A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS DEFINED BY SUBORDINATION

Hasan Bayram, Sibel Yalçin

Abstract. In this article, we introduced and defined a new class of harmonic functions which by use of a subordination. We find necessary and sufficient conditions, distortion bounds, radii of starlikeness and convexity, compactness and extreme points for above class of harmonic functions.

2010 Mathematics Subject Classification: 30C45, 30C80.
Keywords: harmonic functions, univalent functions, Salagean operator, subordination.

1. Introduction

Let H denote the family of continuous complex valued harmonic functions which are harmonic in the open unit disk $\mathbb{D}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and let A be the subclass of H consisting of functions which are analytic in \mathbb{D}. A function harmonic in \mathbb{D} may be written as $f=h+\bar{g}$, where h and g are members of A. We call h the analytic part and g co-analytic part of f. A necessary and sufficient condition for f to be locally univalent and sense-preserving in \mathbb{D} is that $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ (see Clunie and Sheil-Small [1]).

Let $S H$ denote the family of functions $f=h+\bar{g}$ which are harmonic, univalent, and sense-preserving in \mathbb{D} for which $f(0)=f_{z}(0)-1=0$. The subclass $S H^{0}$ of $S H$ consists of all functions in $S H$ which have the additional property $f_{\bar{z}}(0)=b_{1}=0$. To this end, without loss of generality, we may write for $f \in S H^{0}$

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=2}^{\infty} b_{n} z^{n} . \tag{1}
\end{equation*}
$$

In 1984 Clunie and Sheil-Small [1] investigated the class $S H$ as well as its geometric subclasses and obtained some coefficient bounds. Since then, there have been several related papers on $S H$ and its subclasses. Also note that $S H$ reduces to the
class S of normalized analytic univalent functions in \mathbb{D}, if the co-analytic part of f is identically zero.

For $f \in S$, the differential operator $D^{k}\left(k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ of f was introduced by Sălăgean [7]. For $f=h+\bar{g}$ given by (1), Jahangiri et al. [6] defined the modified Sălăgean operator of f as

$$
\begin{equation*}
D^{k} f(z)=D^{k} h(z)+(-1)^{k} \overline{D^{k} g(z)}, \tag{2}
\end{equation*}
$$

where

$$
D^{k} h(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}, \quad D^{k} g(z)=\sum_{n=2}^{\infty} n^{k} b_{n} z^{n}
$$

We say that a function $f: \mathbb{D} \rightarrow \mathbb{C}$ is subordinate to a function $F: \mathbb{D} \rightarrow \mathbb{C}$, and write $f(z) \prec F(z)$, if there exists a complex valued function w which maps \mathbb{D} into itself with $w(0)=0$, such that

$$
f(z)=F(w(z)) \quad(z \in \mathbb{D}) .
$$

Furthermore, if the function F is univalent in \mathbb{D}, then we have the following equivalence:

$$
f(z) \prec F(z) \Leftrightarrow f(0)=F(0) \text { and } f(\mathbb{D}) \subset F(\mathbb{D}) .
$$

The Hadamard product (or convolution) of functions f_{1} and f_{2} of the form

$$
f_{t}(z)=z+\sum_{n=2}^{\infty} a_{t, n} z^{n}+\sum_{n=2}^{\infty} \overline{b_{t, n} z^{n}} \quad(z \in \mathbb{D}, t \in\{1,2\})
$$

is defined by

$$
\left(f_{1} * f_{2}\right)(z)=z+\sum_{n=2}^{\infty} a_{1, n} a_{2, n} z^{n}+\sum_{n=2}^{\infty} \overline{b_{1, n} b_{2, n} z^{n}} \quad(z \in \mathbb{D}) .
$$

Denote by $S H_{\lambda}^{0}(k, A, B)$ the subclass of $S H^{0}$ consisting of functions f of the form (1) that satisfy the condition

$$
\begin{gather*}
\frac{D^{k+1} f(z)}{\lambda D^{k+1} f(z)+(1-\lambda) D^{k} f(z)} \prec \frac{1+A z}{1+B z}, \tag{3}\\
(0 \leq \lambda \leq 1, k \in \mathbb{N} \cup\{0\},-A \leq 0 \leq B<A \leq 1)
\end{gather*}
$$

where $D^{k} f(z)$ is defined by (2).
By suitably specializing the parameters, the classes $S H_{\lambda}^{0}(n, A, B)$ reduces to the various subclasses of harmonic univalent functions. Such as,
(i) $S H_{0}^{0}(\xi, A, B)=H^{\xi}(A, B), \xi \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ ([4]),
(ii) $S H_{0}^{0}(0, A, B)=S_{H}^{*}(A, B) \cap S H^{0}([2])$,
(iii) $S H_{0}^{0}(k, 2 \alpha-1,1)=H^{0}(k, \alpha)([6])$,
(iv) $S H_{0}^{0}(0,2 \alpha-1,1)=S_{H^{0}}^{*}(\alpha)([5],[8],[9])$,
(v) $S H_{0}^{0}(1,2 \alpha-1,1)=S_{H^{0}}^{*}(\alpha)([5])$,
(vi) $S H_{0}^{0}(1,1,-1)=K_{H}^{0}([8])$,
(vii) $S H_{0}^{0}(0,1,-1)=S_{H}^{* 0}([8])$.

Making use of the techniques and methodology used by Dziok (see [2], [3]), Dziok et al. [4], in this paper we find necessary and sufficient conditions, distortion bounds, radii of starlikeness and convexity, compactness and extreme points for the above defined class $S H_{\lambda}^{0}(k, A, B)$.

2. Main Results

First theorem provides a necessary and sufficient convolution condition for the harmonic functions in $S H_{\lambda}^{0}(k, A, B)$.

Theorem 1. A function f belongs to the class $S H_{\lambda}^{0}(k, A, B)$ if and only if $f \in S H^{0}$ and

$$
D^{k} f(z) * \Phi(z ; \zeta) \neq 0 \quad(\zeta \in \mathbb{C},|\zeta|=1, z \in \mathbb{D})
$$

where

$$
\begin{aligned}
\Phi(z ; \zeta)= & \frac{[(1-\lambda)(1+A \zeta)] z^{2}+(B-A) \zeta z}{(1-z)^{2}} \\
& +(-1)^{k} \frac{[(1+A \zeta)(1-\lambda)] \bar{z}^{2}+[(1+A \zeta)(2 \lambda-1)-(1+B \zeta)] \bar{z}}{(1-\bar{z})^{2}}
\end{aligned}
$$

Proof. Let $f \in S H^{0}$. Then $f \in S H_{\lambda}^{0}(k, A, B)$ if and only if (3) holds or equivalently

$$
\begin{equation*}
\frac{D^{k+1} f(z)}{\lambda D^{k+1} f(z)+(1-\lambda) D^{k} f(z)} \neq \frac{1+A \zeta}{1+B \zeta} \quad(\zeta \in \mathbb{C},|\zeta|=1, z \in \mathbb{D}) . \tag{4}
\end{equation*}
$$

Now for

$$
D^{k} h(z)=D^{k} h(z) * \frac{z}{1-z}, \quad D^{k+1} h(z)=D^{k} h(z) * \frac{z}{(1-z)^{2}}
$$

and

$$
\overline{D^{k} g(z)}=\overline{D^{k} g(z)} * \frac{\bar{z}}{1-\bar{z}}, \quad \overline{D^{k+1} g(z)}=\overline{D^{k} g(z)} * \frac{\bar{z}}{(1-\bar{z})^{2}}
$$

the inequality (4) yields

$$
\begin{aligned}
& (1+B \zeta) D^{k+1} f(z)-(1+A \zeta)\left[\lambda D^{k+1} f(z)+(1-\lambda) D^{k} f(z)\right] \\
= & D^{k} h(z) *\left\{(1+B \zeta)\left[\frac{z}{(1-z)^{2}}\right]-(1+A \zeta)\left[\frac{\lambda z}{(1-z)^{2}}+\frac{(1-\lambda) z)}{1-z}\right]\right\} \\
& +(-1)^{k} \overline{D^{k} g(z)} *\left\{(1+B \zeta)\left[-\frac{\bar{z}}{(1-\bar{z})^{2}}\right]+(1+A \zeta)\left[\frac{\lambda \bar{z}}{(1-\bar{z})^{2}}-\frac{(1-\lambda) \bar{z}}{1-\bar{z}}\right]\right\} \\
= & D^{k} f(z) * \Phi(z ; \zeta) \neq 0
\end{aligned}
$$

Next we give the sufficient coefficient bound for functions in $S H_{\lambda}^{0}(k, A, B)$.
Theorem 2. Let $f=h+\bar{g}$ be so that h and g are given by (1). Then $f \in S H_{\lambda}^{0}(k, A, B)$, if

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right) \leq A-B \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{n}=n^{k}[(1-\lambda+A \lambda-B) n+(1-\lambda)(A-1)] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{n}=n^{k}[(1-\lambda-A \lambda+B) n+(1-\lambda)(A+1)] . \tag{7}
\end{equation*}
$$

Proof. It is easy to see that the theorem is true for $f(z)=z$. So, we assume that $a_{n} \neq 0$ or $b_{n} \neq 0$ for $n \geq 2$. Since $\phi_{n} \geq n(B-A)$ and $\psi_{n} \geq n(B-A)$ by (5), we obtain

$$
\begin{aligned}
\left|h^{\prime}(z)\right|-\left|g^{\prime}(z)\right| & \geq 1-\sum_{n=2}^{\infty} n\left|a_{n}\right||z|^{n-1}-\sum_{n=2}^{\infty} n\left|b_{n}\right||z|^{n-1} \\
& \geq 1-|z| \sum_{n=2}^{\infty}\left(n\left|a_{n}\right|+n\left|b_{n}\right|\right) \\
& \geq 1-\frac{|z|}{A-B} \sum_{n=2}^{\infty}\left(\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right) \\
& \geq 1-|z|>0
\end{aligned}
$$

Therefore f is sense preserving and locally univalent in \mathbb{D}. For the univalence condition, consider $z_{1}, z_{2} \in \mathbb{D}$ so that $z_{1} \neq z_{2}$. Then

$$
\left|\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}\right|=\left|\sum_{m=1}^{n} z_{1}^{m-1} z_{2}^{n-m}\right| \leq \sum_{m=1}^{n}\left|z_{1}^{m-1}\right|\left|z_{2}^{n-m}\right|<n, \quad n \geq 2 .
$$

Hence

$$
\begin{aligned}
\left|f\left(z_{1}\right)-f\left(z_{2}\right)\right| & \geq\left|h\left(z_{1}\right)-h\left(z_{2}\right)\right|-\left|g\left(z_{1}\right)-g\left(z_{2}\right)\right| \\
& \geq\left|z_{1}-z_{2}-\sum_{n=2}^{\infty} a_{n}\left(z_{1}^{n}-z_{2}^{n}\right)\right|-\left\lvert\, \sum_{n=2}^{\infty} \frac{\overline{b_{n}\left(z_{1}^{n}-z_{2}^{n}\right)} \mid}{}\right. \\
& \geq\left|z_{1}-z_{2}\right|-\sum_{n=2}^{\infty}\left|a_{n}\right|\left|z_{1}^{n}-z_{2}^{n}\right|-\sum_{n=2}^{\infty}\left|b_{n}\right|\left|z_{1}^{n}-z_{2}^{n}\right| \\
& =\left|z_{1}-z_{2}\right|\left(1-\sum_{n=2}^{\infty}\left|a_{n}\right|\left|\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}\right|-\sum_{n=2}^{\infty}\left|b_{n}\right|\left|\frac{z_{1}^{n}-z_{2}^{n}}{z_{1}-z_{2}}\right|\right) \\
& >\left|z_{1}-z_{2}\right|\left(1-\sum_{n=2}^{\infty} n\left|a_{n}\right|-\sum_{n=2}^{\infty} n\left|b_{n}\right|\right) \geq 0 .
\end{aligned}
$$

which proves univalence.
On the other hand, $f \in S H_{\lambda}^{0}(k, A, B)$ if and only if there exists a complex valued function $w ; w(0)=0,|w(z)|<1(z \in \mathbb{D})$ such that

$$
\frac{D^{k+1} f(z)}{\lambda D^{k+1} f(z)+(1-\lambda) D^{k} f(z)}=\frac{1+A w(z)}{1+B w(z)}
$$

or equivalently

$$
\begin{equation*}
\left|\frac{(1-\lambda) D^{k+1} f(z)-(1-\lambda) D^{k} f(z)}{(A \lambda-B) D^{k+1} f(z)+A(1-\lambda) D^{k} f(z)}\right|<1, \tag{8}
\end{equation*}
$$

The above inequality (8) holds, since for $|z|=r(0<r<1)$ we obtain

$$
\left|(1-\lambda) D^{k+1} f(z)-(1-\lambda) D^{k} f(z)\right|-\left|(A \lambda-B) D^{k+1} f(z)+A(1-\lambda) D^{k} f(z)\right|
$$

$$
\begin{aligned}
= & \left|\sum_{n=2}^{\infty} n^{k}(n-1)(1-\lambda) a_{n} z^{n}+(-1)^{k+1} \sum_{n=2}^{\infty} n^{k}(n+1)(1-\lambda) \overline{b_{n} z^{n}}\right| \\
- & \mid(A-B) z+\sum_{n=2}^{\infty} n^{k}[(A \lambda-B) n+A(1-\lambda)] a_{n} z^{n} \\
+ & (-1)^{k} \sum_{n=2}^{\infty} n^{k}[(B-A \lambda) n+A(1-\lambda)] \overline{b_{n} z^{n}} \mid \\
\leq & \sum_{n=2}^{\infty} n^{k}(n-1)(1-\lambda)\left|a_{n}\right| r^{n}+\sum_{n=2}^{\infty} n^{k}(n+1)(1-\lambda)\left|b_{n}\right| r^{n} \\
& -(A-B) r+\sum_{n=2}^{\infty} n^{k}[(A \lambda-B) n+A(1-\lambda)]\left|a_{n}\right| r^{n} \\
& +\sum_{n=2}^{\infty} n^{k}[(B-A \lambda) n+A(1-\lambda)]\left|b_{n}\right| r^{n} \\
\leq & r\left\{\sum_{n=2}^{\infty} \phi_{n}\left|a_{n}\right| r^{n-1}+\sum_{n=2}^{\infty} \psi_{n}\left|b_{n}\right| r^{n-1}-(A-B)\right\}<0,
\end{aligned}
$$

therefore $f \in S H_{\lambda}^{0}(k, A, B)$, and so the proof is complete.
Next we show that the condition (5) is also necessary for the functions $f \in S H$ to be in the class $S H T_{\lambda}^{0}(k, A, B)=T^{k} \cap S H_{\lambda}^{0}(k, A, B)$ where T^{k} is the class of functions $f=h+\bar{g} \in S H^{0}$ so that

$$
\begin{equation*}
f=h+\bar{g}=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n}+(-1)^{k} \sum_{n=2}^{\infty}\left|b_{n}\right| \bar{z}^{n} \quad(z \in \mathbb{D}) . \tag{9}
\end{equation*}
$$

Theorem 3. Let $f=h+\bar{g}$ be defined by (9). Then $f \in S H T_{\lambda}^{0}(k, A, B)$ if and only if the condition (5) holds.

Proof. The 'if' part follows from Theorem 2. For the 'only-if' part, assume that $f \in S H T_{\lambda}^{0}(k, A, B)$, then by (8) we have

$$
\left|\frac{\sum_{n=2}^{\infty} n^{k}\left\{[(n-1)(1-\lambda)]\left|a_{n}\right| z^{n}+[(n+1)(1-\lambda)]\left|b_{n}\right| \bar{z}^{n}\right\}}{(A-B) z-\sum_{n=2}^{\infty} n^{k}\left\{[(A \lambda-B) n+A(1-\lambda)]\left|a_{n}\right| z^{n}+[(B-A \lambda) n+A(1-\lambda)]\left|b_{n}\right| \bar{z}^{n}\right\}}\right|<1
$$

Hasan Bayram, Sibel Yalçın - Harmonic Functions Defined by Subordination...

For $z=r<1$ we obtain

$$
\frac{\sum_{n=2}^{\infty} n^{k}\left\{(n-1)(1-\lambda)\left|a_{n}\right|+(n+1)(1-\lambda)\left|b_{n}\right|\right\} r^{n-1}}{A-B-\sum_{n=2}^{\infty} n^{k}\left\{[(A \lambda-B) n+A(1-\lambda)]\left|a_{n}\right|+[(B-A \lambda) n+A(1-\lambda)]\left|b_{n}\right|\right\} r^{n-1}}<1
$$

Thus, for ϕ_{n} and ψ_{n} as defined by (6) and (7), we have

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left[\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right] r^{n-1}<A-B \quad(0 \leq r<1) \tag{10}
\end{equation*}
$$

Let $\left\{\sigma_{n}\right\}$ be the sequence of partial sums of the series

$$
\sum_{n=2}^{\infty}\left[\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right] .
$$

Then $\left\{\sigma_{n}\right\}$ is a nondecreasing sequence and by (10) it is bounded above by $A-B$. Thus, it is convergent and

$$
\sum_{n=2}^{\infty}\left[\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right]=\lim _{n \rightarrow \infty} \sigma_{n} \leq A-B
$$

This gives the condition (5).
In the following we show that the class of functions of the form (9) is convex and compact.

Theorem 4. The class $S H T_{\lambda}^{0}(k, A, B)$ is a convex and compact subset of $S H$.
Proof. Let $f_{t} \in S H T_{\lambda}^{0}(k, A, B)$, where

$$
\begin{equation*}
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{k} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}} \quad(z \in \mathbb{D}, t \in \mathbb{N}) \tag{11}
\end{equation*}
$$

Then $0 \leq \eta \leq 1$, let $f_{1}, f_{2} \in S H T_{\lambda}^{0}(k, A, B)$ be defined by (11). Then

$$
\begin{aligned}
\kappa(z)= & \eta f_{1}(z)+(1-\eta) f_{2}(z) \\
= & z-\sum_{n=2}^{\infty}\left(\eta\left|a_{1, n}\right|+(1-\eta)\left|a_{2, n}\right|\right) z^{n} \\
& +(-1)^{k} \sum_{n=2}^{\infty}\left(\eta\left|b_{1, n}\right|+(1-\eta)\left|b_{2, n}\right|\right) \overline{z^{n}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left\{\phi_{n}\left[\eta\left|a_{1, n}\right|+(1-\eta)\left|a_{2, n}\right|\right]+\psi_{n}\left[\eta\left|b_{1, n}\right|+(1-\eta)\left|b_{2, n}\right|\right]\right\} \\
= & \eta \sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{1, n}\right|+\psi_{n}\left|b_{1, n}\right|\right\}+(1-\eta) \sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{2, n}\right|+\psi_{n}\left|b_{2, n}\right|\right\} \\
\leq & \eta(A-B)+(1-\eta)(A-B)=A-B .
\end{aligned}
$$

Thus, the function $\kappa=\eta f_{1}+(1-\eta) f_{2}$ belongs to the class $S H T_{\lambda}^{0}(k, A, B)$. This means that the class $S H T_{\lambda}^{0}(k, A, B)$ is convex.

On the other hand, for $f_{t} \in S H T_{\lambda}^{0}(k, A, B), t \in \mathbb{N}$ and $|z| \leq r(0<r<1)$, we get

$$
\begin{aligned}
\left|f_{t}(z)\right| & \leq r+\sum_{n=2}^{\infty}\left\{\left|a_{t, n}\right|+\left|b_{t, n}\right|\right\} r^{n} \\
& \leq r+\sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{t, n}\right|+\psi_{n}\left|b_{t, n}\right|\right\} r^{n} \\
& \leq r+(A-B) r^{2} .
\end{aligned}
$$

Therefore, $S H T_{\lambda}^{0}(k, A, B)$ is locally uniformly bounded. Let

$$
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{k} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}} \quad(z \in \mathbb{D}, t \in \mathbb{N})
$$

and let $f=h+\bar{g}$ be so that h and g are given by (1). Using Theorem 3 we obtain

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{t, n}\right|+\psi_{n}\left|b_{t, n}\right|\right\} \leq A-B \tag{12}
\end{equation*}
$$

If we assume that $f_{t} \rightarrow f$, then we conclude that $\left|a_{t, n}\right| \rightarrow\left|a_{n}\right|$ and $\left|b_{t, n}\right| \rightarrow\left|b_{n}\right|$ as $n \rightarrow \infty(t \in \mathbb{N})$. Let $\left\{\sigma_{n}\right\}$ be the sequence of partial sums of the series $\sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right\}$. Then $\left\{\sigma_{n}\right\}$ is a nondecreasing sequence and by (12) it is bounded above by $A-B$. Thus, it is convergent and

$$
\sum_{n=2}^{\infty}\left\{\phi_{n}\left|a_{n}\right|+\psi_{n}\left|b_{n}\right|\right\}=\lim _{n \rightarrow \infty} \sigma_{n} \leq A-B .
$$

Therefore $f \in S H T_{\lambda}^{0}(k, A, B)$ and therefore the class $S H T_{\lambda}^{0}(k, A, B)$ is closed. In consequence, the class $S H T_{\lambda}^{0}(k, A, B)$ is compact subset of $S H$, which completes the proof.

We continue with the following lemma due to Jahangiri [5].
Lemma 5. Let $f=h+\bar{g}$ be so that h and g are given by (1). Furthermore, let

$$
\sum_{n=2}^{\infty}\left\{\frac{n-\varrho}{1-\varrho}\left|a_{n}\right|+\frac{n+\varrho}{1-\varrho}\left|b_{n}\right|\right\} \leq 1 \quad(z \in \mathbb{D})
$$

where $0 \leq \varrho<1$. Then f is harmonic, orientation preserving, univalent in \mathbb{D} and f is starlike of order ϱ.

In the following theorems we obtain the radii of starlikeness and convexity for functions in the class $S H T_{\lambda}^{0}(k, A, B)$.
Theorem 6. Let $0 \leq \varrho<1, \phi_{n}$ and ψ_{n} be defined by (6) and (7). Then

$$
\begin{equation*}
r_{\varrho}^{*}\left(S H T_{\lambda}^{0}(k, A, B)\right)=\inf _{n \geq 2}\left[\frac{1-\varrho}{A-B} \min \left\{\frac{\phi_{n}}{n-\varrho}, \frac{\psi_{n}}{n+\varrho}\right\}\right]^{\frac{1}{n-1}} \tag{13}
\end{equation*}
$$

Proof. Let $f \in S H T_{\lambda}^{0}(k, A, B)$ be of the form (9). Then, for $|z|=r<1$, we get

$$
\left|\frac{D f(z)-(1+\varrho) f(z)}{D f(z)+(1-\varrho) f(z)}\right| \leq \frac{\varrho+\sum_{n=2}^{\infty}\left\{(n-1-\varrho)\left|a_{n}\right|+(n+1+\varrho)\left|b_{n}\right|\right\} r^{n-1}}{2-\varrho-\sum_{n=2}^{\infty}\left\{(n+1-\varrho)\left|a_{n}\right|+(n-1+\varrho)\left|b_{n}\right|\right\} r^{n-1}}
$$

Note (see Lemma 5) that f is starlike of order ϱ in \mathbb{D}_{r} if and only if

$$
\left|\frac{D f(z)-(1+\varrho) f(z)}{D f(z)+(1-\varrho) f(z)}\right|<1, \quad z \in \mathbb{D}_{r}
$$

or

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left\{\frac{n-\varrho}{1-\varrho}\left|a_{n}\right|+\frac{n+\varrho}{1-\varrho}\left|b_{n}\right|\right\} r^{n-1} \leq 1 \tag{14}
\end{equation*}
$$

Moreover, by Theorem 2, we have

$$
\sum_{n=2}^{\infty}\left\{\frac{\phi_{n}}{A-B}\left|a_{n}\right|+\frac{\psi_{n}}{A-B}\left|b_{n}\right|\right\} r^{n-1} \leq 1
$$

Since ϕ_{n} and ψ_{n} be defined by (6) and (7).

Hasan Bayram, Sibel Yalçın - Harmonic Functions Defined by Subordination...

The condition (14) is true if

$$
\frac{n-\varrho}{1-\varrho} r^{n-1} \leq \frac{\phi_{n}}{A-B} r^{n-1}
$$

and

$$
\frac{n+\varrho}{1-\varrho} r^{n-1} \leq \frac{\psi_{n}}{A-B} r^{n-1} \quad(n=2,3, \ldots)
$$

or if

$$
r \leq \frac{1-\varrho}{A-B} \min \left\{\frac{\phi_{n}}{n-\varrho}, \frac{\psi_{n}}{n+\varrho}\right\}^{\frac{1}{n-1}} \quad(n=2,3, \ldots)
$$

It follows that the function f is starlike of order ϱ in the disk $\mathbb{D}_{r_{e}^{*}}$ where

$$
r_{\varrho}^{*}:=\inf _{n \geq 2}\left[\frac{1-\varrho}{A-B} \min \left\{\frac{\phi_{n}}{n-\varrho}, \frac{\psi_{n}}{n+\varrho}\right\}\right]^{\frac{1}{n-1}}
$$

The function

$$
f_{n}(z)=h_{n}(z)+\overline{g_{n}(z)}=z-\frac{A-B}{\phi_{n}} z^{n}+(-1)^{k} \frac{A-B}{\psi_{n}} \bar{z}^{n}
$$

proves that the radius r^{*} cannot be any larger. Thus we have (13).
Using a similar argument as above we obtain the following.
Theorem 7. Let $0 \leq \varrho<1$ and ϕ_{n} and ψ_{n} be defined by (6) and (7). Then

$$
r_{\varrho}^{c}\left(S H T_{\lambda}^{0}(k, A, B)\right)=\inf _{n \geq 2}\left[\frac{1-\varrho}{A-B} \min \left\{\frac{\phi_{n}}{n(n-\varrho)}, \frac{\psi_{n}}{n(n+\varrho)}\right\}\right]^{\frac{1}{n-1}}
$$

Our next theorem is on the extreme points of $S H T_{\lambda}^{0}(k, A, B)$.
Theorem 8. Extreme points of the class $S H T_{\lambda}^{0}(k, A, B)$ are the functions f of the form (1) where $h=h_{n}$ and $g=g_{n}$ are of the form

$$
\begin{gather*}
h_{1}(z)=z, \quad h_{n}(z)=z-\frac{A-B}{\phi_{n}} z^{n} \tag{15}\\
g_{n}(z)=(-1)^{k} \frac{A-B}{\psi_{n}} \overline{z^{n}}, \quad(z \in \mathbb{D}, n \geq 2) .
\end{gather*}
$$

Proof. Let $g_{n}=\eta f_{1}+(1-\eta) f_{2}$ where $0<\eta<1$ and $f_{1}, f_{2} \in S H T_{\lambda}^{0}(k, A, B)$ are functions of the form

$$
f_{t}(z)=z-\sum_{n=2}^{\infty}\left|a_{t, n}\right| z^{n}+(-1)^{k} \sum_{n=2}^{\infty}\left|b_{t, n}\right| \overline{z^{n}} \quad(z \in \mathbb{D}, t \in\{1,2\}) .
$$

Then, by (5), we have

$$
\left|b_{1, n}\right|=\left|b_{2, n}\right|=\frac{A-B}{\psi_{n}}
$$

and therefore $a_{1, t}=a_{2, t}=0$ for $t \in\{2,3, \ldots\}$ and $b_{1, t}=b_{2, t}=0$ for $t \in$ $\{2,3, \ldots\} \backslash\{n\}$. It follows that $g_{n}(z)=f_{1}(z)=f_{2}(z)$ and g_{n} are in the class of extreme points of the function class $S H T_{\lambda}^{0}(n, A, B)$. Similarly, we can verify that the functions $h_{n}(z)$ are the extreme points of the class $S H T_{\lambda}^{0}(k, A, B)$. Now, suppose that a function f of the form (1) is in the family of extreme points of the class $S H T_{\lambda}^{0}(k, A, B)$ and f is not of the form (15). Then there exists $m \in\{2,3, \ldots\}$ such that

$$
0<\left|a_{m}\right|<\frac{A-B}{m^{k}[(1-\lambda+A \lambda-B) m+(1-\lambda)(A-1)]}
$$

or

$$
0<\left|b_{m}\right|<\frac{A-B}{m^{k}[(1-\lambda-A \lambda+B) m+(1-\lambda)(A+1)]} .
$$

If

$$
0<\left|a_{m}\right|<\frac{A-B}{m^{k}\left\{m^{k}[(1-\lambda+A \lambda-B) m+(1-\lambda)(A-1)]\right\}},
$$

then putting

$$
\eta=\frac{\left|a_{m}\right| m^{k}\left\{m^{k}[(1-\lambda+A \lambda-B) m+(1-\lambda)(A-1)]\right\}}{A-B}
$$

and

$$
\varphi=\frac{f-\eta h_{m}}{1-\eta}
$$

we have $0<\eta<1, h_{m} \neq \varphi$, and

$$
f=\eta h_{m}+(1-\eta) \varphi .
$$

Therefore, f is not in the family of extreme points of the class $S H T_{\lambda}^{0}(k, A, B)$. Similarly, if

$$
0<\left|b_{m}\right|<\frac{A-B}{m^{k}[(1-\lambda-A \lambda+B) m+(1-\lambda)(A+1)]},
$$

then putting

$$
\eta=\frac{\left|b_{m}\right| m^{k}[(1-\lambda-A \lambda+B) m+(1-\lambda)(A+1)]}{A-B}
$$

and

$$
\varphi=\frac{f-\eta g_{m}}{1-\eta},
$$

we have $0<\eta<1, g_{m} \neq \varphi$, and

$$
f=\eta g_{m}+(1-\eta) \varphi .
$$

It follows that f is not in the family of extreme points of the class $S H T_{\lambda}^{0}(k, A, B)$ and so the proof is completed.

Therefore, by Theorem 8, we have the following corollary.
Corollary 9. Let $f \in S H T_{\lambda}^{0}(k, A, B)$, be a function of the form (9). Then

$$
\left|a_{n}\right| \leq \frac{A-B}{n^{k}[(1-\lambda+A \lambda-B) n+(1-\lambda)(A-1)]}
$$

and

$$
\left|b_{n}\right| \leq \frac{A-B}{n^{k}[(1-\lambda-A \lambda+B) n+(1-\lambda)(A+1)]}
$$

The result is sharp for the extremal functions h_{n}, g_{n} of the form (15).
Corollary 10. Let $f \in S H T_{\lambda}^{0}(k, A, B)$ and $|z|=r<1$. Then
$r-\frac{A-B}{2^{k}[(\lambda+1)(A-1)-2(B-1)]} r^{2} \leq|f(z)| \leq r+\frac{A-B}{2^{k}[(\lambda+1)(A-1)-2(B-1)]} r^{2}$.
The following covering result follows from Corollary 10.
Corollary 11. If $f \in S H T_{\lambda}^{0}(k, A, B)$ then $\mathbb{D}_{r} \subset f(\mathbb{D})$ where

$$
r=1-\frac{A-B}{2^{k}[(\lambda+1)(A-1)-2(B-1)]} .
$$

References

[1] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math, 9 (1984), 3-25.
[2] J. Dziok, Classes of harmonic functions defined by subordination, Abstr. Appl. Anal. (2015), Article ID 756928.
[3] J. Dziok, On Janowski harmonic functions, J. Appl. Anal., 21 (2015), 99-107.
[4] J. Dziok, J. M. Jahangiri, H. Silverman, Harmonic functions with varying coefficients, Journal of Inequalities and Applications 139 (2016).
[5] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), 470-477.

Hasan Bayram, Sibel Yalçın - Harmonic Functions Defined by Subordination...
[6] J. M. Jahangiri, G. Murugusundaramoorthy, K. Vijaya, Salagean-type harmonic univalent functions, South J. Pure Appl. Math. 2 (2002), 77-82.
[7] G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. Springer- Verlag Heidelberg 1013 (1983), 362-372.
[8] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl. 220 (1998), 283-289.
[9] H. Silverman, E. M. Silvia, Subclasses of harmonic univalent functions, N. Z. J. Math. 28 (1999), 275-284.

Hasan Bayram
Department of Mathematics, Bursa Uludağ University, 16059, Görükle, Bursa, Turkey
e-mail: hbayram@uludag.edu.tr
Sibel Yalçın
Department of Mathematics, Bursa Uludağ University, 16059, Görükle, Bursa, Turkey
email: syalcin@uludag.edu.tr

