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Abstract. In this article, we introduce a multi-variable hybrid class, namely the
Hermite–Apostol-type Frobenius–Genocchi polynomials, and to characterize their
properties via different generating function techniques. Several explicit relations
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1. Introduction

Several investigations have done to introduce and study classical and generalized
forms of Apostol type polynomials systematically via various analytic means and
generating functions method (see [1]-[3], [7], [8], [11], [12], [14], [15]). Very re-
cently, Araci et. al. [4] introduced and studied a generalized class of 3-variable
Hermite-Apostol type Frobenius-Euler polynomials systematically by use of gen-
erating method. The following class of polynomials is introduced by convoluting
the 3-variable Hermite polynomials Hn(x, y, z) [6] with the Apostol type Frobenius-
Euler polynomials Fαn (x;u;λ) (see [9], [17]). The convoluted special polynomials are
important as they possess important properties such as recurrence and explicit re-
lations, summation formulae, symmetric and convolution identities, algebraic prop-
erties etc. These polynomials are useful and possess potential for applications in
certain problems of number theory combinatorics, classical and numerical analysis,
theoretical physics, approximation theory and other fields of pure and applied math-
ematics.
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The 2-variable Kampé de Fériet generalization of the Hermite polynomials (see
[6], [13]) given by

Hn(x, y) = n!

[n
2
]∑

n=0

yrxn−2r

r! (n− 2r)!
. (1)

These polynomials are usually defined by the following generating function

ext+yt
2

=
∞∑
n=0

Hn(x, y)
tn

n!

The generating function for the three-variable Hermite polynomials (3VHP)
Hn(x, y, z) is given by (see [4], [5]):

ext+yt
2+zt3 =

∞∑
n=0

Hn(x, y, z)
tn

n!
,

which for z = 0 reduce to the two-variable Hermite–Kampé de Fériet polynomials
(2VHKdFP)Hn(x, y) and for z = 0, x = 2x and y = −1 become the classical Hermite
polynomials Hn(x) [6].

In 2013, Kurt and Simsek (see [9], [10]) introduced the generalized Apostol-type
Frobenious-Euler polynomials defined as follows:(

at − u
λbt − u

)α
cxt =

∞∑
n=0

H(α)
n (x;u; a, b, c;λ)

tn

n!
. (2)

For u ∈ C, u 6= 1, the generating equation for the Apostol-type Frobenius–Genocchi
polynomials (ATFGP) G(a)n(x;u;λ) of order α given as:(

(1− u)t

λet − u

)α
ext =

∞∑
n=0

G(α)n (x;u : λ)
tn

n!
,

which for x = 0 gives the Apostol-type Frobenius–Genocchi numbers (ATFGN)
Gαn (u;λ), of order α such that:(

(1− u)t

λet − u

)α
=

∞∑
n=0

G(α)n (u : λ)
tn

n!
.

For u = −1, the ATFGP reduce to the Apostol–Genocchi polynomials G(α)n (x;λ)

[7], which for λ = 1, become the Genocchi polynomials G(α)n (x) [7]. Furthermore,
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the ATFGP for λ = 1 becomes the Frobenius–Genocchi polynomials G(α)n (x;u) (see
[11], [12]). The generating equations for the special polynomials are important from
different view points and help in finding connection formulas, recursive relations
and difference equations and in solving enumeration problems in combinatorics and
encoding their solutions.

Recently Araci et al. [5] introduced a new hybrid class, namely the class of three-
variable Hermite–based Frobenius–Genocchi polynomials (3VHATFGP) given as(

1− u
λet − u

)α
ext+yt

2+zt3 =

∞∑
n=0

HE(α)n (x, y, z;u;λ)
tn

n!
.

Definition 1. For u, λ ∈ C, u 6= 1, x, y, z ∈ R, the three-variable Hermite–based
Apostol-type Frobenius–Genocchi polynomials (3VGAFGP) of order α are defined
by means of the following generating function:

(
(1− u)t

λet − u

)α
ext+yt

2+zt3 =
∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!
, (3)

where HG
F
n (x, y, z;u;α;λ) denotes the three variable generalized Hermite-based

Apostol-type Frobenius-Genocchi polynomials of order α.

For λ = 1, (3) becomes the three-variable Hermite–Frobenius–Genocchi poly-

nomials HG(α)n (x, y, z;u) of order α, which again for α = 1, give the three-variable
Hermite-Frobenius–Genocchi polynomials HGn(x, y, z;u).

Again, the 3VHATFGP for u = −1 give the three-variable Hermite–Apostol–Euler

polynomials HG(α)n (x, y, z;λ) of order α, which for λ = 1 reduce to the three-variable

Hermite–Euler polynomials HG(α)n (x, y, z).

The three-variable Hermite–based Apostol-type Frobenius–Genocchi polynomi-
als (3VHATFGP) are also defined as the discrete Apostol-type Frobenious-Genocchi
convolution of the 3VHP given as:

HG(α)n (x, y, z;u;λ) = n!

n∑
k=0

[k/3]∑
r=0

G(α)n−k(u;λ)zrHk−3r(x, y)

(n− k)!r!(k − 3r)!
,

where Hn(x, y) are the two-variable Hermite–Kampé-de-Férite polynomials.
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Simsek [18] constructed the λ-stirling type number of second kind S(n, ν; a, b;λ)
by means of the following generating function:

∞∑
n=0

S(n, ν; a, b;λ)
tn

n!
=

(λbt − at)ν

ν!

and the generalized array type polynomials is defined by Simsek (see [17], [18]) as:

∞∑
n=0

Snν (x; a, b;λ)
tn

n!
=

(λbt − at)ν

ν!
bxt. (4)

We give the generating function of the polynomial Yn(x;λ; a) as:

t

λat − 1
axt =

∞∑
n=0

Yn(x;λ; a)
tn

n!
. (a ≥ 1).

We also note that for x = 0, above equation gives a relation as

Yn(0;λ; a) = Yn(λ; a). (5)

Again if we set x = 0 & α = 1, in (5), we get

Yn(λ; 1) =
1

λ− 1
.

The main goal of this paper is as follows. In section two, we establish some ex-
plicit properties of three-variable Hermite–based Apostol-type Frobenius–Genocchi
polynomials (3VHATFGP). In section three, we derive some implicit formulae for
three-variable Hermite–based Apostol-type Frobenius–Genocchi polynomials (3VHAT-
FGP) and in last section, we introduce some symmetric identities for three-variable
Hermite–based Apostol-type Frobenius–Genocchi polynomials (3VHATFGP) by ap-
plying generating functions.

2. Generalized Hermite-based Apostol-type Frobenius-Genocchi
polynomials HGFn (x, y, z;u;λ)

Theorem 1. The following relation holds true for 3-VHATFGP of order α:

(n+1)HGFn+1(x, y, z;u;λ) = x(n+1)HGFn (x, y, z;u;λ)+2yn(n+1)HGFn−1(x, y, z;u;λ)

+3zn(n− 1)HGFn−2(x, y, z;u;λ) + HGFn+1(x, y, z;u;λ)

−
n∑

m=0

(
n

m

)(
λ

u

)
HGFn+1−m(x, y, z;u;λ)Y (1;λ/u; e). (6)
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Proof. Making α = 1 and differentiating (4) with respect to t, we have

∞∑
n=0

HGFn+1(x, y, z;u;λ)
tn

n!
=

(1− u)t

λet − u
ext+yt

2+zt3(x+ 2yt+ 3zt2)

+ext+yt
2+zt3

[
(λet − u)(1− u)− (1− u)t(λet)

(λet − u)2

]

= x

∞∑
n=0

HGFn (x, y, z;u;λ)
tn

n!
+ 2y

∞∑
n=0

HGFn (x, y, z;u;λ)
tn+1

n!

+3z
∞∑
n=0

HGFn (x, y, z;u;λ)
tn+2

n!
+

1

t

∞∑
n=0

HGFn (x, y, z;u;λ)
tn

n!

−
∞∑
n=0

HGFn (x, y, z;u;λ)
tn

n!

∞∑
m=0

λ

u
Ym(1;λ/u; e)

tm−1

m!
. (7)

Which, upon comparing the coefficients of tn on both sides of (7), gives the
recurrence relation (6).

Corollary 2. The following relation holds true for 3-VHATFP of order α:

(n+ 1)HG
F
n+1(x, y, z;λ) = x(n+ 1)HG

F
n (x, y, z;λ) + 2yn(n+ 1)HG

F
n−1(x, y, z;λ)

+3zn(n− 1)HG
F
n−2(x, y, z;λ) + HG

F
n+1(x, y, z;λ)

−
n∑

m=0

(
n

m

)
(−λ)HG

F
n+1−m(x, y, z;λ)Y (1;−λ; e).

Theorem 3. The following result holds true for 3-VHATFGP of order α:

(1− u)γHGFn (x, y, z;u; (α− γ);λ) =
n!

(n+ γ)!

n+γ∑
k=0

γ∑
p=0

(
γ

p

)(
n+ γ

k

)
× HGFn+γ−k(x, y, z;u;α;λ)λppk(−u)γ−p. (8)

Proof. We start with

∞∑
n=0

HGFn (x, y, z;u; (α− γ);λ)
tn

n!
=

(
(1− u)t

λet − u

)(α)

ext+yt
2+zt3(λet − u)γ((1− u)t)−γ .
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=
∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!

∞∑
k=0

γ∑
p=0

(
γ

p

)
λppk(−u)γ−p(1− u)−γt−γ

tk

k!
. (9)

Now, applying Cauchy product in above equation (9) and some simplification leads
us to our required result (8).

Theorem 4. The following result holds true for 3-VHATFGP of order α:

(2u− 1)
n∑
r=0

(
n
r

)
HGFr (x, y, z;u;λ) HGFn−r(a, y, z; 1− u;λ)

= n(u− 1)HGFn−1(x+ a, y, z;u;λ) + nu HGFn−1(x+ a, y, z; 1− u;λ)

+HGFn (x+ a, y, z;u;λ)

− HGFn (x+ a, y, z; 1− u;λ). (10)

Proof. In order to proof (10), we set

(2u− 1)

(
(1− u)t

λet − u

)
cxt+yt

2+zt3
(

(1− (1− u))t

λet − (1− u)

)
eat+yt

2+zt3

= t2(1− u)(1− (1− u))e(x+a)t+2(yt2+zt3)

[
1

λet − u
− 1

λet − (1− u)

]
. (11)

Employing the result of (4), equation (11) reduces as

(2u− 1)
∞∑
r=0

HGFr (x, y;u; a, b, c;λ)
tr

r!

∞∑
n=0

HGFn (a, y, z; 1− u;λ)
tn

n!

= (1− (1− u)t)
∞∑
r=0

HGFr (x+ a, y, z;u;λ)
tr

r!
− (1− u)t

×
∞∑
r=0

HGFr (x+ a, y, z; 1− u;λ)
tr

r!
.

(2u− 1)

∞∑
n=0

n∑
r=0

(
n
r

)
HGFr (x, y, z;u;λ) HGFn−r(a, y, z; 1− u;λ)

tn

n!

= (1− (1− u)t)

∞∑
r=0

HGFr (x+ a, y, z;u;λ)
tr

r!
− (1− u)t
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×
∞∑
r=0

HGFr (x+ a, y, z; 1− u;λ)
tr

r!

= (u− 1)

∞∑
r=0

HGFr (x+ a, y, z;u;λ)
tr+1

r!
+ u

∞∑
r=0

HGFr (x+ a, y, z; 1− u;λ)
tr+1

r!

+
∞∑
r=0

HGFr (x+ a, y, z;u;λ)
tn

n!

−
∞∑
r=0

HGFr (x+ a, y, z; 1− u;λ)
tn

n!
.

On comparing the coefficient of tn form the above equation, we arrive at our desired
result.

Theorem 5. The following result holds true for 3-VHATFGP of order α:

n∑
m=0

HGFn (y, x, z;u;α;λ)
tn

n!
=

[n2 ]∑
m=0

n!

(n− 2k)!k!
GFn−2k(y, z;u;α;λ)xk. (12)

Proof. Interchanging x and y in (4), we have

∞∑
n=0

HGFn (y, x, z;u;α;λ)
tn

n!
=

(
(1− u)t

λet − u

)α
eyt+xt

2+zt3

=
∞∑
n=0

HGFn (y, z;u;α;λ)
tn

n!

∞∑
m=0

(xt)2m

m!

Replacing n by n− 2m in the above equation, we leads to required result (12).

Theorem 6. The following result holds true for 3-VHATFGP of order α:

n∑
k=0

HGFk (−x,−y,−z;u;−α;λ) HGF(n−k)(x, y, z;u; (α−m);λ) = GFn (u;α−m;λ).

(13)
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Proof. In order to proof (13), replacing x with −x, y with −y, z with −z and α
with −α in (6), we get get

∞∑
n=0

HGFn (−x,−y,−z;u;−α;λ)
tn

n!
=

(
(1− u)t

λet − u

)(−α)
e−(xt+yt

2+zt3). (14)

Making use of the above equation in the left-hand side of (14), we can write

∞∑
k=0

HGFk (−x,−y,−z;u;−α;λ)
tk

k!

∞∑
n=0

HGFn (x, y, z;u;α−m;λ)
tn

n!
=

(
(1− u)t

λet − u

)−m
.

We can write the above equation as

∞∑
k=0

HGFk (−x,−y,−z;u;−α;λ)
tk

k!

∞∑
n=0

HGFn (x, y, z;u;−α−m;λ)
tn

n!

=
∞∑
n=0

GFn (u;−m;λ)
tn

n!
.

Using Cauchy product in the above equation and on comparing the coefficients of
tn in the obtained equation, we immediately come to our desired result (13).

In a very similar way, for α, β ∈ Z, we can form some more identities which are
given below.

HGFn (2x, 2y, 2z;u2;−α;λ2) =
n∑
k=0

(
n
k

)
HGFk (x, y, z;u;−α;λ)

×HHFn−k(x, y, z;−u;−α;λ).

Proof of this identity can be solved by making use of (4) with some required calcu-
lations.

Theorem 7. The following result holds true for 3-VHATFGP of order α:

HGFn (x, y, z;u;−α;λ) =

(
u− 1

u

)α n−α∑
l=0

(
n

l − α

)
Φα

(
λ

u
, l − n− α, x

)
Hl(0, y, z).

(15)
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Proof. From Equation (4), we have

∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!
= ((1− u)t)α (λet − u)(−α)ext+yt

2+zt3 ,

which on simplification, becomes

∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!
= (1− u)α(−u)−α

∞∑
n=0

∞∑
k=0

(α)k
k!

×
(
λ

u

)α (k + x)ntn+α

n!
eyt

2+zt3 .

Using the definition of Hurwitz-Lerch Zeta function Φµ(z, s, a) =
∑∞

n=0
(µ)nzn

n!(n+a)s and

(1), we have result (15).

Theorem 8. The following result holds true for 3-VHATFGP of order α:

α!
n∑

m=0

(
n

m

)
HGFn−m(x, y, z;u;α;λ)S

(
m,α,

λ

u

)
=

n!

(n− α)!

(
1− u
u

)α
Hn−α(x, y, z).

(16)

HGFn (x, y, z;u;α− γ;λ) = γ!
n!

(n+ γ)!m!

(
1− u
u

)γ n+γ∑
m=0

(
n+ γ

m

)

× HGFn+γ−m(x, y, z;u;α;λ)S

(
m, γ,

λ

u

)
. (17)

Proof. We start with generating function (4) to get (16)

∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!
=

(
(1− u)t

λet − u

)α
ext+yt

2+zt3 .

∞∑
n=0

HGFn (x, y, z;u;α;λ)
(λue

t − 1)α

α!
α!
tn

n!
=

(
(1− u)t

u

)α
ext+yt

2+zt3 .

By using result (2), Cauchy product application and comparing the coefficients of
equal powers of tn in the obtained equation, yields (16).
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Again we consider (4) as

∞∑
n=0

HGFn (x, y, z;u;α− γ;λ)
tn

n!
=

(
(1− u)t

λet − u

)α
ext+yt

2+zt3

×
(

u

1− u

)γ
γ!

(
λ
ue

t − 1
)γ

γ!
t−γ .

Making use of result (2), Cauchy product application and comparison of equal pow-
ers of tn in the obtained equation, yields (17).

Theorem 9. The following inequality holds true:

HGFn−2ν(x, y, z;u;−ν;λ) =
(ν)!

(−n)2ν

n∑
k=0

l∑
m=0

(
m
k

)(
n
m

)
S(k, v, 1, b;

λ

u
)

× Y (ν)
m−k

(
1

u
; a

)
Hl−m(x, y). (18)

Proof. In order to proof (18), we replace α with −ν in equation (2), we get

∞∑
n=0

HGFn (x, y, z;u;−ν;λ)
tn

n!
=

(
(1− u)t

λet − u

)(−ν)
ext+yt

2+zt3 .

On arranging the above equation, we arrive at

∞∑
n=0

HGFn (x, y, z;u;−ν;λ)
tn

n!
= (ν!)

(
λ
ue

t − 1
)ν
ext+yt

2+zt3

(ν!)
(
1
u − 1

)ν
tν

tν

tν
.

By assistance of generating function for λ-Stirling number, above equation reduces
to

∞∑
n=0

HGFn (x, y, z;u;−ν;λ)
tn+2ν

n!
= (ν!)

∞∑
k=0

S(k, v;
λ

u
)
tk

k!

×
∞∑
m=0

Y (ν)
m

(
1;

1

u

)
tm

m!

∞∑
n=0

Hl(x, y, z)
tl

l!
.

∞∑
n=0

HGFn (x, y;u; a, b, b;−ν;λ)
tn+2ν

n!
= ν!

∞∑
l=0

m∑
k=0

l∑
m=0

(
m
k

)(
l
m

)
S(k, v, 1, b;

λ

u
)

18
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×Y (ν)
m−k

(
1

u
; a

)
Hl−m(x, y)

tl

l!
.

Using Cauchy product in the above equation, we get our result.

3. Summation Formulae

In order to prove the summation formulae for the 3VHATFGP HGFn (x, y, z;u;α;λ),
we have the following theorems:

Theorem 10. The following result holds true for 3-VHATFGP of order α:

HGFk+l(s, y, z;u;α;λ) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(s− x)m+n

HGFk−n+l−m(x, y, z;u;α;λ).

(19)

Proof. Replacing t with (t+ w) in (4) and then using required calculations, we get

(
(1− u)(t+ w)

λet+w − u

)α
ey(t+w)

2+z(t+w)3 = e−x(t+w)
∞∑

k,l=0

HGFk+l(x, y, z;u;α;λ)
tk

k!

wl

l!
.

(20)
Replacing x by s and then equating the obtained equation from the above equation
(20), we get

e(s−x)(t+w)
∞∑

k,l=0

HGFk+l(x, y, z;u;α;λ))
tk

k!

wl

l!
=

∞∑
k,l=0

HGFk+l(s, y, z;u;α;λ))
tk

k!

wl

l!
.

Expanding the exponent part of left-hand side, the above equation converts as

∞∑
N=0

[(s− x)(t+ w)]N

N !

∞∑
k,l=0

HGFk+l(x, y, z;u;α;λ))
tk

k!

wl

l!

=
∞∑

k,l=0

HGFk+l(s, y, z;u;α;λ))
tk

k!

wl

l!
.

∞∑
n,m=0

(s− x)m+n(t+ w)m+n

m!n!

∞∑
k,l=0

HGFk+l(x, y, z;u;α;λ))
tk

k!

wl

l!
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=
∞∑

k,l=0

HGFk+l(s, y, z;u;α;λ))
tk

k!

wl

l!
. (21)

On comparing the coefficients of equal powers of t and w after taking the reference
of Cauchy product to the above equation (21), we attain our required result (19).

Corollary 11. For l = 0 in (19), we have:

HGFk (s, y, z;u;α;λ) =
k∑

n=0

(
k
n

)
(s− x)nHGFk−n(x, y, z;u;α;λ).

Corollary 12. For s with s+ x in (19) we have:

HGFk+l(s+ x, y, z;u;α;λ) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(s)m+n

HGFk−n+l−m(x, y, z;u;α;λ).

Corollary 13. For s with s+ x and y = z = 0 in (19), we have:

GFk+l(s+ x;u;α;λ) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(s)m+nGFk−n+l−m(x;u;α;λ).

Corollary 14. For s = 0 in (19), we have:

HGFk+l(y, z;u;α;λ) =

k,l∑
n,m=0

(
l
m

)(
k
n

)
(−x)m+n

HGFk−n+l−m(x, y, z;u;α;λ).

Theorem 15. The following result holds true for 3-VHATFGP of order α:

HGFn (x+ w, y, z;u;α;λ) =

n∑
m=0

(
n
m

)
HGFn−m(x, y, z;u;α;λ)wm. (22)

HGFn (x+ w, y, z;u;α;λ) =
m∑
n=0

(
m
n

)
HGFn (x, y, z;u;α;λ)wm−n. (23)
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Proof. Substituting x with x+w in (4), then making use of Equation (4) and with
the series expansion of ewt in the resultant equation, we have:

∞∑
n=0

HGFn (x+ w, y, z;u;α;λ)
tn

n!
=
∞∑
n=0

∞∑
m=0

HGFn (x, y, z;u;α;λ)wm
tn+m

n!m!
.

which, upon simplification, gives Assertion (22).
Similarly we can obtain (23).

Theorem 16. The following result holds true for 3-VHATFGP of order α:

HGFn (x, y, z;u;α± β;λ) =

n∑
k=0

(
n

k

)
G(α)k (u;λ)HGFn−k(x, y, z;u;±β;λ). (24)

Proof. On replacing α with (α±β) in (4) and some simplifications leads us to result
(24).

Corollary 17. For u = −1, the above result reduces to 3-VHATGP of order α as:

HG
F
n (x, y, z;α± β;λ) =

n∑
k=0

(
n

k

)
G

(α)
k (λ)HG

F
n−k(x, y, z;±β;λ),

where HG
F
n (x, y, z;α;λ) is known as 3-VHATGP of order α.

Theorem 18. The following result holds true for 3-VHATFGP of order α:

HGFn (x+ 1, y, z;u;α;λ) =

n∑
m=0

(
n
m

)
HGFn−m(x, y, z;u;α;λ).

Proof. From equation (4), we replace x with x+ 1

∞∑
n=0

HGFn (x, y, z;u;α;λ)
tn

n!
=

(
(1− u)t

λet − u

)α
ext+yt

2+zt3 .

=
∞∑
n=0

GFn (x, y, z;u;α;λ)
tn

n!

∞∑
m=0

tm

m!
.

On replacing n by n−m and on comparing the coefficient of equal powers of t, we
arrive at the required result.
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Theorem 19. The following result holds true for 3-VHATFGP of order α:

HGFn (x, y, z;u;α+ 1;λ) =
n∑

m=0

(
n

m

)
HGFm(x, y, z;u;α;λ) G(n−m)(u;λ).

Proof. Replacing α to (α+ 1) in equation (4), we have

∞∑
n=0

HGFn (x, y, z;u;α+ 1;λ)
tn

n!
=

(
(1− u)t

λet − u

)α+1

ext+yt
2+zt3

=

(
(1− u)t

λet − u

) (
(1− u)t

λet − u

)α
ext+yt

2+zt3

=
∞∑
n=0

GFn (u;λ)
tn

n!

∞∑
m=0

HGFm(x, y, z;u;α;λ)
tm

m!
.

On using Cauchy product and on comparing coefficient of tn from the resulting
equation, we lead to our required result.

4. Symmetric identities for Apostol-type
Hermite-based-Frobenius-Genocchi polynomials

The identities for the generalized special functions are useful in electromagnetic
processes, combinatorics, numerical analysis, etc. Several types of identities and
relations related to Apostol-type polynomials and related polynomials are consid-
ered in (see [4],[5],[7],[11]-[17]). This provides the motivation to explore symmetry
identities for the 3VHATFGP. We recall the following:
For any γ ∈ R or C, the generalized sum of integer powers Sk(p; γ) is given by:

γp+1e(p+1)t − 1

γet − 1
=
∞∑
k=0

Sk(p; γ)
tk

k!
.

For any γ ∈ R or C, the multiple power sums Slk(m; γ) is given by:

(
1− γmemt

1− γet

)γ
=

1

γl
∑∞

n=0

 n∑
p=0

(
n

p

)
(−l)n−pSlk()m; γ

 tm
m!
.

To prove the symmetry identities for the 3VHATFGP, we have the following theo-
rems:
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Theorem 20. For all integers c, d > 0 and n ≥ 0, a ≥ 1, λ, µ ∈ C, the following
symmetry relation holds true:

n∑
k=0

(
n

k

)
cn−kdkuc−1HGFn−k(dx, d2y, d3z;u;α;λ)

k∑
l=0

(
k

l

)
Sl(c− 1;

λ

u
)

×HGFk−1(cX,C2Y, c3Z;u;α− 1;λ)

=

n∑
k=0

(
n

k

)
dn−kckud−1HGFn−k(cx, c2y, c3z;u;α;λ)

k∑
l=0

(
k

l

)
Sl(d− 1;

λ

u
)

× HGFk−1(dX, d2Y, d3Z;u;α− 1;λ). (25)

Proof. Let

G(t) =
((1− u)t)2α−1ecdxt+y(cdt)

2+z(cdt)3(λcecdt − uc)ecdXt+Y (cdt)2+Z(cdt)3

(λect − u)α(λedt − u)α
,

which on rearranging the powers, we have

G(t) =
∞∑
n=0

HGFn (dx, d2y, d3z;u;α;λ)
(ct)n

n!
uc−1

∞∑
l=0

Sl(c− 1;
λ

u
)
(dt)l

l!

×
∞∑
k=0

HGFn (cX,C2Y, c3Z;u;α− 1;λ)
(dt)k

k!
.

G(t) =
∞∑
n=0

n∑
k=0

(
n

k

)
cn−kdkuc−1HGFn−k(dx, d2y, d3z;u;α;λ)

k∑
l=0

(
k

l

)
Sl(c− 1;

λ

u
)

× HGFk−1(cX,C2Y, c3Z;u;α− 1;λ)
tn

n!
. (26)

In a similar way, we have

G(t) =

∞∑
n=0

n∑
k=0

(
n

k

)
dn−kckud−1HGFn−k(cx, c2y, c3z;u;α;λ)

k∑
l=0

(
k

l

)
Sl(d− 1;

λ

u
)

× HGFk−1(dX, d2Y, d3Z;u;α− 1;λ)
tn

n!
. (27)

Equating the coefficients of the like powers of t in the R.H.S of expansions (26) and
(27), we lead to identity (25).
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Theorem 21. The following inequality holds true

n∑
k=0

(
n

k

) c−1∑
i=0

d−1∑
j=0

ud+c−2
(
λ

u

)i+j
cn−kdkHGFn (cX +

c

d
j, c2Y, c3Z;u;α;λ)

×HGFn−k(dx+
d

c
j, d2y, d3z;u;α;λ)

=

n∑
k=0

(
n

k

) d−1∑
i=0

c−1∑
j=0

ud+c−2
(
λ

u

)i+j
dn−kckHGFn (dX +

d

c
j, d2Y, d3Z;u;α;λ)

×HGFn−k(cx+
c

d
j, c2y, c3z;u;α;λ). (28)

Proof. Let

H(t) =
((1− u)t)2αecdxt+y(cdt)

2+z(cdt)3(λcecdt − uc)(λdecdt − ud)ecdXt+Y (cdt)2+Z(cdt)3

(λect − u)α+1(λedt − u)α+1
,

which on rearranging the powers, we have

H(t) =

(
(1− u)t

λect

)α
edx(ct)+d

2y(ct)2+d3z(ct)3uc−1
c−1∑
i=0

(
λ

u

)i
edti

×
(

(1− u)t

λedt

)α
ecX(dt)+c2Y (dt)2+c3Z(dt)3ud−1

d−1∑
i=0

(
λ

u

)i
ecti.

H(t) =
n∑
k=0

(
n

k

) c−1∑
i=0

d−1∑
j=0

ud+c−2
(
λ

u

)i+j
cn−kdkHGFn (cX +

c

d
j, c2Y, c3Z;u;α;λ)

×HGFn−k(dx+
d

c
j, d2y, d3z;u;α;λ). (29)

In a similar way, we have

H(t) =
n∑
k=0

(
n

k

) d−1∑
i=0

c−1∑
j=0

ud+c−2
(
λ

u

)i+j
dn−kckHGFn (dX +

d

c
j, d2Y, d3Z;u;α;λ)

×HGFn−k(cx+
c

d
j, c2y, c3z;u;α;λ). (30)

On comparing the coefficients of the like powers of t in the R.H.S. of expansions (29)
and (30), we obtain the required identity (28).
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Theorem 22. The following inequality holds true

d−1∑
m=0

ud−1
(
λ

u

)m m∑
l=0

(
n

l

)
HGn−l

(
cx, c2y, c3z;u;λ

)
dn−l(cm)l

c−1∑
m=0

uc−1
(
λ

u

)m m∑
l=0

(
n

l

)
HGn−l

(
dx, d2y, d3z;u;λ

)
cn−l(dm)l. (31)

Proof. Let

N(t) =
((1− u)t)ecdxt+y(cdt)

2+z(cdt)3(λdecdt − ud)
(λedt − u)(λect − u)

.

Proceeding on the same lines of proof as in Theorem 4.2, we get identity (31). Thus,
we omit the proof.

Theorem 23. The following inequality holds true

n∑
l=0

(
n

l

)
HGFn−l(dx, d2y, d3z;u;λ)cn−ludαλ−α

l∑
m=0

(
l

m

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
HGFl−m(cx, c2y, c3z;u;α+ 1;λ)cmdl−m

=

∞∑
n=0

n∑
l=0

(
n

l

)
HGFn−l(dx, d2y, d3z;u;λ)cn−ludαλ−α

l∑
m=0

(
l

m

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
HGFl−m(cx, c2y, c3z;u;α+ 1;λ)cmdl−m. (32)

Proof. Let

F (t) =
((1− u)t)α+2ecdxt+y(cdt)

2+z(cdt)3(λdecdt − ud)αecdXt+Y (cdt)2+Z(cdt)3

(λedt − u)α+1(λect − u)α+1
,

which on rearranging the powers, we have

F (t) =
∞∑
n=0

HGn(dx, d2y, d3z;u;λ)cn
tn

n!

∞∑
m=0

m∑
r=0

(
m

r

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
cm

tm

m!

∞∑
l=0

HG(α+1)
l (cX, c2Y, c3Z;u;λ)dl

tl

l!
.
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F (t) =
∞∑
n=0

n∑
l=0

(
n

l

)
HGFn−l(dx, d2y, d3z;u;λ)cn−ludαλa−α

l∑
m=0

(
l

m

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
HGFl−m(cx, c2y, c3z;u;α+ 1;λ)cmdl−m

tn

n!
. (33)

Again we can write

F (t) =

∞∑
n=0

n∑
l=0

(
n

l

)
HGFn−l(dx, d2y, d3z;u;λ)cn−ludαλa−α

l∑
m=0

(
l

m

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
HGFl−m(cx, c2y, c3z;u;α+ 1;λ)cmdl−m

tn

n!
. (34)

On comparing the coefficients of equal powers of t in the r.h.s. of Expansions (33)
and (34), yields identity (32).

Theorem 24. The following inequality holds true

n∑
m=0

(
n

m

)
HGFn−m(dx, d2y, d3z;u;α;λ)cn−mudαλ−α

m∑
r=0

(
m

r

)
(−α)m−r

S
(α)
k

(
d;
λ

u

)
cm

=
∞∑
n=0

n∑
m=0

(
n

m

)
HGFn−m(dx, d2y, d3z;u;λ)cn−mudαλ−α

m∑
r=0

(
m

r

)
(−α)m−r

S
(α)
k

(
c;
λ

u

)
dm. (35)

Proof. Let

N(t) =
((1− u)t)αecdxt+y(cdt)

2+z(cdt)3(λcecdt − uc)α

(λedt − u)α(λect − u)α
.

Proceeding on the same lines of proof as in Theorem 4.4, we get identity (35). Thus,
we omit the proof.
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5. Conclusion

In this paper, a multi-variable hybrid class of the Hermite–Apostol-type Frobenius–
Genocchi polynomials is introduced and their properties are explored using various
generating function methods. Several explicit and recurrence relations, summation
formulae and symmetry identities are established for these hybrid polynomials. A
brief view of the operational approach is also given for these polynomials. The
operational representations combined with integral transforms may lead to other
interesting results, which may be helpful to the theory of fractional calculus. These
aspects will be undertaken in further investigation.
Acknowledgements. All authors would like to thank Integral University, Luc-
know, India, for providing the manuscript number ”IU/R&D/2019-MCN-000682”
for the present research work.

References

[1] L. C. Andrews, Special Functions for Engineers and Applied Mathematicians,
Macmillan Publishing Company: New York, NY, USA, 1985.

[2] S. Araci and M. Acikgoz, A note on the FrobeniusEuler numbers and polyno-
mials associated with Bernstein polynomials, Adv. Stud. Contemp. Math., (2012),
399-406.

[3] S. Araci and M. Acikgoz, On the von Staudt-Clausens theorem related to q-
Frobenius-Euler numbers, J. Number Theory, 159, (2016), 329-339.

[4] S. Araci, M. Riyasat, S.A. Wani and S. Khan, Several characterizations of
the 3-variable Hermite-Apostol type Frobenius-Euler and related polynomials, Adv.
Difference Equ. (To appear)

[5] S. Araci, M. Riyasat, S. A. Wani and S. Khan, A new class of Hermite-Apostol
type Frobenius-Euler polynomials and its applications, Symmetry, 2018, 10,652;DOI:
10.3390/sym10110652.

[6] G. Dattoli, Generalized polynomials operational identities and their applica-
tions, J. Comput. Appl. Math., 118, (2000), 111–123.

[7] Y. He, S. Araci, H.M. Srivastava and M. Acikgoz, Some new identities for the
Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math.
Comput., 262, (2015), 31-41.

[8] P. Hernández-Llanos, Y. Quintana and A. Urieles, About Extensions of Gener-
alized Apostol-Type Polynomials, Results. Math., 68, (2015), 203-225.

[9] B. Kurt and Y. Simsek, Frobenius-Euler type polynomials related to Hermite-
Bernoulli polyomials, Numerical Analysis and Appl. Math., ICNAAM (2011) Conf.
Proc., 1389, (2011), 385-388.

27



Waseem A. Khan and Divesh Srivastava – Generalized Hermite-based . . .

[10] B. Kurt and Y. Symsek, On the generalized Apostol type Frobenius-Euler poly-
nomials, Advances in difference equation, 2013, 1, (2013), 1-9.

[11] S. Khan, M. Riyasat and G. Yasmin, Finding symmetry identities for the 2-
variable Apostol type polynomials, Tbilisi Math. J., 10, 2, (2017), 65-81.

[12] S. Khan, G. Yasmin and M. Riyasat, Certain results for the 2-variable Apostol
type and related polynomials, Comput. Math. Appl., 69, (2015), 1367-1382.

[13] W. A. Khan, Some properties of the Generalized APostol type Hermite-based
polynomials, Kyungpook math. J., 55, (2015), 597-614.

[14] W. A. Khan and Divesh Srivastava, Certain properties of Apostol-type Hermite-
based Frobenius-Genocchi polynomials, Kragujevac Journal of Mathematics, 45(6),
(2021), 856-872.

[15] W. A. Khan and Divesh Srivastava, On generalized Apostol-type Frobenius
Genocchi polynomials, Filomat, 33(7), (2019), 1969-1977.

[16] H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis
Horwood Limited. Co. New York, 1984.

[17] Y. Simsek, Generating functions for q-Apostol type Frobenius-Euler numbers
and polynomials, Axioms 1 (2012), 395-403.

[18] Y. Symsek, Generating functions for generalized stirling type polynomials, Eule-
rian type polynomials and their applications, Fixed point Th. Appl., DOI:1186/1687-
1812-2013-87,(2013).

Waseem A. Khan
Department of Mathematics and Natural Science
Prince Mohammad Bin Fahd University,
P. O. Box 1664, Al Khobar-31952 KSA.
email: waseem08 khan@rediffmail.com

Divesh Srivastava
Department of Mathematics, Faculty of Science,
Integral University,
Lucknow-226026, India
email: divesh2712@gmail.com

28


	Introduction
	Generalized Hermite-based Apostol-type Frobenius-Genocchi polynomials HGnF(x,y,z;u;)
	Summation Formulae
	Symmetric identities for Apostol-type Hermite-based-Frobenius-Genocchi polynomials
	Conclusion

