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Abstract. The aim of this paper is to develop an efficient numerical technique
based on Haar wavelets for solving the Pennes bioheat transfer model (PBHTM)-
which is a prime model for studying the mechanism of heat transfer in living tissues.
The properties of the Haar wavelet expansions together with operational matrix of
integration are used to convert the underlying problem into a system of algebraic
equations which in turn speeds up the computational process. The numerical out-
comes suggest that the proposed method is in a reasonable agreement with the exact
solution of the Pennes bioheat transfer model.
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1. Introduction

It is well known that a natural instinct of the human body is to use heat in order to
fight diseases. The use of heat to destroy unwanted tissue in therapeutic purposes
has found immense applications, for instance, laser, microwave and magnetic fluid
hyperthermia. As any unwanted tissue is surrounded by a healthy tissue, therefore,
the effectiveness of the thermal therapy is completely dependent upon the precision,
prediction and regulation of temperature in the undesirable tissue. To prevent any
damage to the healthy tissue in a therapeutic process, it is essential to acquire a
profound knowledge of the temperature distribution in the entire treatment region.
However, the accurate determination of the temperature field over the region of treat-
ment during any invasive temperature probe is limited due to the pain tolerance of
the patient. Therefore, an appropriate analysis and modeling of the entire thermal
procedure plays a vital role in optimizing the temperature distribution in the region
of treatment. Hence, for the significant evaluation of the extend of thermal damage
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an appropriate bioheat model plays a crucial role during the development of equip-
ment and pre-planning purposes. Among several available mathematical models in
the open literature, the Pennes bio-heat transfer model [1] has been vastly applied
mainly due to its simplicity and lucid nature. Mathematically, the Pennes bioheat
transfer model is governed by a second order partial differential equation

ρc
∂u

∂t
= k

∂2u

∂x2
+ ρbωbcb(ub − u) +Qm +Qr. (1.1)

where the parameters ρ, c, k, ωb, cb, ub, ρb and u involved in the equation (1.1) denote
density of the tissue, specific heat of the tissue, thermal conductivity of the tissue,
blood perfusion rate, specific heat of the blood, temperature of arterial blood, density
of blood and tissue temperature, respectively. The terms Qm and Qr represent the
heat generated by the metabolic process and heat generated per unit volume of the
tissue due to electromagnetic radiations.

It is worth to note that equation (1.1) can be rewritten in a relatively compact
form as

∂u

∂t
= ka

∂2u

∂x2
+ b(ub − u) + a (Qm +Qr) , (1.2)

where, a = 1/ρc and b = aρbωbcb. The one-dimensional form of (1.2) is given by

∂u(x, t)

∂t
= α

∂2u(x, t)

∂x2
− bu(x, t) + θ(x, t) (1.3)

where α = ka, and θ(x, t) = bub + a(Qm +Qr(x, t)).

In recent times, several numerical and analytical techniques have been success-
fully applied for obtaining the solution of Pennes bioheat transfer model (1.3). Some
of the methods invoked in the recent literature include, Boundary element method
[2], Monte Carlo method [3], Finite difference method [4], [5], [6], Finite difference-
decomposition method [7], Variational iteration method [8], Bessel functions [9],
Laplace transform method [10], Daubechies Wavelet-finite difference method [11],
Galerkin Finite Element Method [12], Homotopy perturbation method [13, 14].

Over the last couple of decades, wavelets have been studied extensively and
have emerged as a powerful computational tool for attaining exact and/or numerical
solutions for a wide range of problems including algebraic, differential, partial differ-
ential, functional delay, and integro-differential equations. Wavelets, in essence, are
continuously oscillatory functions which possess some attractive features: zero-mean,
fast decay, short life, time-frequency representation, multiresolution, etc. Wavelets
have the ability to detect information at different scales and at different locations
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throughout a computational domain. Wavelets can provide a basis set in which the
basis functions are constructed by dilating and translating a fixed function known
as the mother wavelet. Different types of wavelets and approximating functions have
been used in the numerical solution of boundary-value problems such as Daubechies,
Battle-Lemarie, B-spline, Chebyshev, Legendre, and Haar wavelets. Among all the
wavelet families, the Haar wavelets have gained considerable popularity among re-
searchers’ mainly due to some of their outstanding properties such as simple appli-
cability, orthogonality, and compact support. Compact support of the Haar wavelet
basis permits straight inclusion of the different types of boundary conditions in the
numeric algorithms.

The main goal of this article is to employ a collocation method based on Haar
wavelets for the numerical treatment of the Pennes bio-heat transfer model (1.3).
The motivation and philosophy behind this approach is that it converts the under-
lying problem to a set of algebraic equations by expanding the term, which has
maximum derivative, given in the equation as Haar functions with unknown co-
efficients and thus, simplifying the solution process of the problem to a significant
extent. The numerical outcomes suggest that the proposed method is in a reasonable
agreement with the exact solution of the Pennes bio-heat transfer model (1.3).

The outline of the paper is as follows: In Section 2, we introduce some pre-
liminaries including the Haar wavelets followed by the construction of operational
matrix of integration. In Section 3, we propose a method of solution for the Pennes
bioheat transfer model (1.3). Section 4 is completely devoted to explicitly illustrate
the obtained results and discuss the accuracy and efficiency of the proposed method
by comparing the obtained results with the exact solution. Finally, a conclusion is
drawn in Section 5.

2. Haar Wavelets and Operational Matrix of Integration

Haar wavelets have been used from 1910 when they were introduced by the Hun-
garian mathematician Alfred Haar[15]. The Haar wavelet, being an odd rectangular
pulse pair, is the simplest and oldest orthonormal wavelet with compact support.
The Haar wavelet family for x ∈ [0, 1] is defined as follows:

hi(x) =


1, for x ∈ [α, β)

−1, for x ∈ [β, γ)
0, elsewhere.

(2.1)
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where

α =
k

m
, β =

k + 0.5

m
, γ =

k + 1

m
.

Here m and k have integer values as m = 2j , j = 0, 1, . . . , J and J shows the reso-
lution of the wavelet and k = 0, 1, . . . ,m− 1 is the translation parameter. Maximal
level of resolution is J . The index of hi in Eq.(2.1) is calculated by i = m+ k + 1.
In the case with minimal values m = 1, k = 0, we have i = 2, the maximal value of
i is 2M = 2j+1. We also have i = 1 corresponding to the scaling function of Haar
wavelet family, i.e. h1(x) = 1 in [0, 1]. For a detailed information regarding the
Haar wavelets and their applications, we refer to the monographs[15, 16].

Now, we intend to establish an operational matrix for integration by means
of Haar wavelets for which we follow the same notations as used in [17] for Haar
function and their integrals as

Pi,1(x) =

∫ x

0
hi(x) dx, Pi,n+1(x) =

∫ x

0
Pi,n(x) dx, and

Ci,n(x) =

∫ 1

0
Pi,n(x) dx n = 1, 2, . . . . (2.2)

The integrals in (2.2) can be evaluated analytically by virtue of (2.1); consequently,
we obtain the following equations

Pi,n(x) =



0 for x ∈ [0, α)

1

n!
(x− α)n for x ∈ [α, β)

1

n!

[
(x− α)n

−2(x− β)n
]

for x ∈ [β, γ)

1

n!

[
(x− α)n

−2(x− β)n + (x− γ)n
]
, for x ∈ [γ, 1),

(2.3)

where i = 2, 3, . . . and n = 1, 2, . . . . Note that

P1,n(x) =
xn

n!
, C1,n(x) =

1

(n+ 1)!
, n = 1, 2, . . . .

By invoking the Haar basis functions, any square integrable function f(x) defined
on [0, 1] can be expressed as

f(x) = a1h1(x) + a2h2(x) + · · · =
∞∑
i=1

aihi(x), x ∈ [0, 1] (2.4)
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where the Haar coefficients ai, i = 1, 2, . . . , are determined by

ai = ⟨f, hi⟩ = 2j
∫ 1

0
f(x)hi(x) dx. (2.5)

Even though the series expansion (2.4) is an infinite sum, we can reasonably ap-
proximate f(x) by using finitely many terms, provided f(x) is a piecewise constant
or it may be approximated as a piecewise constant for each sub-interval; that is,

f(x) w fm(x) =

2M∑
i=1

aihi(x). (2.6)

Analogously, we can rewrite the expansion (2.6) in matrix form as

FT = AT
mHm, (2.7)

where F is the discrete form of the continuous function f(xℓ) andAT
m = [a1, a2, . . . , am]

is the m-dimensional row vector. Moreover, Hm denotes the Haar wavelet matrix
of order m and is given by Hm = [h1,h2, . . . ,hm]T ; that is,

Hm =


h1

h2
...

hm

 =


h1,1 h1,2 . . . h1,m
h2,1 h2,2 . . . h2,m
...

...
...

...
hm,1 hm,2 . . . hm,m

 , (2.8)

where h1,h2, . . . ,hm denote the discrete versions of the Haar wavelet basis. For the
Haar wavelet approximations, we rely on the following collocation points:

xℓ =
ℓ− 0.5

2M
, ℓ = 1, 2, . . . ,m. (2.9)

For example, if j = 2; that is, 2M = 8, the Haar matrix H and the operational
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matrix P can be expressed as

H8 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


,

P8 =
1

64



32 −16 −8 −8 −4 −4 −4 −4
16 0 −8 8 −4 −4 4 4
4 4 0 0 −4 4 0 0
4 4 0 0 −4 4 0 0
1 4 2 0 0 0 0 0
1 1 −2 0 0 0 0 0
1 −1 0 2 0 0 0 0
1 −1 0 −2 0 0 0 0


.

Assume that f(x) satisfies a Lipschitz condition on [0, 1], there exist positive number
K > 0, such that |f(x1)− f(x2)| ≤ K|x1 − x2|, ∀x1, x2 ∈ [0, 1], where K is the
Lipschitz constant. Therefore, the Haar approximation fm(x) of f(x) is given by

fm(x) =

m−1∑
i=0

aihi(x), m = 2p+1, p = 0, 1, 2, . . . ,M. (2.10)

Then, the corresponding error at mth level may be defined as∥∥f(x)− fm(x)
∥∥
2
=

∥∥∥∥∥f(x)−
m−1∑
i=0

aihi(x)

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑

i=2p+1

aihi(x)

∥∥∥∥∥
2

. (2.11)

With the exact solution of the model (1.3) at hand, we can obtain an upper bound
of the error for the solution of Pennes bioheat transfer model (1.3). Convergence of
the proposed method may be discussed on the same lines as given in Yi and Huang
[19].

Theorem 2.1.[19] Suppose f(x) satisfies the Lipschitz condition on [0, 1] with Lip-
schitz constant K and fm(x) are the Haar approximations of f(x), then we have the
error bound as follows ∥∥f(x)− fm(x)

∥∥
2
≤ K√

3m2
. (2.12)
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3. Solution of the Problem

In this section, we shall formally investigate the Pennes bioheat transfer model (1.3)
for its approximate solution by employing the Haar wavelet operational matrices.
The main advantage of the proposed method is that it converts the whole problem
into a system of algebraic equations for which the computation is easy and simple.
To facilitate the method of solution, we recall the one-dimensional form of the model
(1.3)

u̇(x, t) = αu′′(x, t)− bu(x, t) + θ(x, t), (3.1)

where · and ′ indicate the differentiation with respect to t and x, respectively. More-
over, α, b, θ(x, t) have their usual meanings and

Qr(x, t) =
(
− 399800− µ2

2

)
exp

−
t(45− ua) sinh

(
µ(L− x)

)
sinh(µL)

− 420. (3.2)

Equation (3.1) can be revamped into the following form

u̇(xℓ, ts+1) = αu′′(xℓ, ts+1)− bu(xℓ, ts+1) + θ(xℓ, ts+1), (3.3)

subjected to the boundary conditions

u(xℓ, 0) = 37 +
(45− ua) sinh

(
µ(L− xℓ)

)
sinh(µL)

= g(xℓ), (3.4)

u(0, ts+1) = 37 + 8ets+1 = f0(ts+1), u(1, ts+1) = 37 = f1(ts+1) (3.5)

which leads us from the time layer ts to ts+1, where µ =

√
ρbωbcb

k
, L = 1.

Next, we divide the interval (0,1] into N equal parts of length ∆t=(0,1]/N and
denote ts = (s− 1)∆t, s = 1, 2, 3, ..., N . By virtue of the Haar wavelet basis, we can
express ü′′(x, t) as:

ü′′(x, t) =

2M∑
i=0

aihi(x). (3.6)

The row vector ai is constant in the sub-interval t ∈ (ts, ts+1]. Integrating (3.6) with
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respect to t from ts to t and twice with respect to x from 0 to x, we obtain

u′′(x, t) = (t− ts)
2M∑
i=0

aihi(x) + u′′(x, t), (3.7)

u(x, t) = (t− ts)

2M∑
i=0

aiP2(x) + u(x, ts)− u(0, ts) + x
[
u′(0, t)− u′(0, ts)

]
+ u(0, t),

(3.8)

u̇(x, t) =

2M∑
i=0

aiP2(x) + xu̇′(0, t) + u̇(0, t). (3.9)

For brevity, we shall denote the boundary conditions as:

u(0, ts) = f0(ts), u(1, ts) = f1(ts),

u̇(0, t) = f ′
0(t), u̇(1, t) = f ′

1(t).

Then, in particular, for x = 1 in (3.8) and (3.9), we obtain

u′(0, t)− u′(0, ts) = −(t− ts)
2M∑
i=0

aiP2(1) + f1(t)− f0(ts) + f0(ts), (3.10)

u̇′(0, t) = f ′
1(t)−

2M∑
i=0

aiP2(1)− f ′
0(t). (3.11)

Moreover, from (2.3), we obtain

P2(1) =

{
0.5, if i=1;
1

4m2
, if i>1.

Implementing (3.10) and (3.11) into the equations (3.7)-(3.9), and discretizising the
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the result by assuming x → xl, t → ts+1 leads to

u′′(xl, ts+1) = (ts+1 − ts)
2M∑
i=0

aihi(xl) + u′′(xl, ts), (3.12)

u(xl, ts+1) = (ts+1 − ts)
2M∑
i=0

aiP2(xl) + u(xl, ts)− f0(ts) + f0(ts+1)

+ xl

[
− (ts+1 − ts)

2M∑
i=0

aiP2(1) + f1(ts+1)− f0(ts+1)− f1(ts) + f0(ts)

]
,

(3.13)

u̇(xl, ts+1) = (ts+1 − ts)

2M∑
i=0

aiP2(xl) + f ′
0(ts+1)

+ xl

[
−

2M∑
i=0

aiP2(1) + f ′
1(ts+1)− f ′

0(ts+1)

]
. (3.14)

Upon substituting the values from (3.12)-(3.14) into the Pennes bio-heat transfer
equation (3.3), we get

(ts+1 − ts)

2M∑
i=0

aiP2(xl)− xl(ts+1 − ts)

2M∑
i=0

aiP2(1)−
α

2
(ts+1 − ts)

2
2M∑
i=0

aihi(xl)

+
b

2
(ts+1 − ts)

2
2M∑
i=0

aiP2(xl)−
bxl
2

(ts+1 − ts)
2
2M∑
i=0

aiP2(1)

= − [u̇(xl, ts)− u̇(0, ts)] + xl
[
f ′
1(ts)− f ′

0(ts)
]

+ xl
[
f ′
0(ts+1)− f ′

1(ts+1)
]
− f ′

0(ts+1)

+ α(ts+1 − ts)u̇
′′(xl, ts) + αu′′(xl, ts)− b(ts+1 − ts) [u̇(xl, ts)− u̇(0, ts)]

− bu(xl − ts) + bu(0, ts) + bxl(ts+1 − ts)
[
f ′
1(ts)− f ′

0(ts)
]

+ bxl [f1(ts)− f0(ts) + f0(ts+1)− f1(ts+1)]− bf0(ts+1) + θ(xl, ts+1) (3.13)

Equation (3.15) can be rewritten in the matrix form as

SAT
m = Bm, (3.16)

where AT
m,S,Bm are row matrix , square matrix of order 2M × 2M and column

matrix of order m, respectively, and are given by

AT
m =

[
a1, a2, a3, . . . am

]
, Bm =

[
b1, b2, b3, . . . bm

]
,
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S =


s1,1 s1,2 s1,3 . . . s1,m
s2,1 s2,2 s2,3 . . . s2,m
s3,1 s3,2 s3,3 . . . s3,m
...

...
...

...
sm,1 sm,2 sm,3 . . . sm,m

 .

The system of equations in (3.15) represents the algebraic form of Pennes bioheat
transfer equation, which upon solving yield the Haar coefficients a′is. In sequel, from
(3.13), we obtain the value of u, which is reasonably close to the exact solution of
the Pennes bio-heat transfer equation.

4. Numerical Results and Discussion

In this section, numerical and graphical results obtained from HWCM for the solu-
tion of 1D Pennes bioheat transfer equation are presented in order to demonstrate
the accuracy and efficiency of the proposed method. The model under consideration
uses the parameters ρ, ρb, c, ωb, ua, k and Qm whose corresponding values are given
in Table 1.

Symbol(unit) Value

ρ and ρb(kg/m
3) 1000

c and cb(j/kgc) 4000
k(W/mc) 0.5

ωb(m
3/s/m3 0.0005

ua(c) 37
Qm(W/m3) 420

Table 1: The Value of the parameters.

The exact solution corresponding to the Pennes bioheat equation (1.3) is given by:

u(x, t) = ua + e−t (45− ua) sinh
(
µ(L− x)

)
sinh(µL)

. (4.1)

Upon setting N = 512, J = 8, the obtained results are compared with the exact
solution. It is worth noticing that the obtained and exact solutions are significantly
close to each other as is suggested by the absolute error. This in turn indicates that
the proposed method is quite effective in studying the temperature distribution in
the living tissues during thermal therapy. The comparison results are shown in the
Table 2 and 3. Moreover, the plots of computed solutions presented in figures 1, 2, 3
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indicate that the hyperthermia position in a living tissue is varying with change of
time. Here it is worth mentioning that the numerical results derived in this study
can be used to several heat transfer problems arising in different biological systems.
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Figure 1: Comparison between Haar and Exact for t = 0.001, t = 0.2, t = 0.4, t = 0.6

Table 2: Comparison between exact and HWCM solution
Time(t) x1 = 0.00097 x2 = 0.0029 x3 = 0.0049 x4 = 0.0068

HWCM Exact Ab.Error HWCM Exact Ab.Error HWCM Exact Ab.Error HWCM Exact Ab.Error

0.001 44.51336 44.51336 1.1280e-07 43.64037 43.64037 1.2161e-07 42.86881 42.86881 1.2939e-07 42.18690 42.18690 1.3626e-07

0.1 43.80627 43.80627 0.00109 43.01564 43.01446 0.00117 42.31687 42.31563 0.00123 41.69928 41.69799 0.00128

0.2 43.16194 43.15757 0.00436 42.44706 42.44211 0.00495 41.81518 41.80978 0.00540 41.25673 41.25092 0.00580

0.3 42.58134 42.57160 0.00973 41.93587 41.92423 0.01164 41.36515 41.35207 0.01307 40.86077 40.84639 0.01437

0.4 42.05855 42.04139 0.01715 41.47709 41.45562 0.02146 40.96261 40.93791 0.02465 40.50800 40.48036 0.02763

0.5 41.58819 41.56164 0.02655 41.06618 41.03161 0.03456 40.60376 40.56317 0.04058 40.19522 40.14916 0.04606

0.6 41.16682 41.12754 0.03927 40.70043 40.64795 0.05247 40.28649 40.22409 0.06240 39.92090 39.84948 0.07141

5. Conclusion

In this paper, we employed the Haar wavelet collocation method for the numerical
solution of Pennes bioheat transfer model (PBHTM). The main advantage of the
proposed method is that it transfers the whole scheme into a system of algebraic
equations for which the computation is easy and simple. In addition, other nice
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Figure 2: Physical behavior of (a) Proposed solution, (b) Exact solution, (c) Abso-
lute error.

features of this scheme are its simplicity, applicability, and less computational ef-
fort. To assure the efficiency of the proposed method, comparisons between the
obtained numerical and the exact solutions of the problem under consideration are
presented in an illustrative manner. We would like to stress that the numerical so-
lution includes not only time information but also frequency information due to the
localization property of wavelet basis; with some change we can apply this method
with the help of other orthonormal systems. The computational work was carried
out in MATLAB (R2018b) software.
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