-STARLIKE FUNCTIONS OF ORDER α AND TYPE β

S. Kant and P.P. Vyas

Abstract. In the present investigation, we introduce two new subclasses $\mathcal{S}_{q}^{*}(\alpha, \beta)$ and $\mathcal{T}_{q}^{*}(\alpha, \beta)$ for q-starlike functions of order α and type β. We establish Several inclusion relationships and study various characteristic properties for the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$. Further application of fractional q-calculus are illustrated.

2010 Mathematics Subject Classification: 30C45.
Keywords: univalent functions, q-starlike function, hadamard product, radius of convexity, fractional q-calculus.

1. Introduction and definitions

Let \mathcal{A} denote the family of normalized functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z:|z|<1\}$. A function f in \mathcal{A} is said to be univalent in \mathbb{U} if f is one to one. As usual, we denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order α in \mathbb{U} if it satisfies

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<1, z \in \mathbb{U}) .
$$

On the other hand a function $f \in \mathcal{A}$ is said to be in the class $\mathcal{C}(\alpha)$ of convex functions of order α in \mathbb{U} if it satisfies

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(0 \leq \alpha<1, z \in \mathbb{U}) .
$$

In particular, we set $\mathcal{S}^{*}(0) \equiv \mathcal{S}^{*}$ for a class of starlike functions and $\mathcal{C}(0) \equiv \mathcal{C}$ for a class of convex functions. Let g and f be two analytic functions in \mathbb{U}, then function
g is said to be subordinate to f if there exists an analytic function w in the unit disk \mathbb{U} with $w(0)=0$ and $|w(z)|<1$ such that $g(z)=f(w(z)) \quad(z \in \mathbb{U})$. We denote this subordination by $g \prec f$. In particular, if the function f is univalent in \mathbb{U} the above subordination is equivalent to $g(0)=f(0)$ and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For $0<q<1$, the q-derivative of a function f is defined by (see $[3,5,6,7]$)

$$
D_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{(q-1) z} & (z \neq 0) \tag{2}\\ f^{\prime}(0) & (\mathrm{z}=0)\end{cases}
$$

provided that $f^{\prime}(0)$ exists.
The q-integral of a function f is defined by

$$
\begin{equation*}
\int_{0}^{z} f(t) d_{q} t=z(1-q) \sum_{n=0}^{\infty} q^{n} f\left(z q^{n}\right) . \tag{3}
\end{equation*}
$$

From (2), it can be easily obtain that

$$
D_{q}\left(\sum_{n=1}^{\infty} a_{n} z^{n}\right)=\sum_{n=1}^{\infty}[n]_{q} a_{n} z^{n},
$$

where

$$
[n]_{q}=\frac{1-q^{n}}{1-q} .
$$

As $q \rightarrow 1^{-},[n]_{q} \rightarrow n$ and $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=f^{\prime}(z)$.
By making use of the q-derivative of a function $f \in \mathcal{A}$, Agrawal and Sahoo [1] introduced a class $\mathcal{S}_{q}^{*}(\alpha)$ of q-starlike functions of order α in the following manner:

A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_{q}^{*}(\alpha)$ if it satiesfies

$$
\begin{equation*}
\left|\frac{\frac{z}{f(z)} D_{q} f(z)-\alpha}{1-\alpha}-\frac{1}{1-q}\right| \leq \frac{1}{1-q} \quad(0 \leq \alpha<1, z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

Equivalent form of the condition (4) is

$$
\left|\frac{\frac{z}{f(z)} D_{q} f(z)-1}{(1+q)\left\{\frac{z}{f(z)} D_{q} f(z)-\alpha\right\}-\left\{\frac{z}{f(z)} D_{q} f(z)-1\right\}}\right|<1 \quad(0 \leq \alpha<1, z \in \mathbb{U}) .
$$

In particular, when $\alpha=0$, the class $\mathcal{S}_{q}^{*}(\alpha)$ coincides with the class $\mathcal{S}_{q}^{*}=\mathcal{S}_{q}^{*}(0)$, which was introduced by Ismail et al. [4] in 1990. Moreover, the class $\mathcal{C}_{q}(\alpha)$ of q-convex
S. Kant and P.P. Vyas $-q$-Starlike functions of order $\alpha .$. .
functions can be defined in the form of Alexander type relation between $\mathcal{C}_{q}(\alpha)$ and $\mathcal{S}_{q}^{*}(\alpha)$ as:

$$
f \in \mathcal{C}_{q}(\alpha) \Leftrightarrow z D_{q} f \in \mathcal{S}_{q}^{*}(\alpha) .
$$

We note that $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{q}^{*}(\alpha)=\mathcal{S}^{*}(\alpha)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{C}_{q}(\alpha)=\mathcal{C}(\alpha)$.
Motivated essentially by the work of Juneja and Mogra [8], Owa [12] and recent works on q-derivative especially $[1,2,10,11]$, [14]-[20], we introduce the classes $\mathcal{S}_{q}^{*}(\alpha, \beta)$ of q-starlike functions of order α and type β for functions $f \in \mathcal{A}$ and $\mathcal{T}_{q}^{*}(\alpha, \beta)$ of q-starlike functions of order α and type β for analytic functions with negative coefficients.

Definition 1. For $0 \leq \alpha<1$ and $0<\beta \leq 1$, a function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_{q}^{*}(\alpha, \beta)$, if it satisfies

$$
\begin{equation*}
\left|\frac{\frac{z}{f(z)} D_{q} f(z)-1}{(1+q) \beta\left\{\frac{z}{f(z)} D_{q} f(z)-\alpha\right\}-\left\{\frac{z}{f(z)} D_{q} f(z)-1\right\}}\right|<1, \quad(z \in \mathbb{U}) . \tag{5}
\end{equation*}
$$

Definition 2. For $0 \leq \alpha<1$ and $0<\beta \leq 1$, an analytic function f of the form

$$
\begin{equation*}
f(z)=a_{1} z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{1}>0, a_{n} \geq 0 \text { and } z \in \mathbb{U}\right) \tag{6}
\end{equation*}
$$

is said to belong to the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$, if it satisfies the condition (5).
Here, we note that
(i) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{q}^{*}(\alpha, \beta)=\mathcal{S}^{*}(\alpha, \beta)$ (see Juneja and Mogra [8])
(ii) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{q}^{*}\left(\alpha, \frac{1}{2}\right)=\mathcal{S}^{*}\left(\alpha, \frac{1}{2}\right)$ (see McCarty [9])
(iii) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{q}^{*}\left(\frac{1-\gamma}{1+\gamma}, \frac{1+\gamma}{2}\right)=\mathcal{S}^{*}\left(\frac{1-\gamma}{1+\gamma}, \frac{1+\gamma}{2}\right) ;(0<\gamma \leq 1)$ (See Padmanabhan [13])
(iv) $\lim _{q \rightarrow 1^{-}} \mathcal{T}_{q}^{*}(\alpha, \beta)=\mathcal{S}_{0}^{*}(\alpha, \beta)$ (see Owa [12]).

In the present paper we derive several properties including coefficient estimates, inclusion theorems, distortion theorem, convolution theorem etc. for the functions belong to the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$. Applications of fractional q-calculus associated with the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$ have also been obtained.

2. Main Results

Theorem 1. Let $0 \leq \alpha<1$ and $0<\beta \leq \frac{1}{1+q}$. Then a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] a_{n} \leq(1+q) \beta(1-\alpha) a_{1} . \tag{7}
\end{equation*}
$$

The result is sharp for the function

$$
\begin{equation*}
f(z)=a_{1} z-\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta} z^{2} . \tag{8}
\end{equation*}
$$

Proof. Suppose that $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$. Making the use of series expansion of f in the inequality (5), we obtain

$$
\begin{align*}
& \left|\frac{\frac{z}{f(z)} D_{q} f(z)-1}{(1+q) \beta\left\{\frac{z}{f(z)} D_{q} f(z)-\alpha\right\}-\left\{\frac{z}{f(z)} D_{q} f(z)-1\right\}}\right| \\
& =\left|\frac{\sum_{n=2}^{\infty}\left([n]_{q}-1\right) a_{n} z^{n}}{(1+q) \beta(1-\alpha) a_{1} z-\sum_{n=2}^{\infty}\left\{1-(1+q) \alpha \beta+[n]_{q}-(1+q) \beta[n]_{q}\right\} a_{n} z^{n}}\right| \\
& <1 \tag{9}
\end{align*}
$$

Since $|\operatorname{Re}(z)| \leq|z|$ for any z , choosing z to be real and letting $z \rightarrow 1^{-}$through real values, (9) yields

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left([n]_{q}-1\right) a_{n} \leq(1+q) \beta(1-\alpha) a_{1}-\sum_{n=2}^{\infty}\left\{1+[n]_{q}-(1+q) \alpha \beta-(1+q) \beta[n]_{q}\right\} a_{n} \tag{10}
\end{equation*}
$$

which leads us immediately to the desired inequality (7).
In order to prove the converse, we assume that the inequality (7) holds true. We have

$$
\begin{aligned}
& \left|z D_{q} f(z)-f(z)\right|-\left|(1+q) \beta\left\{z D_{q} f(z)-\alpha f(z)\right\}-z D_{q} f(z)+f(z)\right| \\
& =\left|\sum_{n=2}^{\infty}\left(1-[n]_{q}\right) a_{n} z^{n}\right|-\mid(1+q) \beta(1-\alpha) a_{1} z-\{(1+q) \beta-1\} \sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n} \\
& -\{1-(1+q) \alpha \beta\} \sum_{n=2}^{\infty} a_{n} z^{n} \mid \\
& \leq \sum_{n=2}^{\infty}\left([n]_{q}-1\right) a_{n}|z|^{n}-(1+q) \beta(1-\alpha) a_{1}|z| \\
& +\{1-(1+q) \beta\} \sum_{n=2}^{\infty}[n]_{q} a_{n}|z|^{n}+\{1-(1+q) \alpha \beta\} \sum_{n=2}^{\infty} a_{n}|z|^{n} \\
& \leq\left[\sum_{n=2}^{\infty}\left(\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right) a_{n}-(1+q) \beta(1-\alpha) a_{1}\right]|z| \\
& \leq 0
\end{aligned}
$$

consequently, by the Maximum Modulus Theorem, $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$.

Finally, by observing that the function f given by (8) is indeed an extremal function for the assertion (7). We complete the proof of Theorem 1.

Theorem 2. Let $0 \leq \alpha<1$ and $0<\beta_{1} \leq \beta_{2} \leq \frac{1}{1+q}$. Then we have

$$
\mathcal{T}_{q}^{*}\left(\alpha, \beta_{1}\right) \subset \mathcal{T}_{q}^{*}\left(\alpha, \beta_{2}\right) .
$$

Proof. Let a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}\left(\alpha, \beta_{1}\right)$ and $\beta_{2}=\beta_{1}+\delta$, then we have

$$
\sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{1}\right\}[n]_{q}-(1+q) \alpha \beta_{1}\right] a_{n} \leq(1+q) \beta_{1}(1-\alpha) a_{1}
$$

which gives us

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta_{1}(1-\alpha) a_{1}}{2-(1+q) \beta_{1}-\alpha \beta_{1}} .
$$

Consequently,

$$
\begin{aligned}
\sum_{n=2}^{\infty} & {\left[\left\{2-(1+q) \beta_{2}\right\}[n]_{q}-(1+q) \alpha \beta_{2}\right] a_{n} } \\
= & \sum_{n=2}^{\infty}\left[\left\{2-(1+q)\left(\beta_{1}+\delta\right)\right\}[n]_{q}-(1+q) \alpha\left(\beta_{1}+\delta\right)\right] a_{n} \\
= & \sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{1}\right\}[n]_{q}-(1+q) \alpha \beta_{1}\right] a_{n} \\
& \quad-\delta \sum_{n=2}^{\infty}\left[(1+q)[n]_{q}-(1+q) \alpha\right] a_{n} \\
\leq & (1+q) \beta_{1}(1-\alpha) a_{1}-\delta(1+q)\left([2]_{q}-\alpha\right) \sum_{n=2}^{\infty} a_{n} \\
\leq & (1+q) \beta_{1}(1-\alpha) a_{1}+\frac{(1+q) \delta \beta_{1}(1-\alpha)\left([2]_{q}-\alpha\right) a_{1}}{2-(1+q) \beta_{1}-\alpha \beta_{1}} \\
< & (1+q) \beta_{1}(1-\alpha) a_{1}+\delta(1+q)(1-\alpha) a_{1} \\
= & (1+q) \beta_{2}(1-\alpha) a_{1} .
\end{aligned}
$$

Thus the proof of Theorem 2 is completed.
Theorem 3. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1$ and $0<\beta \leq \frac{1}{1+q}$. Then we have

$$
\mathcal{T}_{q}^{*}\left(\alpha_{1}, \beta\right) \supset \mathcal{T}_{q}^{*}\left(\alpha_{2}, \beta\right)
$$

Proof. Let a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}\left(\alpha_{2}, \beta\right)$ and $\alpha_{1}=\alpha_{2}-\delta$. Then we have

$$
\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha_{2} \beta\right] a_{n} \leq(1+q) \beta\left(1-\alpha_{2}\right) a_{1}
$$

which gives us

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta\left(1-\alpha_{2}\right) a_{1}}{2-(1+q) \beta-\alpha_{2} \beta}<a_{1}
$$

Consequentially,
$\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha_{1} \beta\right] a_{n}$
$=\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q)\left(\alpha_{2}-\delta\right) \beta\right] a_{n}$
$=\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha_{2} \beta\right] a_{n}+\delta(1+q) \beta \sum_{n=2}^{\infty} a_{n}$
$\leq(1+q) \beta\left(1-\alpha_{2}\right) a_{1}+\delta(1+q) \beta a_{1}$
$=(1+q) \beta\left(1-\alpha_{1}\right) a_{1}$.
Thus the proof of Theorem 3 is completed.
Theorem 4. Let $0 \leq \alpha_{2} \leq \alpha_{1}<1$ and $0<\beta_{1} \leq \beta_{2} \leq \frac{1}{1+q}$. Then we have

$$
\mathcal{T}_{q}^{*}\left(\alpha_{1}, \beta_{1}\right) \subset \mathcal{T}_{q}^{*}\left(\alpha_{2}, \beta_{2}\right) .
$$

Proof. Let a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}\left(\alpha_{1}, \beta_{1}\right), \alpha_{2}=\alpha_{1}-$ δ and $\beta_{2}=\beta_{1}+\epsilon$. Then we have

$$
\sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{1}\right\}[n]_{q}-(1+q) \alpha_{1} \beta_{1}\right] a_{n} \leq(1+q) \beta_{1}\left(1-\alpha_{1}\right) a_{1}
$$

which gives us

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta_{1}\left(1-\alpha_{1}\right) a_{1}}{2-(1+q) \beta_{1}-\alpha_{1} \beta_{1}}<a_{1} .
$$

Consequently,

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{2}\right\}[n]_{q}-(1+q) \alpha_{2} \beta_{2}\right] a_{n} \\
& =\sum_{n=2}^{\infty}\left[\left\{2-(1+q)\left(\beta_{1}+\epsilon\right)\right\}[n]_{q}-(1+q)\left(\alpha_{1}-\delta\right)\left(\beta_{1}+\epsilon\right)\right] a_{n} \\
& =\sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{1}\right\}[n]_{q}-(1+q) \alpha_{1} \beta_{1}\right] a_{n} \\
& \quad-\epsilon(1+q) \sum_{n=2}^{\infty}\left([n]_{q}-\alpha_{1}\right) a_{n}+\delta(1+q)\left(\beta_{1}+\epsilon\right) \sum_{n=2}^{\infty} a_{n} \\
& \quad \begin{array}{r}
\leq(1+q) \beta_{1}\left(1-\alpha_{1}\right) a_{1}-\epsilon(1+q)\left([2]_{q}-\alpha_{1}\right) \sum_{n=2}^{\infty} a_{n}+\delta(1+q)\left(\beta_{1}+\epsilon\right) a_{1} \\
\leq(1+q) \beta_{1}\left(1-\alpha_{1}\right) a_{1}+\frac{\epsilon(1+q) \beta_{1}\left(1-\alpha_{1}\right)\left([2]_{q}-\alpha_{1}\right) a_{1}}{2-(1+q) \beta_{1}-\alpha_{1} \beta_{1}}+\delta(1+q)\left(\beta_{1}+\epsilon\right) a_{1}
\end{array}
\end{aligned}
$$

$\leq(1+q) \beta_{1}\left(1-\alpha_{1}\right) a_{1}+\epsilon(1+q)\left(1-\alpha_{1}\right) a_{1}+\delta(1+q)\left(\beta_{1}+\epsilon\right) a_{1}$
$=(1+q) \beta_{2}\left(1-\alpha_{2}\right) a_{1}$.
Thus the proof of Theorem 4 is completed.
The Hadamard products: If the functions g and h are of the form

$$
\begin{equation*}
g(z)=b_{1} z-\sum_{n=2}^{\infty} b_{n} z^{n} \quad\left(b_{1}>0, b_{n} \geq 0\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=c_{1} z-\sum_{n=2}^{\infty} c_{n} z^{n} \quad\left(c_{1}>0, c_{n} \geq 0\right) \tag{12}
\end{equation*}
$$

then the Hadamard product (or Convolution) of the two functions g and h is defined by

$$
g * h(z)=b_{1} c_{1} z-\sum_{n=2}^{\infty} b_{n} c_{n} z^{n} .
$$

Theorem 5. Let $0 \leq \alpha_{1}, \alpha_{2}<1,, 0<\beta_{1}, \beta_{2} \leq \frac{1}{1+q}$ and $g \in \mathcal{T}_{q}^{*}\left(\alpha_{1}, \beta_{1}\right), h \in$ $\mathcal{T}_{q}^{*}\left(\alpha_{2}, \beta_{2}\right)$, then $g * h \in \mathcal{T}_{q}^{*}(\alpha, \beta)$, where g and h are given by (11) and (12) respectively and $\alpha=\operatorname{Min}\left(\alpha_{1}, \alpha_{2}\right), \beta=\operatorname{Max}\left(\beta_{1}, \beta_{2}\right)$.

Proof. Since $g \in \mathcal{T}_{q}^{*}\left(\alpha_{1}, \beta_{1}\right)$ and $h \in \mathcal{T}_{q}^{*}\left(\alpha_{2}, \beta_{2}\right)$ so Theorem 1 gives us

$$
\sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{1}\right\}[n]_{q}-(1+q) \alpha_{1} \beta_{1}\right] b_{n} \leq(1+q) \beta_{1}\left(1-\alpha_{1}\right) b_{1}
$$

and

$$
\sum_{n=2}^{\infty}\left[\left\{2-(1+q) \beta_{2}\right\}[n]_{q}-(1+q) \alpha_{2} \beta_{2}\right] c_{n} \leq(1+q) \beta_{2}\left(1-\alpha_{2}\right) c_{1} .
$$

Hence

$$
\sum_{n=2}^{\infty} b_{n} \leq \frac{\beta_{1}\left(1-\alpha_{1}\right) b_{1}}{\left\{2-(1+q) \beta_{1}\right\}-\alpha_{1} \beta_{1}}<b_{1}
$$

and

$$
\sum_{n=2}^{\infty} c_{n} \leq \frac{\beta_{2}\left(1-\alpha_{2}\right) c_{1}}{\left\{2-(1+q) \beta_{2}\right\}-\alpha_{2} \beta_{2}}<c_{1} .
$$

Therefore for $\alpha=\operatorname{Min}\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\operatorname{Max}\left(\beta_{1}, \beta_{2}\right)$,
$\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] b_{n} c_{n}$

$$
\begin{aligned}
& \leq \operatorname{Max}\left\{c_{1} \sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] b_{n},\right. \\
& \left.b_{1} \sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] c_{n}\right\} \\
& \leq(1+q) \beta(1-\alpha) b_{1} c_{1} .
\end{aligned}
$$

Consequently, $g * h \in \mathcal{T}_{q}^{*}(\alpha, \beta)$.
Theorem 6. Let $0 \leq \alpha<1,0<\beta \leq \frac{1}{1+q}$ and $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$. Then

$$
a_{1}|z|-\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta}|z|^{2} \leq|f(z)| \leq a_{1}|z|+\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta}|z|^{2} \quad(z \in \mathbb{U}) .
$$

The result is sharp for the function

$$
f(z)=a_{1} z-\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta} z^{2} .
$$

Proof. Since $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$, then by virtue of Theorem 1, we have

$$
\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] a_{n} \leq(1+q) \beta(1-\alpha) a_{1}
$$

which gives

$$
\sum_{n=2}^{\infty} a_{n} \leq \frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta}
$$

Therefore, we have

$$
|f(z)| \geq a_{1}|z|-|z|^{2} \sum_{n=2}^{\infty} a_{n} \geq a_{1}|z|-\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta}|z|^{2} \quad(z \in \mathbb{U}) .
$$

Similarly, we also get

$$
|f(z)| \leq a_{1}|z|+|z|^{2} \sum_{n=2}^{\infty} a_{n} \leq a_{1}|z|+\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-\alpha \beta}|z|^{2} \quad(z \in \mathbb{U}) .
$$

Which completes the proof.
Theorem 7. Let $0 \leq \alpha<1,0<\beta \leq \frac{1}{1+q}$ and $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$. Then
$a_{1}-\frac{(1+q) \beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta}|z| \leq\left|D_{q} f(z)\right| \leq a_{1}+\frac{(1+q) \beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta}|z| \quad(z \in \mathbb{U})$.
The result is sharp for the function

$$
f(z)=a_{1} z-\frac{\beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta} z^{2} .
$$

Proof. Since $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$, then by virtue of Theorem 1, we have

$$
\sum_{n=2}^{\infty}\left[\{2-(1+q) \beta\}[n]_{q}-(1+q) \alpha \beta\right] a_{n} \leq(1+q) \beta(1-\alpha) a_{1},
$$

which gives

$$
\begin{aligned}
(1+q) \beta(1-\alpha) a_{1} & \geq \sum_{n=2}^{\infty}\left[2-(1+q) \beta-\frac{(1+q)}{[n]_{q}} \alpha \beta\right][n]_{q} a_{n} \\
& \geq \sum_{n=2}^{\infty}[2-(1+q) \beta-(1+q) \alpha \beta][n]_{q} a_{n} .
\end{aligned}
$$

Therefore,

$$
\sum_{n=2}^{\infty}[n]_{q} a_{n} \leq \frac{(1+q) \beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta}
$$

Hence,

$$
\left|D_{q} f(z)\right| \geq a_{1}-|z| \sum_{n=2}^{\infty}[n]_{q} a_{n} \geq a_{1}-\frac{(1+q) \beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta}|z|,
$$

and

$$
\left|D_{q} f(z)\right| \leq a_{1}+|z| \sum_{n=2}^{\infty}[n]_{q} a_{n} \leq a_{1}+\frac{(1+q) \beta(1-\alpha) a_{1}}{2-(1+q) \beta-(1+q) \alpha \beta}|z| \quad(z \in \mathbb{U}) .
$$

Which completes the proof.
In the following theorem, we obtain the radius of q-convexity for the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$.

Theorem 8. Let $0 \leq \alpha<1,0<\beta \leq \frac{1}{1+q}$ and $f \in \mathcal{T}_{q}^{*}(\alpha, \beta)$. Then f is q-convex in the disc

$$
\begin{equation*}
|z|<r=r(\alpha, \beta)=\inf _{n \geq 2}\left[\frac{2-(1+q) \beta-\alpha \beta}{\left([n]_{q}\right)^{2} \beta(1-\alpha)}\right]^{\frac{1}{n-1}} . \tag{13}
\end{equation*}
$$

Proof. In order to prove the required result, we must show that

$$
\begin{equation*}
\left|\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}-\frac{1}{1-q}\right| \leq \frac{1}{1-q} \quad(|z|<r(\alpha, \beta)) . \tag{14}
\end{equation*}
$$

We have

$$
\begin{aligned}
\left|\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}-\frac{1}{1-q}\right| & =\left|\frac{D_{q}\left(a_{1} z-\sum_{n=2}^{\infty} a_{n}[n]_{q} z^{n}\right)}{a_{1}-\sum_{n=2}^{\infty} a_{n}[n]_{q} z^{-1}}-\frac{1}{1-q}\right| \\
& \leq \frac{a_{1} q+\sum_{n=2}^{\infty}[n]_{q}\left\{[n]_{q}(1-q)-1\right\} a_{n}|z|^{n-1}}{(1-q)\left(a_{1}-\sum_{n=2}^{\infty}[n]_{q} a_{n}|z|^{n-1}\right)} .
\end{aligned}
$$

Hence (14) holds true if

$$
\sum_{n=2}^{\infty} \frac{\left([n]_{q}\right)^{2}}{a_{1}} a_{n}|z|^{n-1} \leq 1
$$

In view of Theorem 1, we get

$$
\left([n]_{q}\right)^{2}|z|^{n-1} \leq \frac{2-(1+q) \beta-\alpha \beta}{\beta(1-\alpha)} \quad(n=2,3, \cdots)
$$

which gives us

$$
|z| \leq\left[\frac{2-(1+q) \beta-\alpha \beta}{\left([n]_{q}\right)^{2} \beta(1-\alpha)}\right]^{\frac{1}{n-1}} \quad(n=2,3, \cdots) .
$$

This completes the proof.

3. Fractional q-Calculus

In the theory of q-calculus (see [3]), the q-shifted factorial is defined for $\eta, \mathrm{q} \in \mathbb{C}$ and $\mathrm{n} \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ as a product of n factors by

$$
(\eta ; q)_{n}=\left\{\begin{array}{cl}
1 & \mathrm{n}=0 \tag{15}\\
(1-\eta)(1-\eta q) \cdots\left(1-\eta q^{n-1}\right) & \mathrm{n} \in \mathbb{N}
\end{array}\right.
$$

and in terms of the basic analogue of the gamma function

$$
\left(q^{\eta} ; q\right)_{n}=\frac{\Gamma_{q}(\eta+n)(1-q)^{n}}{\Gamma_{q}(\eta)} \quad(n>0),
$$

where the q-gamma function is defined by

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}(1-q)^{1-x}}{\left(q^{x} ; q\right)_{\infty}} \quad(0<q<1)
$$

S. Kant and P.P. Vyas $-q$-Starlike functions of order $\alpha \ldots$

We note that, if $|q|<1$, the definition of q-shifted factorial (15) remains meaningful for $\mathrm{n}=\infty$ as a convergent infinite product given as

$$
(\eta ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-\eta q^{k}\right)
$$

We recall here the following q-analogue definitions given in [3]. The recurrence relation for q-gamma function is given by

$$
\Gamma_{q}(x+1)=\frac{1-q^{x}}{1-q} \Gamma_{q}(x)
$$

and the q-binomial expansion is given by

$$
(x-y)_{v}=x^{v}(-y / x ; q)_{v}=x^{v} \prod_{n=0}^{\infty}\left[\frac{1-(y / x) q^{n}}{1-(y / x) q^{v+n}}\right]
$$

Also it may be noted that the q-Gauss hypergeometric function is defined by

$$
{ }_{2} \Phi_{1}[\eta, \zeta ; \xi ; q, z]=\sum_{n=0}^{\infty} \frac{(\eta ; q)_{n}(\zeta ; q)_{n}}{(\xi ; q)_{n}(q ; q)_{n}} z^{n} \quad(|q|<1,|z|<1)
$$

and as a special case of the above series for $\zeta=\xi$, we get ${ }_{1} \Phi_{0}[\eta,-; q, z]$.
In the following, we define the fractional q-calculus operators of a complex-valued function $f(z)$, which were recently studied by Purohit and Raina [14].

Definition 3. (Fractional q-integral operator) The fractional q-integral operator $I_{q, z}^{\delta}$ of a function f of order δ is defined by

$$
\begin{equation*}
I_{q, z}^{\delta} \equiv D_{q, z}^{-\delta} f(z)=\frac{1}{\Gamma_{q}(\delta)} \int_{0}^{z}(z-t q)_{\delta-1} f(t) d_{q} t \quad(\delta>0) \tag{16}
\end{equation*}
$$

where f is analytic in a simply connected region of the z - plane containing the origin and the q-binomial function $(z-t q)_{\delta-1}$ is given by

$$
(z-t q)_{\delta-1}=z^{\delta-1}{ }_{1} \Phi_{0}\left[q^{-\delta+1} ;-; q, t q^{\delta} / z\right] .
$$

The series ${ }_{1} \Phi_{0}[\delta ;-; q, z]$ is single valued when $|\arg (z)|<\pi$ and $|z|<1$ (see for details [3], pp. 104-106). Therefore, the function $(z-t q)_{\delta-1}$ in (16) is single valued when $\left|\arg \left(-t q^{\delta} / z\right)\right|<\pi,\left|t q^{\delta} / z\right|<1$ and $|\arg (z)|<\pi$.

Definition 4. (Fractional q-derivative operator) The fractional q-derivative operator $D_{q, z}^{\delta}$ of a function f of order δ is defined by

$$
\begin{equation*}
D_{q, z}^{\delta} f(z) \equiv D_{q, z} I_{q, z}^{1-\delta} f(z)=\frac{1}{\Gamma_{q}(1-\delta)} D_{q, z} \int_{0}^{z}(z-t q)_{-\delta} f(t) d_{q} t \quad(0 \leq \delta<1), \tag{17}
\end{equation*}
$$

where f is suitably constrained and multiplicity of $(z-t q)_{-\delta}$ is removed as in Definition 3.

Here we note that for $\delta>0$ and $n>-1$,

$$
I_{q, z}^{\delta} z^{n}=\frac{\Gamma_{q}(n+1)}{\Gamma_{q}(n+\delta+1)} z^{n+\delta} .
$$

Also for $\delta \geq 0$ and $n>-1$,

$$
D_{q, z}^{\delta} z^{n}=\frac{\Gamma_{q}(n+1)}{\Gamma_{q}(n-\delta+1)} z^{n-\delta} .
$$

Theorem 9. Let $0 \leq \alpha<1,0<\beta \leq \frac{1}{1+q}, 0 \leq \delta<1$ and a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$. Then

$$
\begin{equation*}
\left|D_{q, z}^{-\delta} f(z)\right| \geq \frac{a_{1}|z|^{1+\delta}}{\Gamma_{q}(2+\delta)}\left\{1-\frac{\beta(1-\alpha)\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2+\delta}\right)}|z|\right\} \quad(z \in \mathbb{U}) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{q, z}^{-\delta} f(z)\right| \leq \frac{a_{1}|z|^{1+\delta}}{\Gamma_{q}(2+\delta)}\left\{1+\frac{\beta(1-\alpha)\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2+\delta}\right)}|z|\right\} \quad(z \in \mathbb{U}) \tag{19}
\end{equation*}
$$

Proof. In order to prove these inequalities, we may write

$$
\begin{aligned}
F(z) & =\Gamma_{q}(2+\delta) z^{-\delta} D_{q, z}^{-\delta} f(z) \\
& =a_{1} z-\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+1) \Gamma_{q}(2+\delta)}{\Gamma_{q}(n+\delta+1)} a_{n} z^{n}, \\
& =a_{1} z-\sum_{n=2}^{\infty} \phi(n, \delta) a_{n} z^{n},
\end{aligned}
$$

where $\phi(n, \delta)=\frac{\Gamma_{q}(n+1) \Gamma_{q}(2+\delta)}{\Gamma_{q}(n+\delta+1)}, n \geq 2$ is decreasing in n. By making use of q gamma properties, we get

$$
0<\phi(n, \delta) \leq \phi(2, \delta)=\frac{1-q^{2}}{1-q^{2+\delta}},
$$

and by Theorem 1

$$
\begin{align*}
\Gamma_{q}(2+\delta)\left|z^{-\delta}\right|\left|D_{q, z}^{-\delta} f(z)\right| & \geq|z|-\phi(n, \delta)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq|z|-\frac{\beta(1-\alpha) a_{1}\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2+\delta}\right)}|z|^{2} \tag{20}
\end{align*}
$$

Similarly, we have

$$
\begin{align*}
\Gamma_{q}(2+\delta)\left|z^{-\delta}\right|\left|D_{q, z}^{-\delta} f(z)\right| & \leq|z|+\phi(n, \delta)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq|z|+\frac{\beta(1-\alpha) a_{1}\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2+\delta}\right)}|z|^{2} \tag{21}
\end{align*}
$$

From (20) and (21), we obtain the inequalities (18) and (19).
Theorem 10. Let $0 \leq \alpha<1,0<\beta \leq \frac{1}{1+q}, 0 \leq \delta<1$ and a function f of the form (6) belongs to the class $\mathcal{T}_{q}^{*}(\alpha, \beta)$. Then

$$
\begin{equation*}
\left|D_{q, z}^{\delta} f(z)\right| \geq \frac{a_{1}|z|^{1-\delta}}{\Gamma_{q}(2-\delta)}\left\{1-\frac{\beta(1-\alpha)\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2-\delta}\right)}|z|\right\} \quad(z \in \mathbb{U}) \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{q, z}^{\delta} f(z)\right| \leq \frac{a_{1}|z|^{1-\delta}}{\Gamma_{q}(2-\delta)}\left\{1+\frac{\beta(1-\alpha)\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2-\delta}\right)}|z|\right\} \quad(z \in \mathbb{U}) \tag{23}
\end{equation*}
$$

Proof. In order to prove these inequalities, we may write

$$
\begin{aligned}
G(z) & =\Gamma_{q}(2-\delta) z^{\delta} D_{q, z}^{\delta} f(z) \\
& =a_{1} z-\sum_{n=2}^{\infty} \frac{\Gamma_{q}(n+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(n-\delta+1)} a_{n} z^{n}, \\
& =a_{1} z-\sum_{n=2}^{\infty} \psi(n, \delta) a_{n} z^{n},
\end{aligned}
$$

where $\psi(n, \delta)=\frac{\Gamma_{q}(n+1) \Gamma_{q}(2-\delta)}{\Gamma_{q}(n-\delta+1)}, n \geq 2$ is decreasing in n . By making use of q-gamma properties, we get

$$
0<\psi(n, \delta) \leq \psi(2, \delta)=\frac{1-q^{2}}{1-q^{2-\delta}}
$$

and by Theorem 1

$$
\begin{align*}
\Gamma_{q}(2-\delta)\left|z^{\delta}\right|\left|D_{q, z}^{\delta} f(z)\right| & \geq|z|-\psi(n, \delta)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \geq|z|-\frac{\beta(1-\alpha) a_{1}\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2-\delta}\right)}|z|^{2} . \tag{24}
\end{align*}
$$

Similarly, we obtain

$$
\begin{align*}
\Gamma_{q}(2-\delta)\left|z^{\delta}\right|\left|D_{q, z}^{\delta} f(z)\right| & \leq|z|+\psi(n, \delta)|z|^{2} \sum_{n=2}^{\infty} a_{n} \\
& \leq|z|+\frac{\beta(1-\alpha) a_{1}\left(1-q^{2}\right)}{\{2-(1+q) \beta-\alpha \beta\}\left(1-q^{2-\delta}\right)}|z|^{2} \tag{25}
\end{align*}
$$

Thus, we get the desired results.

References

[1] S. Agrawal, S.K. Sahoo, A generalization of starlike functions of order α, Hokkaido Math. J. 46, (2017), 15-27.
[2] R. Bucur, D. Breaz, On a new class of analytic functions with respect to symmetric points involving the q-derivative operator, J. Phys.: Conf. Ser. 1212(2019)012011.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
[4] M.E.H. Ismail, E. Merkes, D. Styer, A generalization of Starlike functions, Complex Var. Theory Appl. 14, (1990), 77-84.
[5] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb. 46, 2 (1909), 253-281.
[6] F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41, (1910), 193-203.
[7] F.H. Jackson, q-difference equations, Amer. J. Math. 32, (1910), 305-314.
[8] O.P. Juneja, M.L. Mogra, On starlike functions of order α and type β, Rev. Roumaine. Math. Pures Appl. 23, (1978), 751-765.
[9] C.P. McCarty, Starlike functions, Proc. Amer. Math. Soc. (1974), 361-366.
[10] K.I. Noor, Some classes of q-alpha starlike and related analytic functions, J. Math. Anal. 8, 4 (2017), 24-33.
[11] K.I. Noor, S. Riaz, Generalized q-starlike functions, Stu. Sci. Math. Hung. 54, (2017), 1-14.
[12] S. Owa, On the starlike functions of order α and type β, Math. Japonica 27, (1982), 723-735.
[13] K.S. Padmanabhan, On certain classes of starlike functions in the unit disc, J. Indian Math. Soc. 32, (1968), 89-103.
[14] S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109, 1 (2011), 55-70.
[15] C. Ramchandran, D. Kavitha, T. Soupramanien, Certain bounds for q-starlike and q-convex functions with respect to symmetric points, Int. J. Math. Math. Sci. (2015), Article ID - 205682.
[16] T.M. Seoudy, M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10, 1 (2016), 135-145.
[17] H. Shamsan, S. Latha, On generalized bounded mocanu variation related to q derivative and conic regions, Annals of Pure and Applied Mathematics 17, 1 (2018), 67-83.
[18] H.M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci. 44, 1 (2020), 327-344.
[19] H.M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-MittagLeffler functions, J. Nonlinear Var. Anal. 1, (2017), 61-69.
[20] B. Wongsaijai, N. Sukantamala, A certain class of q-close-to-convex functions of order α, Filomat 32, 6 (2018), 2295-2305.

Shashi Kant
Department of Mathematics, Government Dungar College, Bikaner-334001, INDIA
email:drskant.2007@yahoo.com
Prem Pratap Vyas
Department of Mathematics, Government Dungar College, Bikaner-334001, INDIA
email: prempratapvyas@gmail.com

