ON Q-STARLIKE FUNCTIONS WITH RESPECT TO K-SYMMETRIC POINTS

A. Alsoboh and M. Darus

ABSTRACT. In this paper, we define new subclass of analytic functions, the socalled q-starlike functions of order α with respect to k-symmetric points. We explore some inclusion properties and find some sufficient condition for this class. Finally, we obtain the integral representation for functions belonging to this class.

2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic function, Univalent function, q-Starlike function, k-Symmetric points, q-calculus.

1. INTRODUCTION

We begin by letting \mathcal{H} the class of analytic functions in the open unit disc of the complex plane $\mathbb{U} = \{z \in \mathbb{C}, |z| < 1\}$, and \mathcal{A} be the subclass of \mathcal{H} containing all functions of the form

$$f(z) = z + \sum_{m=2}^{\infty} a_m z^m \quad z \in \mathbb{U},$$
(1)

which satisfying the condition of normalization; f'(0) = f(0) + 1 = 1. Let S denotes the subclass of A containing of all functions that are univalent in \mathbb{U} . For any two analytic functions f(z) and g(z) in \mathbb{U} , we say that f(z) is subordinate to g(z), denoted by $f(z) \prec g(z)$, if there exist a Schwarz function $\omega(z)$ with $\omega(0) = 0$, $|\omega(z)| \leq 1$ such that $f(z) = g(\omega(z))$ for all $z \in \mathbb{U}$ [14].

The convolution of f(z) as in (1) and $\beta(z) = z + \sum_{m=2}^{\infty} \phi_m z^m$ is defined by

$$(f*\beta)(z) = (\beta*f)(z) = z + \sum_{m=2}^{\infty} a_m \phi_m z^m.$$

The geometric properties of analytic functions played an important role in geometric function theory, such as convexity and starlikeness, these subclasses denoted by C

and \mathcal{S}^* , respectively.

More generally, for $0 \le \alpha \le 1$, let $\mathcal{S}^*(\alpha)$ and $\mathcal{C}(\alpha)$ be the subclasses of starlike of order α and convex of order α , respectively, defined analytically by

$$\mathcal{S}^*(\alpha) = \left\{ f : f \in \mathcal{A}, and \quad Re\{\frac{zf'(z)}{f(z)}\} > \alpha, z \in \mathbb{U} \right\},$$
$$\mathcal{C}(\alpha) = \left\{ f : f \in \mathcal{A}, and \quad Re\{1 + \frac{zf''(z)}{f'(z)}\} > \alpha, z \in \mathbb{U} \right\}.$$

The application of q-calculus is very important in the theory of analytic functions. Jackson was 1^{st} developed q-calculus in a systematic way (for more details, see [10, 11]). There are several application of q-calculus on subclasses of analytic functions, especially subclasses of univalent functions in U like stalike and convex (for more details, see [1, 2, 3, 4, 7, 5, 16, 17]) that depends on replacing the usual derivative by q-derivative. Ismail et al. [9] introduced a general q-starlike function with replacing the right half plane by appropriate domains, Agrawal and Sahoo in [1] extend this idea to introduce the class of q-starlike functions of order α . Later on, Aldweby and Darus [4] introduced two subclasses of bounded q-starlike and qconvex functions. Some other application of q-calculus are studied by Alsoboh and Darus [6, 7, 8] and Mohammed and Darus [15].

Now, we give some basic concepts and definitions of the applications of q-calculus assuming that 0 < q < 1, by:

Definition 1. [10] For 0 < q < 1, the q-numbers $[m]_q$ is given by:

$$[m]_q = \begin{cases} \frac{1-q^n}{1-q} & ,n \in \mathbb{C} \\ 1+q+q^2+\ldots+q^{n-1} & ,n \in \mathbb{N} \end{cases},$$

and $\lim_{q\to 1^-} [m]_q = m$.

Definition 2. [10] The Jackson q-derivative of a function f is given by:

$$\partial_q f(z) = \begin{cases} \frac{f(z) - f(qz)}{z - qz} & (z \in \mathbb{C} \setminus \{0\}) \\ f'(0) & (z = 0) \end{cases},$$

where $\lim_{q\to 1} \partial_q f(z) = f'(z)$.

Definition 3. [11] The Jackson's q-integral of a function f is given by:

$$\int_{0}^{z} f(t)d_{q}t = (1-q)z \sum_{n=0}^{\infty} q^{n}f(q^{n}z).$$

In case of $f(z) = z^m, m \in \mathbb{N}$, we have

$$\partial_q(z^m) = [m]_q z^{m-1},$$
$$\int_0^z t^{c-1} d_q t = (1-q) z \sum_{n=0}^\infty (zq^n)^{c-1} q^n = \frac{z^c}{[c]_q}.$$

Ismail and et al. in [9] introduced the class of q-starlike functions and the definition of class S_q^* is given as follows:

Definition 4. A function $f \in \mathcal{A}$ is said to belong to the class \mathcal{S}_q^* , if

$$\left|\frac{z(\partial_q f)(z)}{f(z)} - \frac{1}{1-q}\right| < \frac{1}{1-q} \qquad (z \in \mathbb{U}).$$

$$\tag{2}$$

If $q \to 1^-$ then \mathcal{S}_q^* reduced to \mathcal{S}^* .

Later, Agrawal and Sahoo in [1] defined and investigated the subclass of generalized q-starlike functions of order α . The definition is as follows:

Definition 5. A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_q^*(\alpha), 0 \leq \alpha < 1$, if

$$\left|\frac{\frac{z(\partial_q f)(z)}{f(z)} - \alpha}{1 - \alpha} - \frac{1}{1 - q}\right| < \frac{1}{1 - q}, \quad (z \in \mathbb{U}).$$

If $\alpha = 0$, then $\mathcal{S}_q^*(\alpha) := \mathcal{S}_q^*$.

The authors in [6] introduced a q-differential operator $\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f(z): \mathcal{A} \to \mathcal{A}$ by

$$\mathsf{D}^{n}_{q,\mu,\delta,\kappa,\lambda}f(z) = z + \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m)\right)^{n} a_{m} z^{m}$$
(3)

where

$$\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) = (\kappa - \lambda)(\delta - \mu)([m]_q - 1) + 1, \quad (\delta,\kappa,\lambda,\mu \ge 0, \kappa > \lambda, \delta > \mu, n \in \mathbb{N}_0).$$

Next, we introduce new subclass of q-starlike of order α with respect to k-symmetric points using the differential operator $\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f$ given as follows:

Definition 6. A function $f \in \mathcal{A}$ is said to in the class $\mathcal{S}_q^{*(k)}(n, \alpha)$, if it satisfies the following inequality

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} - \frac{1-\alpha q}{1-q} \bigg| < \frac{1-\alpha}{1-q}, \quad (z \in \mathbb{U}),$$
(4)

where $0 \leq \alpha < 1$, $n \in \mathbb{N}_0$, k is a fixed positive integer and f_k is defined by the equality

$$f_k(z) = \frac{1}{k} \sum_{\nu=0}^{k-1} \varepsilon^{-\nu} f(\varepsilon^{\nu} z), \qquad (\varepsilon^k = 1).$$
(5)

We observe that the class $\mathcal{S}_q^{*(k)}(n, \alpha)$ satisfies the following relation:

$$\bigcap_{0 < q < 1} \mathcal{S}_q^{*(k)}(n, \alpha) \subset \bigcap_{0 < q < 1} \mathcal{S}_q^*(\alpha) \subset \mathcal{S}^*(\alpha) \subset \mathcal{S}^*.$$

Throughout this paper, we will assuming that $0 \le \alpha < 1$, 0 < q < 1 and $\theta \in [0, 2\pi)$.

2. The main results

First, we need the following lemma of Liu [13].

Lemma 1. Let $-1 \le B_2 \le B_1 < A_1 \le A_2 \le 1$, then we have

$$\frac{1+A_1z}{1+B_1z} \prec \frac{1+A_2z}{1+B_2z}$$

Next, we give some meaningful conclusion about the class $\mathcal{S}_q^{*(k)}(n, \alpha)$.

Theorem 2. If $f \in A$ as in (1). Then $f \in S_q^{*(k)}(n, \alpha)$ if and only if it satisfies the following subordination condition

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} \prec \frac{1 + (1 - \alpha(1+q))z}{1 - qz},\tag{6}$$

where f_k as in (5).

Proof. Suppose that $f \in \mathcal{S}_q^{(k)}(n, \alpha)$, then by Definition 6, we have

$$\left|\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} - \frac{1-\alpha q}{1-q}\right| < \frac{1-\alpha}{1-q}$$

Consider $I(z) = \frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}$, then

$$\left|\frac{1-q}{1-\alpha}I(z) - \frac{1-\alpha q}{1-\alpha}\right| < 1.$$

We can introduce the function $\Phi(z)$ by

$$\Phi(z) = \frac{(1-q)I(z) + \alpha q - 1}{1 - \alpha}, \qquad (z \in \mathbb{U}, \ |\Phi(z)| < 1).$$

Now, define the function $\omega(z)$, by

$$\omega(z) = \frac{\Phi(z) - \Phi(0)}{1 - \Phi(z)\overline{\Phi(0)}} = \frac{I(z) - 1}{1 - \alpha(1 + q) + qI(z)}.$$
(7)

We note that $\omega(0) = 0$, and $|\omega(z)| < 1$ for all $z \in \mathbb{U}$.

From the last equation, we have

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1 + \left(1 - \alpha(1+q)\right)\omega(z)}{1 - q\omega(z)},$$

this implies that

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} \prec \frac{1+\left(1-\alpha(1+q)\right)z}{1-qz}.$$

Conversely, by assuming the equation (6) holds, then there exist a Schwarz function $\omega(z)$, such that

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1 + (1 - \alpha(1+q))\omega(z)}{1 - q\omega(z)}.$$

It is equivalent to

$$\begin{aligned} \left| \frac{z\partial_q (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f_k)(z)} - \frac{1 - \alpha q}{1 - q} \right| &= \left| \frac{1 + (1 - \alpha(1 + q))\omega(z)}{1 - q\omega(z)} - \frac{1 - \alpha q}{1 - q} \right| \\ &= \frac{1 - \alpha}{1 - q} \left| \frac{\omega(z) - q}{1 - q\omega(z)} \right| \\ &\leq \frac{1 - \alpha}{1 - q}, \end{aligned}$$

hence $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$ and the proof is complete.

Theorem 3. Let $0 \le \alpha_1 \le \alpha_2 < 1$, then we have $\mathcal{S}_q^{(k)}(n, \alpha_2) \subset \mathcal{S}_q^{(k)}(n, \alpha_1)$. *Proof.* Suppose that $f \in \mathcal{S}_q^{(k)}(n, \alpha_2)$, by Theorem 2, we have

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1 + \left(1 - \alpha_2(1+q)\right)\omega(z)}{1 - q\omega(z)}$$

Since $\alpha_1 \leq \alpha_2$, this leads to $1 - \alpha_2(1+q) \leq 1 - \alpha_2(1+q)$ and

$$\frac{1 + \left(1 - \alpha_2(1+q)\right)\omega(z)}{1 - q\omega(z)} < \frac{1 + \left(1 - \alpha_1(1+q)\right)\omega(z)}{1 - q\omega(z)}.$$

By Lemma 1, we have

$$\frac{1+\left(1-\alpha_2(1+q)\right)z}{1-q\omega(z)} \prec \frac{1+\left(1-\alpha_1(1+q)\right)\omega(z)}{1-q\omega(z)},$$

this means that $\mathcal{S}_q^{*(k)}(n, \alpha_2) \subset \mathcal{S}_q^{*(k)}(n, \alpha_1)$ and hence the proof is complete.

Theorem 4. Let $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$, then $\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f_k \in \mathcal{S}_q^*(\alpha)$.

Proof. Since $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$, then by Definition 6, we have

$$\left|\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} - \frac{1-\alpha q}{1-q}\right| < \frac{1-\alpha}{1-q}$$

Then substituting z by $\varepsilon^{\gamma} z$ where $\gamma = 0, 1, ..., k - 1$, in the last inequality, we have

$$\left|\frac{\varepsilon^{\gamma} z \partial_q (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f)(\varepsilon^{\gamma} z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f_k)(\varepsilon^{\gamma} z)} - \frac{1 - \alpha q}{1 - q}\right| < \frac{1 - \alpha}{1 - q}, \quad (\gamma = 0, 1, 2, ..., k - 1).$$
(8)

According to the definition of f_k and $\varepsilon^k = 1$, we have $f_k(\varepsilon^{\gamma} z) = \varepsilon^{\gamma} f_k(z)$ and summing the last equation for $\gamma = 0, 1, 2, ..., k - 1$, we can get

$$\Big|\frac{1}{k}\sum_{\gamma=0}^{k-1}\frac{\varepsilon^{\gamma}z\partial_{q}(\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f)(\varepsilon^{\gamma}z)}{\varepsilon^{\gamma}(\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f_{k})(z)}-\frac{1-\alpha q}{1-q}\Big|<\frac{1-\alpha}{1-q}\Big|$$

Note that

$$\frac{1}{k}\sum_{\gamma=0}^{k-1}\frac{\varepsilon^{\gamma}z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(\varepsilon^{\gamma}z)}{\varepsilon^{\gamma}(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}=\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(\varepsilon^{\gamma}z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}$$

therefore,

$$\Big|\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}-\frac{1-\alpha q}{1-q}\Big|<\frac{1-\alpha}{1-q},$$

hence $f \in \mathcal{S}_q^*(\alpha)$.

Theorem 5. Let f be defined as in (1). If for $0 \le \alpha < 1$, and

$$\sum_{m=2}^{\infty} (\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(mk+1))^n ([mk+1]_q - \alpha) |a_{mk+1}|$$

+
$$\sum_{\substack{m=2\\m \neq lk+1}}^{\infty} [m]_q (\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m))^n |a_m| \le (1-\alpha)$$
(9)

then $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$.

Proof. Suppose that f and $f_k(z)$ is defined by (1) and (5), respectively. For $z \in \mathbb{U}$, we have

$$M = \left| (1-q)z\partial_q (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z) - (1-\alpha q)(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z) \right| - (1-\alpha) \left| (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z) \right|$$

$$\begin{split} M &= \left| (1-q)z\partial_q (\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f)(z) - (1-\alpha q)(\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f_k)(z) \right| - (1-\alpha) \left| (\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f_k)(z) \right| \\ &\leq q(1-\alpha)r + \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m \Big\{ (1-q)[m]_q - (1-\alpha q)c_m \Big\} r^m \\ &- (1-\alpha)r + (1-\alpha) \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m c_m r^m \\ &< -(1-q)(1-\alpha)r + \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m \Big\{ (1-q)[m]_q - (1-\alpha q)c_m \Big\} r^m \\ &+ (1-\alpha) \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m c_m r^m \\ &< \Big\{ \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m (1-q)[m]_q - \alpha (1-q)c_m - (1-q)(1-\alpha) \Big\} r \end{split}$$

therefore,

$$M < (1-q) \left[\sum_{m=2}^{\infty} \left(\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n \left([m]_q - \alpha c_m \right) |a_m| - (1-\alpha) \right].$$
(10)

From definition of c_m , we know that

$$c_m = \sum_{\nu=0}^{k-1} \varepsilon^{(m-1)\nu} = \begin{cases} 1 & , ifm = lk+1 \\ & & \\ o & , ifm \neq lk+1 \end{cases} \quad (k,l \ge 1, m \ge 2).$$
(11)

Substituting (11) into (10), we have

$$M < (1-q) \bigg[\sum_{m=2}^{\infty} (\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(mk+1))^n ([mk+1]_q - \alpha) |a_{mk+1}|$$
$$+ \sum_{\substack{m=2\\m \neq lk+1}}^{\infty} [m]_q (\boldsymbol{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m))^n |a_m| - (1-\alpha) \bigg].$$

From inequality (5), we know that M < 0, then the proof is complete.

Theorem 6. The function f of the form (1) is in the class $S_q^{*(k)}(n, \alpha)$ if and only if

$$\frac{e^{i\theta}(e^{-i\theta}-q)}{z} \left[\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f(z) * \left(\frac{z-N(1-z)(1-qz)h(z)}{(1-z)(1-qz)} \right) \right] \neq 0,$$
(12)
for all $N = \frac{(e^{-i\theta} + [1-\alpha(1+q)])}{e^{-i\theta} - q}, \quad 0 \le \theta \le 2\pi, \ z \in \mathbb{U}$.

Proof. Let $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$ of the form (1), then it satisfies the equality (6), i.e

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} \prec \frac{1 + (1 - \alpha(1 + q))z}{1 - qz}.$$

Since $\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}$ is analytic in \mathbb{U} , this means $(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z) \neq 0, z \in \mathbb{U}^*$, i.e $\frac{1}{z}(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z) \neq 0, z \in \mathbb{U}$, according to (6), then by definition of subordination, there exist a Schwarz function $\omega(z)$ with $|\omega(z)| < 1$ and $\omega(0) = 0$ such that

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1 + \left(1 - \alpha(1+q)\right)\omega(z)}{1 - q\omega(z)}, \quad z \in \mathbb{U}$$

which is equivalent to

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} \neq \frac{1 + \left(1 - \alpha(1+q)\right)e^{i\theta}}{1 - qe^{i\theta}}, \quad (z \in \mathbb{U}; 0 \le \theta \le 2\pi),$$
(13)

or

$$\frac{1}{z} \left[\left(1 - qe^{i\theta} \right) z \partial_q (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f)(z) - \left(1 + [1 - \alpha(1+q)]e^{i\theta} \right) (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f_k)(z) \right] \neq 0,$$

$$(z \in \mathbb{U}; 0 \le \theta \le 2\pi). \tag{14}$$

And from the definition of $f_k(z)$, we know

$$f_k(z) = z + \sum_{m=2}^{\infty} a_m c_m z^m = (f * h)(z),$$
$$\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f_k(z) = z + \sum_{m=2}^{\infty} \left(\mathbf{\Delta}_{[\kappa,\lambda,\delta,\mu;q]}(m) \right)^n a_m c_m z^m = (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f * h)(z) \qquad (15)$$
where $h(z) = z + \sum_{m=2}^{\infty} c_m z^m$, for

$$c_m = \begin{cases} 1 & if \ m = lk+1, \\ o & if \ m \neq lk+1. \end{cases}$$

And also

$$f(z) = f(z) * \frac{z}{1-z}$$
 and $z\partial_q f(z) = f(z) * \frac{z}{(1-z)(1-qz)}$

this implies

$$\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f(z) = \mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f(z) * \frac{z}{1-z}$$
(16)

$$z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f(z)) = \mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f(z) * \frac{z}{(1-z)(1-qz)}.$$
(17)

Now, substitute (16) and (17) into (15), we have

$$\frac{1}{z} \left[\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f(z) * \left(\frac{(1-qe^{i\theta})z}{(1-z)(1-qz)} - (1+[1-\alpha(1+q)]e^{i\theta})h(z) \right) \right] \neq 0,$$

$$\frac{e^{i\theta}(e^{-i\theta}-q)}{z} \bigg[\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f(z) * \left(\frac{z}{(1-z)(1-qz)} - \frac{(e^{-i\theta} + [1-\alpha(1+q)])h(z)}{e^{-i\theta} - q} \right) \bigg] \neq 0$$

which lead to (12), which proves the 'if' part.

Conversely, because the assumption (12) holds for all N, it follows that $\frac{1}{z} \cdot D^n_{q,\mu,\delta,\kappa,\lambda} f(z) \neq 0$, hence the function $I(z) = \frac{z\partial_q(D^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(D^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}$ is analytic in U, and we shown in 'if' part that the assumption (13) is equivalent to

$$I(z) \neq \frac{1 + \left(1 - \alpha(1+q)\right)e^{i\theta}}{1 - qe^{i\theta}} \qquad (z \in \mathbb{U}; 0 \le \theta \le 2\pi).$$
(18)

If we denote by

$$\Gamma(z) = \frac{1 + \left(1 - \alpha(1+q)\right)z}{1 - qz} \qquad (z \in \mathbb{U}),$$

,

the relation (18) shows that $I(\mathbb{U}) \cap \Gamma(\mathbb{U}) = \phi$. Thus, the simply-connected domain $I(\mathbb{U})$ is included in $\mathbb{C}\setminus\Gamma(\partial\mathbb{U})$. Since $\Gamma(z)$ is univalent and $I(0)=\Gamma(0)$, then $I(z)\prec$ $\Gamma(z)$ which represent the relation (6), hence $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$.

3. The q-Integral Representation

In this section, we give the q-integral representation of functions f for the class $\mathcal{S}_q^{*(k)}(n,\alpha).$

Theorem 7. Let $f \in S_q^{*(k)}(n, \alpha)$, then we have

$$\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f_{k} = z.\exp\left\{\frac{\log q}{(q-1)k}\sum_{\gamma=0}^{k-1}\int_{0}^{\varepsilon^{\gamma}z}\frac{1+\left(1-\alpha(1+q)\right)\omega(t)}{t(1-q\omega(t))}d_{q}t\right\}$$

where f_k is defined in (5), $\omega(z)$ is analytic with $\omega(0) = 0$, $|\omega(z)| < 1$.

Proof. Let $f \in \mathcal{S}_q^{*(k)}(n, \alpha)$, then by Theorem 1, we have

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1 + \left(1 - \alpha(1+q)\right)\omega(z)}{1 - q\omega(z)},$$

where $\omega(z)$ is analytic with $\omega(0) = 0$ and $|\omega(z)| < 1$, substituting z by $\varepsilon^{\gamma} z$ ($\gamma =$ $0, 1, \dots, k - 1$)

$$\frac{\varepsilon^{\gamma} z \partial_q (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f)(\varepsilon^{\gamma} z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda} f_k)(\varepsilon^{\gamma} z)} = \frac{1 + \left(1 - \alpha(1+q)\right) \omega(\varepsilon^{\gamma} z)}{1 - q \omega(\varepsilon^{\gamma} z)},$$

we know that $f_k(\varepsilon^{\gamma} z) = \varepsilon^{\gamma} f_k(z)$, and summing for $\gamma = 0, 1, ..., k - 1$

$$\frac{z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} = \frac{1}{k}\sum_{\gamma=0}^{k-1}\frac{1+\left(1-\alpha(1+q)\right)\omega(\varepsilon^{\gamma}z)}{1-q\omega(\varepsilon^{\gamma}z)}.$$
(19)

From the last equality we have

$$\frac{\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)}{(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z)} - \frac{1}{z} = \frac{1}{k} \sum_{\gamma=0}^{k-1} \frac{1 + \left(1 - \alpha(1+q)\right)\omega(\varepsilon^{\gamma}z)}{z(1 - q\omega(\varepsilon^{\gamma}z))}.$$

Apply Jackson's q-integral, we have

$$\begin{split} &\frac{q-1}{\log q}\log\Big\{\frac{\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f_{k}}{z}\Big\} = \frac{1}{k}\sum_{\gamma=0}^{k-1}\int_{0}^{z}\frac{1+\Big(1-\alpha(1+q)\Big)\omega(\varepsilon^{\gamma}\zeta)}{\zeta(1-q\omega(\varepsilon^{\gamma}\zeta))}d_{q}\zeta,\\ &\log\Big\{\frac{\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f_{k}}{z}\Big\} = \frac{\log q}{(q-1)k}\sum_{\gamma=0}^{k-1}\int_{0}^{\varepsilon^{\gamma}z}\frac{1+\Big(1-\alpha(1+q)\Big)\omega(t)}{t(1-q\omega(t))}d_{q}t,\\ &\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^{n}f_{k} = z.exp\bigg\{\frac{\log q}{(q-1)k}\sum_{\gamma=0}^{k-1}\int_{0}^{\varepsilon^{\gamma}z}\frac{1+\Big(1-\alpha(1+q)\Big)\omega(t)}{t(1-q\omega(t))}d_{q}t\bigg\}. \end{split}$$

Theorem 8. Let $f \in S_q^{*(k)}(n, \alpha)$, then we have

$$D_{q,\mu,\delta,\kappa,\lambda}^{n}f(z) = \int_{0}^{z} exp\left\{\frac{\log q}{(q-1)k}\sum_{\gamma=0}^{k-1}\int_{0}^{\varepsilon^{\gamma}z}\frac{1+\left(1-\alpha(1+q)\right)\omega(t)}{t(1-q\omega(t))}d_{q}t\right\}$$
$$\times \frac{1+\left(1-\alpha(1+q)\right)\omega(\zeta)}{1-q\omega(\zeta)}d_{q}\zeta,$$
(20)

where f_k is defined in (5), $\omega(z)$ is analytic with $\omega(0) = 0$, $|\omega(z)| < 1$.

Proof. From Theorem 2, we have

$$z\partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z) = (\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f_k)(z).\frac{1 + \left(1 - \alpha(1+q)\right)\omega(z)}{1 - q\omega(z)},$$

$$\begin{split} \partial_q(\mathsf{D}^n_{q,\mu,\delta,\kappa,\lambda}f)(z) &= \exp\bigg\{\frac{\log q}{(q-1)k}\sum_{\gamma=0}^{k-1}\int_0^{\varepsilon^{\gamma}z}\frac{1+\Big(1-\alpha(1+q)\Big)\omega(t)}{t(1-q\omega(t))}d_qt\bigg\}\\ &\times\frac{1+\Big(1-\alpha(1+q)\Big)\omega(z)}{1-q\omega(z)}. \end{split}$$

Apply q-Jackson's integral of both sides to get

$$\begin{split} (\mathsf{D}_{q,\mu,\delta,\kappa,\lambda}^n f)(z) &= \int_0^z exp \bigg\{ \frac{\log q}{(q-1)k} \sum_{\gamma=0}^{k-1} \int_0^{\varepsilon^{\gamma} z} \frac{1 + \Big(1 - \alpha(1+q)\Big)\omega(t)}{t(1 - q\omega(t))} d_q t \bigg\} \\ &\qquad \times \frac{1 + \Big(1 - \alpha(1+q)\Big)\omega(\zeta)}{1 - q\omega(\zeta)} d_q \zeta. \end{split}$$

Acknowledgements. The work presented here was partially supported by UKM grant:GUP-2019-032.

References

[1] S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order alpha, Hokkaido Mathematical Journal 46, 1 (2017), 15-27.

 B. Ahmad, M. Farooq, R. Khan, On A Subclass of Analytic Close-to-Convex Functions in q-Analogue Associated with Janowski Functions, J. Classical Anal. 13, 1 (2018), 83-93.

[3] O. P. Ahuja, A. Çetinkaya, Y. Polatoglu, Bieberbach-de Branges and Fekete-Szegö inequalities for certain families of q-convex and q-close-to-convex functions, J. of Computational Analysis and Applications 26,1 (2019).

[4] H. Aldweby, M. Darus, *Coefficient estimates of classes of q-starlike and q-convex functions*, Advanced Studies in Contemporary Mathematics 26, 1 (2016), 21-26.

[5] S. Elhaddad, M. Darus, H. Aldweby, On certain subclasses of analytic functions involving differential operator, Jñānābha 48 (2018), 53-62.

[6] A. Alsoboh, M. Darus, New Subclass of Analytic Functions Defined by q-Differential Operator with Respect to k-Symmetric Points, International Journal of Mathematics and Computer Science 14, 3 (2019). 761-773. A. Alsoboh and M. Darus – On q-Starlike Functions with Respect to...

[7] A. Alsoboh and M. Darus, On Fekete-Szegö Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator, Journal of function space 2019 (2019), Article ID: 8459405, 8 pages.

[8] A. Alsoboh, M. Darus, On Fekete-Szego problem associated with q-derivative operator, J. Phys.: Conf. Ser. 1212, 2019 (2019), 012003.

[9] M. E. H. Ismail, E.Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal 14,(1-4) 1990, 77-84.

[10] F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 46,2 (1909), 253-281.

[11] F. H. Jackson, On q-difference integrals, Quart. J. Pure Appl. Math. 41, (1910), 193-203.

[12] O. Kwon, Y. Sim, A Certain Subclass of Janowski Type Functions associated with k-Symmetric Points, Communications of the Korean Mathematical Society 28, 1 (2013), 143-154.

[13] M. S. Liu, On a class of p-valent close-to-convex functions of order β and type α , J. Math. Study 30, 1 (1997), 102-104.

[14] S. S. Miller and P. T. Mocanu, *Differential subordinations: theory and applications*, CRC Press. 2000.

[15] A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Matematički vesnik 65, 4 (2014), 454-465.

[16] K. I. Noor, S. Riaz, *Generalized q-starlike functions*, Studia Scientiarum Mathematicarum Hungarica 54, 4 (2017), 509-522.

[17] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10, 1 (2016), 135-145.

Abdullah Alsoboh

Department of Mathematical Sciences, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia,

Bangi, Selangor, Malaysia

email: p92712@siswa.edu.ukm.my

Maslina Darus (Corresponding author) Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia email: maslina@ukm.edu.my