe{[nle(1 — q) — L}an|2|"
- (1 —q)(a1 = 32025 nlganlz*")

Hence (14) holds true if

00 nl )2
Z([ij) an|z|n—1 < 1.

n=2

In view of Theorem 1, we get

2—(1+q)B—ap

2|1 n—1 .
([n]q) |Z’ S ,3(1 o O[) ( - 2737 )7
which gives us
2—(1+q)8—ap — _
A< i | (=)

This completes the proof.

3. FRACTIONAL ¢-CALCULUS

In the theory of g-calculus (see [3]), the g-shifted factorial is defined for n, q € C
and n € No = NU {0} as a product of n factors by

' B 1 n=0
(777 Q)n - { (1 _ n)(l _ nq) R (1 — nqn_l) ne N (15)

and in terms of the basic analogue of the gamma function

Ly +n)(1—q)"

(@ @)n = (n>0),
Lq(n)
where the g-gamma function is defined by
) oo 1— 11—z

(4% @)oo
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We note that, if |¢| < 1, the definition of ¢-shifted factorial (15) remains meaningful
for n=cco as a convergent infinite product given as

[e.9]

(0 @)oo = [ J (1 — nd").

k=0

We recall here the following g-analogue definitions given in [3]. The recurrence
relation for ¢g-gamma function is given by

1—-4¢"

Lo(z+1) = 1—¢

Ly()

and the g-binomial expansion is given by

oo

1—(y/z)q
== yfman = 1] [T 150
Also it may be noted that the g-Gauss hypergeometric function is defined by

211, G652 = o (0 D)n(SG D _n

L GG, A bESY

and as a special case of the above series for ¢ = &, we get 1Pg[n, —; q, z].
In the following, we define the fractional g-calculus operators of a complex-valued
function f(z), which were recently studied by Purohit and Raina [14].

Definition 3. (Fractional q-integral operator) The fractional q-integral operator
S of a function f of order § is defined by

.= 0,800 = s /Oz(z—tq)a_lf(t)dqt 6>0),  (16)

where f is analytic in a simply connected region of the z- plane containing the origin
and the g-binomial function (z — tq)s_1 is given by

(z —tq)s_1 = 22 1 ®olg T —; q,tq° /2]

The series 1Pg[d; —; q, 2] is single valued when |arg(z)| < 7 and |z| < 1 (see for
details [3], pp. 104-106). Therefore, the function (z — tq)s—1 in (16) is single valued
when |arg(—tq®/2)| <, [t¢’/z| < 1 and |arg(z)| < .
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Definition 4. (Fractional q-derivative operator) The fractional g-derivative
operator Dq . of a function f of order ¢ is defined by

DY f(2) = DTl 70 f(2) = (11_5)19 Oz(z—tq)af(t)dqt (0<5<1),

(17)
where f is suitably constrained and multiplicity of (z — tq)_s is removed as in Defi-
nition 3.

Here we note that for § > 0 and n > —1,

I6 n _ Fq(n -+ 1) Zn+6
Ly(n+0+1)

Also for § > 0 and n > —1,

D5 n _ I (n + 1) nfé.

T, (n—0+1)

Theorem 9. Let 0 < a<1,0< < 1+q’
(6) belongs to the class T, (v, B). Then

0 <0 <1 and a function f of the form

arlz1+0 ~ 2
LT R eey st v ) S/
and

1]z B(1—a)(1 - q2>
D2 <>|_F(2+5){1+{2_(Hq 5 B} () 21} (zew). (19)

Proof. In order to prove these inequalities, we may write

F(z) =T4(2+8)2°D, 2 f(2)

_ - Fq("+1)Fq(2+5) n
= alz Z Fq(n—{—5—|—1) (479 s

=z — Z d(n,0)anz",
n=2

where ¢(n,d) = %, n > 2 is decreasing in n. By making use of ¢-

gamma properties, we get

1—q2
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and by Theorem 1
Tg(2+ 02D 2 f(2)] = |2l = 6(n,8)|2[* Y an

5(1 )al(l q2)

> |z| — 2|2 20
Similarly, we have
Ty(240)|2 (D2 f(2)] < |2+ ¢(n, )|z ) an
n=2
)
< |Z|—|— 5(1 )al(l Q) |Z|2. (21)

{2—-(1+q)B—aB}(1—g¢*)
From (20) and (21), we obtain the inequalities (18) and (19).

Theorem 10. Let 0 < a<1,0< <
(6) belongs to the class T (v, B). Then

arlz|1=0 — 2

1+ ,0<9 <1 and a function f of the form

and

ay |z Bl —a)(1— q2)
\D‘S,zf(z)léPq(z_(s){1+{2_(1+q R yzy} (zel). (23)

Proof. In order to prove these inequalities, we may write

G(z) =T4(2—- 5)25D27Zf(z)

_ = Ly(n+1)0y(2 - 9) n
=a1z Z Pq(n—5—|—1) anz

n=2
oo

=a1z — Z Y(n,0)anz",
n=2

where ¥(n,d) = %, n > 2 is decreasing in n. By making use of g-gamma
properties, we get

1—¢?
0< w(na(s) < ¢(275) = 1_7(12_57
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and by Theorem 1

Tg(2=0)2°||Dy.f(2)] = |2| = $(n,0)|21> Y an
n=2

_ B —a)ai(1—¢* 2
2 4 {2—(1+q)6—aﬁ}(1—q2“5)’2‘ @)
Similarly, we obtain
Ty(2 = 0)|2°|IDS f(2)] < |zl +9(n,8)|2 ) an
n=2
< |Z| + 5(1 B a)al(l — q2) | |2 (25)

(2-(1+qB—aB}l-—g)"

Thus, we get the desired results.
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