# ON $Q$-STARLIKE FUNCTIONS WITH RESPECT TO $K$-SYMMETRIC POINTS 

A. Alsoboh and M. Darus

Abstract. In this paper, we define new subclass of analytic functions, the socalled $q$-starlike functions of order $\alpha$ with respect to $k$-symmetric points. We explore some inclusion properties and find some sufficient condition for this class. Finally, we obtain the integral representation for functions belonging to this class.

## 2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic function, Univalent function, $q$-Starlike function, $k$-Symmetric points, $q$-calculus.

## 1. Introduction

We begin by letting $\mathcal{H}$ the class of analytic functions in the open unit disc of the complex plane $\mathbb{U}=\{z \in \mathbb{C},|z|<1\}$, and $\mathcal{A}$ be the subclass of $\mathcal{H}$ containing all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{m=2}^{\infty} a_{m} z^{m} \quad z \in \mathbb{U} \tag{1}
\end{equation*}
$$

which satisfying the condition of normalization; $f^{\prime}(0)=f(0)+1=1$. Let $\mathcal{S}$ denotes the subclass of $\mathcal{A}$ containing of all functions that are univalent in $\mathbb{U}$. For any two analytic functions $f(z)$ and $g(z)$ in $\mathbb{U}$, we say that $f(z)$ is subordinate to $g(z)$, denoted by $f(z) \prec g(z)$, if there exist a Schwarz function $\omega(z)$ with $\omega(0)=0,|\omega(z)| \leq 1$ such that $f(z)=g(\omega(z))$ for all $z \in \mathbb{U}[14]$.

The convolution of $f(z)$ as in (1) and $\beta(z)=z+\sum_{m=2}^{\infty} \phi_{m} z^{m}$ is defined by

$$
(f * \beta)(z)=(\beta * f)(z)=z+\sum_{m=2}^{\infty} a_{m} \phi_{m} z^{m} .
$$

The geometric properties of analytic functions played an important role in geometric function theory, such as convexity and starlikeness, these subclasses denoted by $\mathcal{C}$
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...
and $\mathcal{S}^{*}$, respectively.
More generally, for $0 \leq \alpha \leq 1$, let $\mathcal{S}^{*}(\alpha)$ and $\mathcal{C}(\alpha)$ be the subclasses of starlike of order $\alpha$ and convex of order $\alpha$, respectively, defined analytically by

$$
\begin{aligned}
\mathcal{S}^{*}(\alpha) & =\left\{f: f \in \mathcal{A}, \text { and } \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, z \in \mathbb{U}\right\} \\
\mathcal{C}(\alpha) & =\left\{f: f \in \mathcal{A}, \text { and } \operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, z \in \mathbb{U}\right\} .
\end{aligned}
$$

The application of $q$-calculus is very important in the theory of analytic functions. Jackson was $1^{\text {st }}$ developed $q$-calculus in a systematic way (for more details, see $[10,11])$. There are several application of $q$-calculus on subclasses of analytic functions, especially subclasses of univalent functions in $\mathbb{U}$ like stalike and convex (for more details, see $[1,2,3,4,7,5,16,17]$ ) that depends on replacing the usual derivative by $q$-derivative. Ismail et al. [9] introduced a general $q$-starlike function with replacing the right half plane by appropriate domains, Agrawal and Sahoo in [1] extend this idea to introduce the class of $q$-starlike functions of order $\alpha$. Later on, Aldweby and Darus [4] introduced two subclasses of bounded $q$-starlike and $q$ convex functions. Some other application of $q$-calculus are studied by Alsoboh and Darus $[6,7,8]$ and Mohammed and Darus [15].

Now, we give some basic concepts and definitions of the applications of $q$-calculus assuming that $0<q<1$, by:

Definition 1. [10] For $0<q<1$, the $q$-numbers $[m]_{q}$ is given by:

$$
[m]_{q}=\left\{\begin{array}{cl}
\frac{1-q^{n}}{1-q} & , n \in \mathbb{C} \\
1+q+q^{2}+\ldots+q^{n-1} & , n \in \mathbb{N}
\end{array},\right.
$$

and $\lim _{q \rightarrow 1^{-}}[m]_{q}=m$.

Definition 2. [10] The Jackson $q$-derivative of a function $f$ is given by:

$$
\partial_{q} f(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{z-q z} & (z \in \mathbb{C} \backslash\{0\}), \\
f^{\prime}(0) & (z=0)
\end{array}\right.
$$

where $\lim _{q \rightarrow 1} \partial_{q} f(z)=f^{\prime}(z)$.
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...

Definition 3. [11] The Jackson's $q$-integral of a function $f$ is given by:

$$
\int_{0}^{z} f(t) d_{q} t=(1-q) z \sum_{n=0}^{\infty} q^{n} f\left(q^{n} z\right) .
$$

In case of $f(z)=z^{m}, m \in \mathbb{N}$, we have

$$
\begin{gathered}
\partial_{q}\left(z^{m}\right)=[m]_{q} z^{m-1} \\
\int_{0}^{z} t^{c-1} d_{q} t=(1-q) z \sum_{n=0}^{\infty}\left(z q^{n}\right)^{c-1} q^{n}=\frac{z^{c}}{[c]_{q}} .
\end{gathered}
$$

Ismail and et al. in [9] introduced the class of $q$-starlike functions and the definition of class $\mathcal{S}_{q}^{*}$ is given as follows:
Definition 4. A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_{q}^{*}$, if

$$
\begin{equation*}
\left|\frac{z\left(\partial_{q} f\right)(z)}{f(z)}-\frac{1}{1-q}\right|<\frac{1}{1-q} \quad(z \in \mathbb{U}) \tag{2}
\end{equation*}
$$

If $q \rightarrow 1^{-}$then $\mathcal{S}_{q}^{*}$ reduced to $\mathcal{S}^{*}$.
Later, Agrawal and Sahoo in [1] defined and investigated the subclass of generalized $q$-starlike functions of order $\alpha$. The definition is as follows:

Definition 5. A function $f \in \mathcal{A}$ is said to belong to the class $\mathcal{S}_{q}^{*}(\alpha), 0 \leq \alpha<1$, if

$$
\left|\frac{\frac{z\left(\partial_{q} f\right)(z)}{f(z)}-\alpha}{1-\alpha}-\frac{1}{1-q}\right|<\frac{1}{1-q}, \quad(z \in \mathbb{U}) .
$$

If $\alpha=0$, then $\mathcal{S}_{q}^{*}(\alpha):=\mathcal{S}_{q}^{*}$.
The authors in [6] introduced a $q$-differential operator $\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z): \mathcal{A} \rightarrow \mathcal{A}$ by

$$
\begin{equation*}
\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z)=z+\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m} z^{m} \tag{3}
\end{equation*}
$$

where
$\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)=(\kappa-\lambda)(\delta-\mu)\left([m]_{q}-1\right)+1, \quad\left(\delta, \kappa, \lambda, \mu \geq 0, \kappa>\lambda, \delta>\mu, n \in \mathbb{N}_{0}\right)$.
Next, we introduce new subclass of $q$-starlike of order $\alpha$ with respect to $k$ symmetric points using the differential operator $\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f$ given as follows:
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...

Definition 6. A function $f \in \mathcal{A}$ is said to in the class $\mathcal{S}_{q}^{*(k)}(n, \alpha)$, if it satisfies the following inequality

$$
\begin{equation*}
\left|\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}, \quad(z \in \mathbb{U}) \tag{4}
\end{equation*}
$$

where $0 \leq \alpha<1, n \in \mathbb{N}_{0}, k$ is a fixed positive integer and $f_{k}$ is defined by the equality

$$
\begin{equation*}
f_{k}(z)=\frac{1}{k} \sum_{v=0}^{k-1} \varepsilon^{-v} f\left(\varepsilon^{v} z\right), \quad\left(\varepsilon^{k}=1\right) \tag{5}
\end{equation*}
$$

We observe that the class $\mathcal{S}_{q}^{*(k)}(n, \alpha)$ satisfies the following relation:

$$
\bigcap_{0<q<1} \mathcal{S}_{q}^{*(k)}(n, \alpha) \subset \bigcap_{0<q<1} \mathcal{S}_{q}^{*}(\alpha) \subset \mathcal{S}^{*}(\alpha) \subset \mathcal{S}^{*}
$$

Throughout this paper, we will assuming that $0 \leq \alpha<1,0<q<1$ and $\theta \in[0,2 \pi)$.

## 2. The main results

First, we need the following lemma of Liu [13].
Lemma 1. Let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$, then we have

$$
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z} .
$$

Next, we give some meaningful conclusion about the class $\mathcal{S}_{q}^{*(k)}(n, \alpha)$.
Theorem 2. If $f \in \mathcal{A}$ as in (1). Then $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$ if and only if it satisfies the following subordination condition

$$
\begin{equation*}
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)} \prec \frac{1+(1-\alpha(1+q)) z}{1-q z}, \tag{6}
\end{equation*}
$$

where $f_{k}$ as in (5).
Proof. Suppose that $f \in \mathcal{S}_{q}^{(k)}(n, \alpha)$, then by Definition 6 , we have

$$
\left|\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}
$$

A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...

Consider $I(z)=\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}$, then

$$
\left|\frac{1-q}{1-\alpha} I(z)-\frac{1-\alpha q}{1-\alpha}\right|<1 .
$$

We can introduce the function $\Phi(z)$ by

$$
\Phi(z)=\frac{(1-q) I(z)+\alpha q-1}{1-\alpha}, \quad(z \in \mathbb{U}, \quad|\Phi(z)|<1)
$$

Now, define the function $\omega(z)$, by

$$
\begin{equation*}
\omega(z)=\frac{\Phi(z)-\Phi(0)}{1-\Phi(z) \overline{\Phi(0)}}=\frac{I(z)-1}{1-\alpha(1+q)+q I(z)} \tag{7}
\end{equation*}
$$

We note that $\omega(0)=0$, and $|\omega(z)|<1$ for all $z \in \mathbb{U}$.
From the last equation, we have

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)}
$$

this implies that

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)} \prec \frac{1+(1-\alpha(1+q)) z}{1-q z} .
$$

Conversely, by assuming the equation (6) holds, then there exist a Schwarz function $\omega(z)$, such that

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)} .
$$

It is equivalent to

$$
\begin{aligned}
\left|\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right| & =\left|\frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)}-\frac{1-\alpha q}{1-q}\right| \\
& =\frac{1-\alpha}{1-q}\left|\frac{\omega(z)-q}{1-q \omega(z)}\right| \\
& \leq \frac{1-\alpha}{1-q}
\end{aligned}
$$

hence $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$ and the proof is complete.
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to. . .

Theorem 3. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1$, then we have $\mathcal{S}_{q}^{(k)}\left(n, \alpha_{2}\right) \subset \mathcal{S}_{q}^{(k)}\left(n, \alpha_{1}\right)$.
Proof. Suppose that $f \in \mathcal{S}_{q}^{(k)}\left(n, \alpha_{2}\right)$, by Theorem 2 , we have

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1+\left(1-\alpha_{2}(1+q)\right) \omega(z)}{1-q \omega(z)}
$$

Since $\alpha_{1} \leq \alpha_{2}$, this leads to $1-\alpha_{2}(1+q) \leq 1-\alpha_{2}(1+q)$ and

$$
\frac{1+\left(1-\alpha_{2}(1+q)\right) \omega(z)}{1-q \omega(z)}<\frac{1+\left(1-\alpha_{1}(1+q)\right) \omega(z)}{1-q \omega(z)}
$$

By Lemma 1, we have

$$
\frac{1+\left(1-\alpha_{2}(1+q)\right) z}{1-q \omega(z)} \prec \frac{1+\left(1-\alpha_{1}(1+q)\right) \omega(z)}{1-q \omega(z)}
$$

this means that $\mathcal{S}_{q}^{*(k)}\left(n, \alpha_{2}\right) \subset \mathcal{S}_{q}^{*(k)}\left(n, \alpha_{1}\right)$ and hence the proof is complete.
Theorem 4. Let $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$, then $\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k} \in \mathcal{S}_{q}^{*}(\alpha)$.
Proof. Since $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$, then by Definition 6 , we have

$$
\left|\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}
$$

Then substituting $z$ by $\varepsilon^{\gamma} z$ where $\gamma=0,1, \ldots, k-1$, in the last inequality, we have

$$
\begin{equation*}
\left|\frac{\varepsilon^{\gamma} z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)\left(\varepsilon^{\gamma} z\right)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)\left(\varepsilon^{\gamma} z\right)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}, \quad(\gamma=0,1,2, \ldots, k-1) \tag{8}
\end{equation*}
$$

According to the definition of $f_{k}$ and $\varepsilon^{k}=1$, we have $f_{k}\left(\varepsilon^{\gamma} z\right)=\varepsilon^{\gamma} f_{k}(z)$ and summing the last equation for $\gamma=0,1,2, \ldots, k-1$, we can get

$$
\left|\frac{1}{k} \sum_{\gamma=0}^{k-1} \frac{\varepsilon^{\gamma} z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)\left(\varepsilon^{\gamma} z\right)}{\varepsilon^{\gamma}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q}
$$

Note that

$$
\frac{1}{k} \sum_{\gamma=0}^{k-1} \frac{\varepsilon^{\gamma} z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)\left(\varepsilon^{\gamma} z\right)}{\varepsilon^{\gamma}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)\left(\varepsilon^{\gamma} z\right)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}
$$

A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...
therefore,

$$
\left|\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1-\alpha q}{1-q}\right|<\frac{1-\alpha}{1-q},
$$

hence $f \in \mathcal{S}_{q}^{*}(\alpha)$.
Theorem 5. Let $f$ be defined as in (1). If for $0 \leq \alpha<1$, and

$$
\begin{align*}
& \sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m k+1)\right)^{n}\left([m k+1]_{q}-\alpha\right)\left|a_{m k+1}\right| \\
& \quad+\sum_{\substack{m=2 \\
m \neq k=1}}^{\infty}[m]_{q}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n}\left|a_{m}\right| \leq(1-\alpha) \tag{9}
\end{align*}
$$

then $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$.
Proof. Suppose that $f$ and $f_{k}(z)$ is defined by (1) and (5), respectively. For $z \in \mathbb{U}$, we have
$M=\left|(1-q) z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)-(1-\alpha q)\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)\right|-(1-\alpha)\left|\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)\right|$

$$
\begin{aligned}
M= & \left|(1-q) z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)-(1-\alpha q)\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)\right|-(1-\alpha)\left|\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)\right| \\
\leq & q(1-\alpha) r+\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m}\left\{(1-q)[m]_{q}-(1-\alpha q) c_{m}\right\} r^{m} \\
& -(1-\alpha) r+(1-\alpha) \sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m} c_{m} r^{m} \\
< & -(1-q)(1-\alpha) r+\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \delta ; q]}(m)\right)^{n} a_{m}\left\{(1-q)[m]_{q}-(1-\alpha q) c_{m}\right\} r^{m} \\
& +(1-\alpha) \sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m} c_{m} r^{m} \\
< & \left\{\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m}(1-q)[m]_{q}-\alpha(1-q) c_{m}-(1-q)(1-\alpha)\right\} r
\end{aligned}
$$

therefore,

$$
\begin{equation*}
M<(1-q)\left[\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n}\left([m]_{q}-\alpha c_{m}\right)\left|a_{m}\right|-(1-\alpha)\right] . \tag{10}
\end{equation*}
$$

A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...

From definition of $c_{m}$, we know that

$$
c_{m}=\sum_{v=0}^{k-1} \varepsilon^{(m-1) v}=\left\{\begin{array}{ll}
1 & , \text { if } m=l k+1  \tag{11}\\
o & , \text { if } m \neq l k+1
\end{array} \quad(k, l \geqslant 1, m \geqslant 2) .\right.
$$

Substituting (11) into (10), we have

$$
\begin{aligned}
M<(1-q) & {\left[\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m k+1)\right)^{n}\left([m k+1]_{q}-\alpha\right)\left|a_{m k+1}\right|\right.} \\
& \left.+\sum_{\substack{m=2 \\
m \neq l k+1}}^{\infty}[m]_{q}\left(\boldsymbol{\Delta}_{[k, \lambda, \delta, \mu ; q]}(m)\right)^{n}\left|a_{m}\right|-(1-\alpha)\right] .
\end{aligned}
$$

From inequality (5), we know that $M<0$, then the proof is complete.
Theorem 6. The function $f$ of the form (1) is in the class $\mathcal{S}_{q}^{*(k)}(n, \alpha)$ if and only if

$$
\begin{equation*}
\frac{e^{i \theta}\left(e^{-i \theta}-q\right)}{z}\left[\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) *\left(\frac{z-N(1-z)(1-q z) h(z)}{(1-z)(1-q z)}\right)\right] \neq 0, \tag{12}
\end{equation*}
$$

for all $N=\frac{\left(e^{-i \theta}+[1-\alpha(1+q)]\right)}{e^{-i \theta}-q}, \quad 0 \leq \theta \leq 2 \pi, \quad z \in \mathbb{U}$.
Proof. Let $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$ of the form (1), then it satisfies the equality (6), i.e

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)} \prec \frac{1+(1-\alpha(1+q)) z}{1-q z} .
$$

Since $\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}$ is analytic in $\mathbb{U}$, this means $\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z) \neq 0, z \in \mathbb{U}^{*}$, i.e $\frac{1}{z}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z) \neq 0, z \in \mathbb{U}$, according to (6), then by definition of subordination, there exist a Schwarz function $\omega(z)$ with $|\omega(z)|<1$ and $\omega(0)=0$ such that

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)}, \quad z \in \mathbb{U}
$$

which is equivalent to

$$
\begin{equation*}
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)} \neq \frac{1+(1-\alpha(1+q)) e^{i \theta}}{1-q e^{i \theta}}, \quad(z \in \mathbb{U} ; 0 \leq \theta \leq 2 \pi), \tag{13}
\end{equation*}
$$

A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...
or

$$
\begin{gather*}
\frac{1}{z}\left[\left(1-q e^{i \theta}\right) z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)-\left(1+[1-\alpha(1+q)] e^{i \theta}\right)\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)\right] \neq 0 \\
(z \in \mathbb{U} ; 0 \leq \theta \leq 2 \pi) \tag{14}
\end{gather*}
$$

And from the definition of $f_{k}(z)$, we know

$$
\begin{gather*}
f_{k}(z)=z+\sum_{m=2}^{\infty} a_{m} c_{m} z^{m}=(f * h)(z), \\
\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}(z)=z+\sum_{m=2}^{\infty}\left(\boldsymbol{\Delta}_{[\kappa, \lambda, \delta, \mu ; q]}(m)\right)^{n} a_{m} c_{m} z^{m}=\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f * h\right)(z) \tag{15}
\end{gather*}
$$

where $h(z)=z+\sum_{m=2}^{\infty} c_{m} z^{m}$, for

$$
c_{m}= \begin{cases}1 & \text { if } m=l k+1 \\ o & \text { if } m \neq l k+1\end{cases}
$$

And also

$$
f(z)=f(z) * \frac{z}{1-z} \quad \text { and } \quad z \partial_{q} f(z)=f(z) * \frac{z}{(1-z)(1-q z)}
$$

this implies

$$
\begin{gather*}
\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z)=\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) * \frac{z}{1-z}  \tag{16}\\
z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z)\right)=\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) * \frac{z}{(1-z)(1-q z)} . \tag{17}
\end{gather*}
$$

Now, substitute (16) and (17) into (15), we have

$$
\begin{gathered}
\frac{1}{z}\left[\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) *\left(\frac{\left(1-q e^{i \theta}\right) z}{(1-z)(1-q z)}-\left(1+[1-\alpha(1+q)] e^{i \theta}\right) h(z)\right)\right] \neq 0, \\
\frac{e^{i \theta}\left(e^{-i \theta}-q\right)}{z}\left[\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) *\left(\frac{z}{(1-z)(1-q z)}-\frac{\left(e^{-i \theta}+[1-\alpha(1+q)]\right) h(z)}{e^{-i \theta}-q}\right)\right] \neq 0
\end{gathered}
$$

which lead to (12), which proves the 'if' part.
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...

Conversely, because the assumption (12) holds for all $N$, it follows that $\frac{1}{z} . \mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z) \neq 0$, hence the function $I(z)=\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}$ is analytic in $\mathbb{U}$, and we shown in 'if' part that the assumption (13) is equivalent to

$$
\begin{equation*}
I(z) \neq \frac{1+(1-\alpha(1+q)) e^{i \theta}}{1-q e^{i \theta}} \quad(z \in \mathbb{U} ; 0 \leq \theta \leq 2 \pi) \tag{18}
\end{equation*}
$$

If we denote by

$$
\Gamma(z)=\frac{1+(1-\alpha(1+q)) z}{1-q z} \quad(z \in \mathbb{U})
$$

the relation (18) shows that $I(\mathbb{U}) \cap \Gamma(\mathbb{U})=\phi$. Thus, the simply-connected domain $I(\mathbb{U})$ is included in $\mathbb{C} \backslash \Gamma(\partial \mathbb{U})$. Since $\Gamma(z)$ is univalent and $I(0)=\Gamma(0)$, then $I(z) \prec$ $\Gamma(z)$ which represent the relation (6), hence $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$.

## 3. The $q$-Integral Representation

In this section, we give the $q$-integral representation of functions $f$ for the class $\mathcal{S}_{q}^{*(k)}(n, \alpha)$.

Theorem 7. Let $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$, then we have

$$
\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}=z \cdot \exp \left\{\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t\right\}
$$

where $f_{k}$ is defined in (5), $\omega(z)$ is analytic with $\omega(0)=0,|\omega(z)|<1$.
Proof. Let $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$, then by Theorem 1 , we have

$$
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)}
$$

where $\omega(z)$ is analytic with $\omega(0)=0$ and $|\omega(z)|<1$, substituting $z$ by $\varepsilon^{\gamma} z(\gamma=$ $0,1, \ldots, k-1$ )

$$
\frac{\varepsilon^{\gamma} z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)\left(\varepsilon^{\gamma} z\right)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)\left(\varepsilon^{\gamma} z\right)}=\frac{1+(1-\alpha(1+q)) \omega\left(\varepsilon^{\gamma} z\right)}{1-q \omega\left(\varepsilon^{\gamma} z\right)}
$$

A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...
we know that $f_{k}\left(\varepsilon^{\gamma} z\right)=\varepsilon^{\gamma} f_{k}(z)$, and summing for $\gamma=0,1, \ldots, k-1$

$$
\begin{equation*}
\frac{z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}=\frac{1}{k} \sum_{\gamma=0}^{k-1} \frac{1+(1-\alpha(1+q)) \omega\left(\varepsilon^{\gamma} z\right)}{1-q \omega\left(\varepsilon^{\gamma} z\right)} . \tag{19}
\end{equation*}
$$

From the last equality we have

$$
\frac{\partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}{\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z)}-\frac{1}{z}=\frac{1}{k} \sum_{\gamma=0}^{k-1} \frac{1+(1-\alpha(1+q)) \omega\left(\varepsilon^{\gamma} z\right)}{z\left(1-q \omega\left(\varepsilon^{\gamma} z\right)\right)} .
$$

Apply Jackson's $q$-integral, we have

$$
\begin{aligned}
& \frac{q-1}{\log q} \log \left\{\frac{\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}}{z}\right\}=\frac{1}{k} \sum_{\gamma=0}^{k-1} \int_{0}^{z} \frac{1+(1-\alpha(1+q)) \omega\left(\varepsilon^{\gamma} \zeta\right)}{\zeta\left(1-q \omega\left(\varepsilon^{\gamma} \zeta\right)\right)} d_{q} \zeta \\
& \log \left\{\frac{\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}}{z}\right\}=\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t \\
& \mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}=z \cdot \exp \left\{\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t\right\} .
\end{aligned}
$$

Theorem 8. Let $f \in \mathcal{S}_{q}^{*(k)}(n, \alpha)$, then we have

$$
\begin{align*}
\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f(z)=\int_{0}^{z} & \exp \left\{\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t\right\} \\
& \times \frac{1+(1-\alpha(1+q)) \omega(\zeta)}{1-q \omega(\zeta)} d_{q} \zeta, \tag{20}
\end{align*}
$$

where $f_{k}$ is defined in (5), $\omega(z)$ is analytic with $\omega(0)=0,|\omega(z)|<1$.
Proof. From Theorem 2, we have

$$
z \partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)=\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f_{k}\right)(z) \cdot \frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)},
$$

$$
\begin{aligned}
\partial_{q}\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)=\exp & \left\{\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t\right\} \\
& \times \frac{1+(1-\alpha(1+q)) \omega(z)}{1-q \omega(z)} .
\end{aligned}
$$

Apply $q$-Jackson's integral of both sides to get

$$
\begin{aligned}
\left(\mathrm{D}_{q, \mu, \delta, \kappa, \lambda}^{n} f\right)(z)=\int_{0}^{z} & \exp \left\{\frac{\log q}{(q-1) k} \sum_{\gamma=0}^{k-1} \int_{0}^{\varepsilon^{\gamma} z} \frac{1+(1-\alpha(1+q)) \omega(t)}{t(1-q \omega(t))} d_{q} t\right\} \\
& \times \frac{1+(1-\alpha(1+q)) \omega(\zeta)}{1-q \omega(\zeta)} d_{q} \zeta .
\end{aligned}
$$

Acknowledgements. The work presented here was partially supported by UKM grant:GUP-2019-032.

## References

[1] S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order alpha, Hokkaido Mathematical Journal 46, 1 (2017), 15-27.
[2] B. Ahmad, M. Farooq, R. Khan, On A Subclass of Analytic Close-to-Convex Functions in $q$-Analogue Associated with Janowski Functions, J. Classical Anal. 13, 1 (2018), 83-93.
[3] O. P. Ahuja, A. Çetinkaya, Y. Polatoglu, Bieberbach-de Branges and FeketeSzegö inequalities for certain families of $q$-convex and $q$-close-to-convex functions, J. of Computational Analysis and Applications 26,1 (2019).
[4] H. Aldweby, M. Darus, Coefficient estimates of classes of $q$-starlike and $q$-convex functions, Advanced Studies in Contemporary Mathematics 26, 1 (2016), 21-26.
[5] S. Elhaddad, M. Darus, H. Aldweby, On certain subclasses of analytic functions involving differential operator, Jñānābha 48 (2018), 53-62.
[6] A. Alsoboh, M. Darus, New Subclass of Analytic Functions Defined by qDifferential Operator with Respect to $k$-Symmetric Points, International Journal of Mathematics and Computer Science 14, 3 (2019). 761-773.
A. Alsoboh and M. Darus - On $q$-Starlike Functions with Respect to...
[7] A. Alsoboh and M. Darus, On Fekete-Szegö Problems for Certain Subclasses of Analytic Functions Defined by Differential Operator Involving q-Ruscheweyh Operator, Journal of function space 2019 (2019), Article ID: 8459405, 8 pages.
[8] A. Alsoboh, M. Darus, On Fekete-Szego problem associated with $q$-derivative operator, J. Phys.: Conf. Ser. 1212, 2019 (2019), 012003.
[9] M. E. H. Ismail, E.Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal 14,(1-4) 1990, 77-84.
[10] F. H. Jackson, On q-functions and a certain difference operator, Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 46,2 (1909), 253-281.
[11] F. H. Jackson, On q-difference integrals, Quart. J. Pure Appl. Math. 41, (1910), 193-203.
[12] O. Kwon, Y. Sim, A Certain Subclass of Janowski Type Functions associated with $k$-Symmetric Points, Communications of the Korean Mathematical Society 28, 1 (2013), 143-154.
[13] M. S. Liu, On a class of p-valent close-to-convex functions of order $\beta$ and type $\alpha$, J. Math. Study 30, 1 (1997), 102-104.
[14] S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, CRC Press. 2000.
[15] A. Mohammed, M. Darus, A generalized operator involving the $q$-hypergeometric function, Matematički vesnik 65, 4 (2014), 454-465.
[16] K. I. Noor, S. Riaz, Generalized $q$-starlike functions, Studia Scientiarum Mathematicarum Hungarica 54, 4 (2017), 509-522.
[17] T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of $q$-starlike and $q$-convex functions of complex order, J. Math. Inequal. 10, 1 (2016), 135-145.

Abdullah Alsoboh
Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
email: p92712@siswa.edu.ukm.my
Maslina Darus (Corresponding author)
Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
Bangi, Selangor, Malaysia
email: maslina@ukm.edu.my

