SOME COMMON FIXED POINT THEOREMS IN CONE B_2 -METRIC SPACES OVER BANACH ALGEBRA

V.H. BADSHAH, PRAKASH BHAGAT AND SATISH SHUKLA

ABSTRACT. In this paper, some common fixed point theorems for generalized (λ, μ) -Reich pairs in a complete cone b_2 -metric spaces over Banach algebra are proved. Our results generalize and extend some well-known results from 2-metric, *b*-metric and cone metric spaces. An example is presented which illustrate the main result of this paper.

2010 Mathematics Subject Classification: 47H10; 54H25

Keywords: Cone b_2 -metric space, Picard sequence, contraction, fixed point.

1. INTRODUCTION AND PRELIMINARIES

The concept of 2-metric space has been investigated by S. Gahler in a series of papers [10, 11, 12]. In 2007, Huang and Zhang [7] introduced the notion of cone metric spaces as a generalization of metric spaces and proved some fixed point results for contractive mappings. In the papers [3, 18, 19, 21] authors proved the equivalency of some notions in cone metric spaces and fixed point results in cone metric spaces; with their ordinary metric versions. Liu and Xu [4] defined the cone metric spaces over Banach algebra and proved some fixed point results for the contractive mappings with vector contractive constants. Liu and Xu [4] showed that the conclusions of the papers [3, 18, 19, 21] are not applicable if the cone metric spaces are taken over Banach algebra. Singh et al. [1] introduced cone 2-metric spaces which unifies both the concepts of cone metric and 2-metric spaces.

On the other hand, Bakhtin [5] and Czerwik [13] introduced *b*-metric spaces as a generalization of metric spaces. Hussain and Shah [9] introduced cone *b*-metric spaces as a generalization of *b*-metric spaces and cone metric spaces. Mustfa et al. [20] unified and generalized the notions of 2-metric spaces and *b*-metric spaces by introducing the notion of b_2 -metric spaces. Recently, Fernandez et al. [6] combined the concepts of b_2 -metric spaces and cone metric spaces and introduced the notion of cone b_2 -metric spaces over Banach algebra. They proved some fixed point theorems in this new setting. In this paper, we improve and generalize the fixed point result of Fernandez et al. [6] and prove some common fixed point results for a pair of mappings called generalized (λ, μ) -Reich pair on cone b_2 -metric spaces over Banach algebra. We also point out the non-feasibility of contractive conditions of Fernandez et al. [6].

We first state some well-known definitions and concepts which will be needed in the sequel.

Let A always be a real Banach algebra with a multiplicative unit e, that is, ex = xe = x for all $x \in A$. An element $x \in A$ is said to be invertible if there is an inverse element $y \in A$ such that xy = yx = e. The inverse of x is denoted by x^{-1} (see [10]).

The following proposition can be found, e.g., in [10].

Proposition 1. Let A be a Banach algebra with the unit e, and $x \in A$. If the spectral radius $\rho(x)$ of x is less than 1, that is,

$$\rho(x) = \lim_{n \to \infty} \|x^n\|^{1/n} = \inf_{n \ge 1} \|x^n\|^{1/n} < 1$$

then e - x is invertible. Actually,

$$(e-x)^{-1} = \sum_{i=0}^{\infty} x^i.$$

A subset P of A is called a cone if:

- (1) P is nonempty closed and $\{\theta, e\} \subset P$;
- (2) $\alpha P + \beta P \subset P$ for all nonnegative real numbers α, β ;
- (3) $P^2 = PP \subset P;$
- $(4) P \cap (-P) = \{\theta\}$

where θ and e are respectively the zero vector and unit of A.

Given a cone $P \subset A$, we define a partial ordering \leq in A with respect to P by $x \leq y$ (or equivalently $y \geq x$) if and only if $y - x \in P$. We shall write $x \prec y$ (or equivalently $y \succ x$) to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ (or equivalently $y \gg x$) will stand for $y - x \in int P$, where int P denotes the interior of P.

The cone is called normal if there exists a number K > 0 such that for all $x, y \in P$

$$x \preceq y \implies ||x|| \le K||y||.$$

The least number K satisfying the above inequality is called the normal constant of P. The cone P is called solid if $\operatorname{int} P \neq \emptyset$.

In the following, we always assume that the cone P is solid cone in Banach algebra A and \leq is partial ordering with respect to P.

Proposition 2 ([15]). Let P be a cone in a Banach algebra A, $a \in P$ and $b, c \in A$ are such that $b \leq c$, then $ab \leq ac$.

Lemma 1 ([2, 14, 22]). Let A be a Banach algebra with a solid cone P. Then:

- (a) If $a \leq \lambda a$ with $a \in P$ and $0 \leq \lambda < 1$, then $a = \theta$.
- (b) If $\theta \leq u \ll c$ for each $\theta \ll c$, then $u = \theta$.
- (c) If $||x_n|| \to 0$ as $n \to \infty$, then for any $\theta \ll c$, there exists $n_0 \in \mathbb{N}$ such that, $x_n \ll c$ for all $n > n_0$.
- (d) If $a, b, c \in P$ such that $a \leq b$ and $b \ll c$, then $a \ll c$.
- (e) If $a, b, c \in P$ such that $a \ll b$ and $b \preceq c$, then $a \ll c$.
- (f) If $a, b, c \in P$ such that $a \ll b$ and $b \ll c$, then $a \ll c$.

Remark 1 ([14]). If $\rho(x) < 1$ then $||x^n|| \to 0$ as $n \to \infty$.

Definition 1 ([8, 23]). Let P be a solid cone in a Banach algebra A. A sequence $\{u_n\} \subset P$ is a c-sequence if for each $c \in A$ with $\theta \ll c$ there exists $n_0 \in \mathbb{N}$ such that $u_n \ll c$ for $n > n_0$.

Proposition 3 ([15]). Let P be a solid cone in a Banach algebra A and let $\{u_n\}$ be a sequence in P. Suppose that $k \in P$ is an arbitrarily given vector and $\{u_n\}$ is a c-sequence in P. Then $\{ku_n\}$ is a c-sequence.

Proposition 4 ([15]). Let A be a Banach algebra with a unit e, P be a cone in A. Then, for any $a, b \in A$, $c \in P$ with $a \leq b$ we have $ac \leq bc$.

Lemma 2 ([15]). Let A be a Banach algebra and let x, y be vectors in A. If x and y commute, then the following hold:

- (i) $\rho(xy) \le \rho(x)\rho(y);$
- (ii) $\rho(x+y) \le \rho(x) + \rho(y);$
- (iii) $|\rho(x) \rho(y)| \le \rho(x y).$

Lemma 3 ([15]). Let A be a Banach algebra and let k be a vector in A. If $0 \le \rho(k) < 1$, then we have

$$\rho\left((e-k)^{-1}\right) \le (1-\rho(k))^{-1}$$

Definition 2 ([1, 16, 17]). Let X be a nonempty set. Suppose the mapping $d: X \times X \times X \to P$ satisfies:

- (1) for every $x, y \in X$ with $x \neq y$ there exists $z \in X$ such that $d(x, y, z) \neq \theta$;
- (2) if at least two of $x, y, z \in X$ are equal, then $d(x, y, z) = \theta$;
- (3) d(x, y, z) = d(p(x, y, z)) for all $x, y, z \in X$, where p(x, y, z) denotes all the permutations of x, y, z;
- (4) $d(x, y, z) \leq d(x, y, w) + d(x, w, z) + d(w, y, z)$ for all $x, y, z, w \in X$.

Then d is called a cone 2-metric on X, and (X,d) is called a cone 2-metric space over Banach algebra A.

Definition 3 ([9]). Let X be a nonempty set and A a real Banach algebra with cone P. A vector-valued function $d: X \times X \to P$ is said to be a cone b-metric function on X with the constant $s \ge 1$ if the following conditions are satisfied:

- 1. $\theta \leq d(x,y)$, for all $x, y \in X$ and $d(x,y) = \theta$ if and only if x = y;
- 2. d(x,y) = d(y,x) for all $x, y \in X$;
- 3. $d(x,z) \leq s[d(x,y) + d(y,z)]$ for all $x, y, z \in X$.

The pair (X, d) is called the cone b-metric space. Observe that if s = 1, then the ordinary triangle inequality in a cone metric space is satisfied, however it does not hold true when s > 1. Thus the class of cone b-metric spaces is effectively larger than that of the ordinary cone metric spaces. A cone b-metric space will be called normal, if the underlying cone P is normal cone.

Definition 4 ([6]). Let X be a nonempty set and $d_b: X \times X \times X \to P$ be a mapping. Suppose, there exists $s \ge 1$ and the following conditions are satisfied:

- (I) for every $x, y \in X$ with $x \neq y$ there exists $z \in X$ such that $d_b(x, y, z) \neq \theta$;
- (II) if at least two of $x, y, z \in X$ are equal, then $d_b(x, y, z) = \theta$;
- (III) $d_b(x, y, z) = d_b(p(x, y, z))$ for all $x, y, z \in X$, where p(x, y, z) denotes all the permutations of x, y, z;

(IV) $d_b(x, y, z) \leq s[d_b(x, y, w) + d_b(x, w, z) + d_b(w, y, z)]$ for all $x, y, z, w \in X$.

Then, the mapping d_b is called a cone b_2 -metric over X and the triplet (X, d_b, s) is called a cone b_2 -metric space on Banach algebra A. If the cone P is normal, then (X, d_b, s) is called a normal cone b_2 -metric space over Banach algebra A.

Example 1. Let $X = \mathbb{R}$ and $A = C^1_{\mathbb{R}}[0,1]$ be the Banach algebra with the norm $||x(t)|| = ||x(t)||_{\infty} + ||x'(t)||_{\infty}$, the point-wise multiplication and the unit e(t) = 1 for all $t \in [0,1]$. Let $P = \{\psi \in C^1_{\mathbb{R}}[0,1] : \psi(t) \ge 0 \text{ for all } t \in [0,1]\}$ be the solid cone in A. Define the mapping $d_b : X \times X \times X \to P$ by

$$d_b(x, y, z) = \min\left\{ (x - y)^2, (y - z)^2, (z - x)^2 \right\} e^t$$

for all $x, y, z \in X$. Then (X, d_b, s) is a cone b_2 -metric space over Banach algebra A with s = 2 for all $t \in [0, 1]$. On the other hand, d_b is not a 2-cone metric space, for example, at points x = 1, y = 5, z = 15, w = 2 we have $d_b(x, y, z) = 16e^t, d_b(x, y, w) = e^t, d_b(x, w, z) = e^t, d_b(w, y, z) = 9e^t$, and so,

$$d_b(x, y, z) \succ d_b(x, y, w) + d_b(x, w, z) + d_b(w, y, z).$$

Example 2. Let $X = \{1, 2, 3, 4\}$ and $A = \mathbb{R}^2$ be the Banach algebra with the norm $||(x_1, x_2)|| = |x_1| + |x_2|$, with the multiplication defined by $(x_1, x_2)(y_1, y_2) = (x_1y_1, x_2y_1 + x_1y_2)$ and the unit e(t) = (1, 0). Let $P = \{(x_1, x_2) : x_1, x_2 \ge 0\}$ be the normal cone in A. Define the mapping $d_b : X \times X \times X \to P$ by

$$d_b(1,2,3) = a(1,1), d_b(1,2,4) = b(1,1), d_b(2,3,4) = c(1,1), d_b(1,3,4) = \lambda(1,1)$$

with symmetry in all variables and with d(x, y, z) = (0, 0) when at least two of the arguments are equal, where a, b, c are nonnegative reals such that a + b + c > 0 and $\lambda = a + b + c + 1$. Then, (X, d_b, s) is a cone b_2 -metric space over Banach algebra A with $s \geq \frac{\lambda}{\lambda - 1}$. On the other hand, d_b is not a 2-cone metric space, for example, at points x = 1, y = 3, z = 4, w = 2 we have $d_b(x, y, z) = \lambda(1, 1), d_b(x, y, w) = a(1, 1), d_b(x, w, z) = b(1, 1), d_b(w, y, z) = c(1, 1), and so,$

$$d_b(x, y, z) \succ d_b(x, y, w) + d_b(x, w, z) + d_b(w, y, z).$$

Definition 5 ([6]). Let (X, d_b, s) be a cone b_2 -metric space over the Banach algebra A. A sequence $\{x_n\}$ in X is called a Cauchy sequence if for every $c \in A$ with $\theta \ll c$ there exists $n_0 \in \mathbb{N}$ such that $d_b(x_n, x_m, a) \ll c$ for all $n, m > n_0$ and $a \in X$.

Definition 6 ([6]). Let (X, d_b, s) be a cone b_2 -metric space over the Banach algebra A. A sequence $\{x_n\}$ in X is called a convergent sequence and converges to $x \in X$ if for every $c \in A$ with $\theta \ll c$ there exists $n_0 \in \mathbb{N}$ such that $d_b(x_n, x, a) \ll c$ for all $n > n_0$ and $a \in X$. We denote this fact by $x_n \to x$ as $n \to \infty$ and x is called the limit of the sequence $\{x_n\}$.

Definition 7 ([6]). Let (X, d_b, s) be a cone b_2 -metric space over the Banach algebra A. Then, (X, d_b, s) is called complete if every Cauchy sequence in X converges to some $x \in X$.

Remark 2. Limit of a convergent sequence in a cone b_2 -metric space over a Banach algebra is unique. Indeed, if $\{x_n\}$ converges to two distinct limits $x, y \in X$, then for every given $c \in A$ with $\theta \ll c$ there exists $n_0 \in \mathbb{N}$ such that $d_b(x_n, x, a) \ll \frac{c}{3s}$, $d_b(x_n, y, a) \ll \frac{c}{3s}$ for all $n > n_0$ and $a \in X$, therefore

$$d_b(x, y, a) \leq s[d_b(x, y, x_n) + d_b(x, x_n, a) + d_b(x_n, y, a)]$$

$$\ll s\left[\frac{c}{3s} + \frac{c}{3s} + \frac{c}{3s}\right]$$

$$= c.$$

The above inequality with Lemma 1 yields $d_b(x, y, a) = \theta$ for all $a \in X$, i.e., x = y. This contradiction proves the result.

The proof of the following remark is similar to the above remark.

Remark 3. Every convergent sequence in a cone b_2 -metric space over a Banach algebra is a Cauchy sequence.

2. Fixed point theorems

In this section, we introduce some new concepts and prove a common fixed point theorem.

Definition 8. Let (X, d_b, s) be a cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a mapping. Then, the mapping T is called a generalized λ -Banach contraction if there exists $\lambda \in P$ such that $\rho(\lambda) < \frac{1}{s}$ and the following condition is satisfied:

$$d_b(Tx, Ty, a) \preceq \lambda d_b(x, y, a) \tag{1}$$

for all $x, y, a \in X$. The mapping T is said to be a generalized λ -Kannan contraction if there exists $\lambda \in P$ such that $\rho(\lambda) < \frac{1}{2s}$ and the following condition is satisfied:

$$d_b(Tx, Ty, a) \preceq \lambda \left[d_b(x, Tx, a) + d_b(y, Ty, a) \right]$$
(2)

for all $x, y, a \in X$.

Definition 9. Let (X, d_b, s) be a cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a mapping. Then, the mapping T is called a generalized (λ, μ) -Reich contraction if there exist $\lambda, \mu \in P$ such that $\rho(\lambda) + 2\rho(\mu) < \frac{1}{s}$ and the following condition is satisfied:

$$d_b(Tx, Ty, a) \leq \lambda d_b(x, y, a) + \mu[d_b(x, Tx, a) + d_b(y, Ty, a)]$$
(3)

for all $x, y, a \in X$.

It is easy to see that the class of generalized (λ, μ) -Reich contractions is a unification and generalization of classes of generalized λ -Banach and generalized μ -Kannan contractions.

Remark 4. In [6], Fernandez et al. used the following condition:

$$d_b(Tx, Ty, a) \leq \kappa d_b(x, y, a) + \lambda d_b(x, Tx, a) + \mu d_b(y, Ty, a)$$
(4)

for all $x, y, a \in X$, where $s\rho(\kappa) + s\rho(\lambda) + \rho(\mu) < 1$ and $s^2 + s\rho(\lambda) < 1$. Observe that, since $s \ge 1$ and $\rho(\lambda) \ge 0$, therefore, the condition $s^2 + s\rho(\lambda) < 1$ is not feasible. Therefore, the fixed point results of Fernandez et al. [6] are not consistent for any given mapping and for any given cone b_2 -metric space.

We define a more general class as follows:

Definition 10. Let (X, d_b, s) be a cone b_2 -metric space over Banach algebra A and $T, S: X \to X$ be two mappings. Then, the pair (T, S) is called a generalized (λ, μ) -Reich pair if there exist $\lambda, \mu \in P$ such that $\rho(\lambda) + 2\rho(\mu) < \frac{1}{s}$ and the following condition is satisfied:

$$d_b(Tx, Sy, a) \leq \lambda d_b(x, y, a) + \mu[d_b(x, Tx, a) + d_b(y, Sy, a)]$$
(5)

for all $x, y, a \in X$.

It is obvious that every generalized (λ, μ) -Reich contraction T is actually a generalized (λ, μ) -Reich pair with S = I.

Next, we discuss the nature and some results about common fixed points of a generalized (λ, μ) -Reich pair in a cone b_2 -metric space over Banach algebra.

Proposition 5. Let (X, d_b, s) be a cone b_2 -metric space over Banach algebra A and $T, S: X \to X$ be two mappings such that the pair (T, S) is a generalized (λ, μ) -Reich pair. If $x^* \in X$ is a fixed point of T (or of S), then x^* is a unique common fixed point of the pair (T, S).

Proof. Suppose, x^* is a fixed point of T, i.e., $Tx^* = x^*$. Since the pair (T, S) is a generalized (λ, μ) -Reich pair we have

$$d_b(x^*, Sx^*, a) = d_b(Tx^*, Sx^*, a)$$

$$\preceq \lambda d_b(x^*, x^*, a) + \mu[d_b(x^*, Tx^*, a) + d_b(x^*, Sx^*, a)]$$

$$= \lambda \cdot \theta + \mu[\theta + d_b(x^*, Sx^*, a)]$$

i.e., $(e - \mu)d_b(x^*, Sx^*, a) \leq \theta$. Since $\rho(\mu) < 1$, we have $e - \mu \in P$ is invertible, and so, the last inequality yields $d_b(x^*, Sx^*, a) = \theta$ for all $a \in X$. Therefore, $Sx^* = x^*$. Thus, x^* is a common fixed point of the pair (T, S).

For uniqueness, suppose x^*, y^* are two distinct common fixed points of the pair (T, S), i.e., $Tx^* = Sx^* = x^*, Ty^* = Sy^* = y^*$ and $x^* \neq y^*$. Then, we have

$$d_b(x^*, y^*, a) = d_b(Tx^*, Sy^*, a)$$

$$\preceq \lambda d_b(x^*, y^*, a) + \mu[d_b(x^*, Tx^*, a) + d_b(y^*, Sy^*, a)]$$

$$= \lambda d_b(x^*, y^*, a) + \mu[\theta + \theta]$$

i.e., $(e - \lambda)d_b(x^*, y^*, a) \leq \theta$. Again, it shows that $d_b(x^*, y^*, a) = \theta$ for all $a \in X$, i.e., $x^* = y^*$. This contradiction proves the uniqueness.

If x^* is a fixed point of the mapping S. Then by similar process one can find the desired result.

Remark 5. It is clear from the above remark that if (T, S) is a generalized (λ, μ) -Reich pair, then T cannot have more than one fixed point; and similar is true for the mapping S.

The following lemmas will be used in establishing the common fixed point results for a generalized (λ, μ) -Reich pair.

Lemma 4. Let (X, d_b, s) be a cone b_2 -metric space over Banach algebra A and $T, S: X \to X$ be two mappings such that the pair (T, S) is a generalized (λ, μ) -Reich pair and λ, μ commute. If the sequence $\{x_n\} \subset X$ is defined by $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}, n \ge 0$ and $x_0 \in X$ is arbitrary, then there exists $\alpha \in P$ such that $\rho(\alpha) < \frac{1}{s}$ and

 $d_b(x_n, x_{n+1}, a) \preceq \alpha^n d_b(x_0, x_1, a)$ for all $a \in X$.

Furthermore, for the sequence $\{x_n\}$ with initial value $x_0 \in X$, we have

$$d_b(x_k, x_{k-1}, x_t) = \theta$$
 for all $k > t$.

Proof. Let $x_0 \in X$ be arbitrary point. Then since the pair (T, S) is a generalized (λ, μ) -Reich pair we obtain:

$$\begin{aligned} &d_b(x_{2n+1}, x_{2n+2}, a) \\ &= d_b(Tx_{2n}, Sx_{2n+1}, a) \\ &\preceq \lambda d_b(x_{2n}, x_{2n+1}, a) + \mu[d_b(x_{2n}, Tx_{2n}, a) + d_b(x_{2n+1}, Sx_{2n+1}, a)] \\ &= \lambda d_b(x_{2n}, x_{2n+1}, a) + \mu[d_b(x_{2n}, x_{2n+1}, a) + d_b(x_{2n+1}, x_{2n+2}, a)]. \end{aligned}$$

The above inequality shows that

$$(e-\mu)d_b(x_{2n+1}, x_{2n+2}, a) \preceq (\lambda + \mu)d_b(x_{2n}, x_{2n+1}, a).$$

Since $\rho(\mu) < 1$, therefore the vector $e - \mu$ is invertible, and so, we have

$$d_b(x_{2n+1}, x_{2n+2}, a) \preceq (\lambda + \mu)(e - \mu)^{-1} d_b(x_{2n}, x_{2n+1}, a).$$

Set $\alpha = (\lambda + \mu)(e - \mu)^{-1}$ in the above inequality we have

$$d_b(x_{2n+1}, x_{2n+2}, a) \preceq \alpha d_b(x_{2n}, x_{2n+1}, a).$$
(6)

Following similar process as the above and using the above inequality we obtain:

$$d_b(x_{2n+2}, x_{2n+3}, a) = d_b(Sx_{2n+1}, Tx_{2n+2}, a)$$

$$\preceq \alpha d_b(x_{2n+1}, x_{2n+2}, a)$$

$$\preceq \alpha^2 d_b(x_{2n}, x_{2n+1}, a).$$
(7)

Successive use of the inequalities (6) and (7) yields:

$$d_b(x_{2n+1}, x_{2n+2}, a) \preceq \alpha^{2n+1} d_b(x_0, x_1, a).$$
(8)

Similarly, we can prove:

$$d_b(x_{2n+2}, x_{2n+3}, a) \preceq \alpha^{2n+2} d_b(x_0, x_1, a).$$
(9)

It follows from the inequalities (8) and (9) that

$$d_b(x_n, x_{n+1}, a) \preceq \alpha^n d_b(x_0, x_1, a) \text{ for all } a \in X.$$
(10)

We shall show that $\rho(\alpha) < 1$. Since λ, μ commute we have:

$$\begin{aligned} (\lambda+\mu)(e-\mu)^{-1} &= (\lambda+\mu)\left[\sum_{i=0}^{\infty}\mu^{i}\right] &= \sum_{i=0}^{\infty}(\lambda+\mu)\mu^{i} \\ &= \left[\sum_{i=0}^{\infty}\mu^{i}\right](\lambda+\mu) = (e-\mu)^{-1}(\lambda+\mu). \end{aligned}$$

Therefore, $\lambda + \mu$ and $(e - \mu)^{-1}$ commute. Now using Lemma 2 and Lemma 3 and the fact that $\rho(\lambda) + 2\rho(\mu) < \frac{1}{s} < 1$ we obtain

$$\begin{split} \rho(\alpha) &= \rho\left((\lambda+\mu)(e-\mu)^{-1}\right) \\ &\leq \rho\left(\lambda+\mu\right)\rho\left((e-\mu)^{-1}\right) \\ &\leq \left(\rho(\lambda)+\rho(\mu)\right)\left(1-\rho(\mu)\right)^{-1} \\ &\leq \left(\frac{1}{s}-\rho(\mu)\right)\left(1-\rho(\mu)\right)^{-1} \\ &< \frac{1}{s}. \end{split}$$

If $\{x_n\}$ is the sequence defined as above and k > t. We construct a sequence $\{y_n\}$ defined by $y_0 = x_t$, $y_n = x_{n+t}$. Then for k > t from the inequality (10) we have:

$$d_b(x_{k-1}, x_k, x_t) = d_b(y_{k-t-1}, y_{k-t}, y_0)$$

$$\preceq \alpha^{k-t-1} d_b(y_0, y_1, y_0)$$

$$= \alpha^{k-t-1} \cdot \theta$$

$$= \theta$$

which completes the proof.

Lemma 5. Let (X, d_b, s) be a cone-b₂-metric space over Banach algebra A and suppose for any sequence $\{x_n\}$ the following condition is satisfied:

$$d_b(x_n, x_{n+1}, a) \preceq \alpha^n d_b(x_0, x_1, a)$$
 for all $a \in X$

where $\rho(\alpha) < \frac{1}{s}$; and $d_b(x_{k-1}, x_k, x_t) = \theta$ for $k > t, a \in X$. Then the sequence $\{x_n\}$ is a Cauchy sequence.

Proof. Suppose, $x_0 \in X$ is arbitrary and $\{x_n\}$ be the sequence with initial value x_0 . We shall show that $\{x_n\}$ is a Cauchy sequence. Then, by given condition we have

$$d_b(x_n, x_{n+1}, a) \preceq \alpha^n d_b(x_0, x_1, a) \text{ for all } a \in X.$$

$$(11)$$

Suppose $n, m \in \mathbb{N}$ and m > n. Then, we have:

$$d_b(x_n, x_m, a) \preceq s[d_b(x_n, x_m, x_{m-1}) + d_b(x_n, x_{m-1}, a) + d_b(x_{m-1}, x_m, a)].$$

Since $d_b(x_{k-1}, x_k, x_t) = \theta$ for $k > t, a \in X$ using the inequality (11) in the above inequality we obtain:

$$\begin{aligned} d_b(x_n, x_m, a) &\preceq s[\theta + d_b(x_n, x_{m-1}, a) + \alpha^{m-1} d_b(x_0, x_1, a)] \\ &\preceq s[\theta + \alpha^{m-1} d_b(x_0, x_1, a) + d_b(x_n, x_{m-1}, a)] \\ &\preceq s\alpha^{m-1} d_b(x_0, x_1, a) + s^2 [d_b(x_n, x_{m-1}, x_{m-2}) \\ &+ d_b(x_n, x_{m-2}, a) + d_b(x_{m-2}, x_{m-1}, a)] \\ &\preceq s\alpha^{m-1} d_b(x_0, x_1, a) + s^2 \alpha^{m-2} d_b(x_0, x_1, a) + s^2 d_b(x_n, x_{m-2}, a). \end{aligned}$$

By repeating this process we obtain:

$$d_{b}(x_{n}, x_{m}, a) \leq s\alpha^{m-1}d_{b}(x_{0}, x_{1}, a) + s^{2}\alpha^{m-2}d_{b}(x_{0}, x_{1}, a) + \dots + s^{m-n}\alpha^{n}d_{b}(x_{0}, x_{1}, a) \leq s^{m-n}\alpha^{n}d_{b}(x_{0}, x_{1}, a) + s^{m-n-1}\alpha^{n+1}d_{b}(x_{0}, x_{1}, a) + \dots + s^{2}\alpha^{m-2}d_{b}(x_{0}, x_{1}, a) + s\alpha^{m-1}d_{b}(x_{0}, x_{1}, a) = s^{m-n}\alpha^{n}[e + s^{-1}\alpha + \dots + s^{-(m-n-1)}\alpha^{m-n-1}]d_{b}(x_{0}, x_{1}, a) \leq s^{m-n}\alpha^{n}[e + s^{-1}\alpha + s^{-2}\alpha^{2} + \dots]d_{b}(x_{0}, x_{1}, a).$$

Since $\rho(s^{-1}\alpha) = \frac{1}{s}\rho(\alpha) < \frac{1}{s^2} < 1$, then the vector $e - s^{-1}\alpha$ is invertible and

$$(e - s^{-1}\alpha)^{-1} = e + s^{-1}\alpha + s^{-2}\alpha^2 + \cdots$$

Therefore, the above inequality yields

$$d_b(x_n, x_m, a) \preceq s \alpha^n (e - s^{-1} \alpha)^{-1} d_b(x_0, x_1, a).$$
(12)

Since $\rho(\alpha) < \frac{1}{s} < 1$, therefore $\|\alpha^n\| \to 0$ as $n \to \infty$, and so, for every $c \in P^\circ$ there exists $n_0 \in \mathbb{N}$ such that $\alpha^n \ll c$ for all $n > n_0$. It shows that the sequence $\{\alpha^n\}$ is a *c*-sequence. By Proposition 3 the sequence $\{s\alpha^n(e-s^{-1}\alpha)^{-1}d_b(x_0,x_1,a)\}$ is also a *c*-sequence. Therefore, it follows from the above inequality that for every $c \in A$ with $\theta \ll c$, there exists $n_1 \in \mathbb{N}$ such that, $d_b(x_n, x_m, a) \ll c$ for all $n > n_1$. Thus, $\{x_n\}$ is a Cauchy sequence.

The next theorem gives a sufficient condition for the existence and uniqueness of the common fixed point of a generalized (λ, μ) -Reich pair.

Theorem 6. Let (X, d_b, s) be a complete cone b_2 -metric space over Banach algebra A and $T, S: X \to X$ be two mappings such that the pair (T, S) is a generalized (λ, μ) -Reich pair. Then the pair (T, S) has unique common fixed point in X.

Proof. Suppose, $x_0 \in X$ be arbitrary and $\{x_n\}$ be defined by $x_{2n+1} = Tx_{2n}, x_{2n+2} = Sx_{2n+1}$. Then, by Lemma 4 and Lemma 5 the sequence $\{x_n\}$ is a Cauchy sequence.

By completeness of X, there exists $x^* \in X$ such that $x_n \to x^*$ as $n \to \infty$. We shall show that x^* is the unique common fixed point of the pair (T, S). Then, for any $n \in \mathbb{N}$ and for all $a \in X$ we have

$$d_b(x_{2n}, Tx^*, a) = d_b(Sx_{2n-1}, Tx^*, a)$$

$$\preceq \lambda d_b(x_{2n-1}, x^*, a) + \mu[d_b(Sx_{2n-1}, x_{2n-1}, a) + d_b(x^*, Tx^*, a)]$$

$$\preceq \lambda d_b(x_{2n-1}, x^*, a) + \mu[d_b(x_{2n}, x_{2n-1}, a) + d_b(x^*, Tx^*, a)].$$

Using the above inequality we obtain

$$\begin{aligned} d_b(x^*, Tx^*, a) &\preceq s[d_b(x^*, Tx^*, x_{2n}) + d_b(x^*, x_{2n}, a) + d_b(x_{2n}, Tx^*, a)] \\ &= s[d_b(x^*, x_{2n}, Tx^*) + d_b(x^*, x_{2n}, a) \\ &+ \lambda d_b(x_{2n-1}, x^*, a) + \mu[d_b(x_{2n}, x_{2n-1}, a) + d_b(x^*, Tx^*, a)]. \end{aligned}$$

The above inequality implies that

$$(e - s\mu)d_b(x^*, Tx^*, a) \preceq s[d_b(x^*, x_{2n}, Tx^*) + d_b(x^*, x_{2n}, a) + \lambda d_b(x_{2n-1}, x^*, a) + \mu d_b(x_{2n}, x_{2n-1}, a)].$$

Again, since $\rho(\mu) < \frac{1}{s}$ we have

$$d_b(x^*, Tx^*, a) \preceq s(e - s\mu)^{-1} [d_b(x^*, x_{2n}, Tx^*) + d_b(x^*, x_{2n}, a) + \lambda d_b(x_{2n-1}, x^*, a) + \mu d_b(x_{2n}, x_{2n-1}, a)].$$

Since $x_n \to x^*$ as $n \to \infty$, the sequences:

$$\{d_b(x_n, x^*, a)\}$$
 and $\{d_b(x_{2n}, x_{2n-1}, a)\}$

are c-sequences for all $a \in X$. Therefore, by Proposition 3 the sequence formed by the right hand side of the above inequality is also a c-sequence. Therefore, it follows from the last inequality that $\{d_b(x^*, Tx^*, a)\}$ is a c-sequence for all $a \in X$, and so, there exists $n_2 \in \mathbb{N}$ such that $d_b(x^*, Tx^*, a) \ll c$ for all $n > n_2$ and for all $a \in X$. It shows that $d_b(x^*, Tx^*, a) = \theta$ for all $a \in X$. Thus, $Tx^* = x^*$, i.e., x^* is a fixed point of T.

By Proposition 5 it follows that x^* is the unique common fixed point of the pair (T, S).

Example 3. Let $X = \{(a, 0): a \in [0, \infty)\} \cup \{(0, b)\}$, where b > 0 is fixed; and $A = C^1_{\mathbb{R}}[0,1]$ be the Banach algebra with the norm $||x(t)|| = ||x(t)||_{\infty} + ||x'(t)||_{\infty}$, the point-wise multiplication and the unit e(t) = 1 for all $t \in [0,1]$. Let $P = \{\psi \in C^1_{\mathbb{R}}[0,1]: \psi(t) \ge 0$ for all $t \in [0,1]\}$ be the solid cone in A. Define the mapping $d_b: X \times X \times X \to P$ as the $\frac{4}{b^2}e^t$ times the square of the area of triangle formed by the vertices $x, y, z \in X$ in \mathbb{R}^2 , where $t \in [0,1]$, e.g.

$$d_b((a,0), (c,0), (0,b)) = (a-c)^2 e^t.$$

Then (X, d_b, s) is a complete cone b_2 -metric space over Banach algebra A with s = 2. Define two mapping $T, S: X \to X$ by:

$$T(a,0) = \begin{cases} \frac{1}{4}(a,0), & \text{if } a \in \mathbb{Q}; \\ (0,0), & \text{otherwise;} \end{cases} \quad S(a,0) = \begin{cases} \frac{1}{4}(a,0), & \text{if } a \in \mathbb{R} \setminus \mathbb{Q}; \\ (0,0), & \text{otherwise} \end{cases}$$

and T(0,b) = S(0,b) = (0,0). Then by some routine calculations one can see that the pair (T,S) is a generalized (λ,μ) -Reich pair with $\lambda = \frac{1}{16}, \mu = \frac{1}{9}$. Thus, all the conditions of Theorem 6 are satisfied, and so, there exists a unique common fixed point of the pair (T,S). Indeed, (0,0) is the unique common fixed point of the pair (T,S).

Corollary 7. Let (X, d_b, s) be a complete cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a generalized (λ, μ) -Reich contraction. Then the mapping T has unique fixed point in X.

Proof. Taking S = T in Theorem 6, the result follows.

The following corollary is an improvement of the fixed point result of Fernandez et al. [6] (see Remark 4).

Corollary 8. Let (X, d_b, s) be a complete cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a mapping satisfying the following condition:

$$d_b(Tx, Ty, a) \leq \kappa d_b(x, y, a) + \lambda d(Tx, x, a) + \mu d_b(Ty, y, a)$$
(13)

for all $x, y, a \in X$, where $\kappa, \mu, \rho \in P$ such that $s\rho(\kappa) + s\rho(\lambda) + s\rho(\mu) < 1$ and κ, λ, μ commute. Then the mapping T has unique fixed point in X.

Proof. For any fixed pair x, y in X, since d_b is symmetric, interchange the role of x and y in (13) we obtain

$$d_b(Tx, Ty, a) \leq \kappa d_b(x, y, a) + \lambda d(Ty, y, a) + \mu d_b(Tx, x, a).$$
(14)

It follows from (13) and (14) that:

$$d_b(Tx, Ty, a) \preceq \kappa d_b(x, y, a) + \frac{\lambda + \mu}{2} [d(Tx, x, a) + d_b(Ty, y, a)]$$

= $\kappa d_b(x, y, a) + \nu [d(Tx, x, a) + d_b(Ty, y, a)]$

where $\nu = \frac{\lambda + \mu}{2}$. Since $s\rho(\kappa) + s\rho(\mu) + s\rho(\mu) < 1$, we have

$$\rho(\kappa) + 2\rho(\nu) = \rho(\kappa) + 2\rho\left(\frac{\lambda+\mu}{2}\right)$$
$$= \rho(\kappa) + \rho\left(\lambda+\mu\right)$$
$$\leq \rho(\kappa) + \rho\left(\lambda\right) + \rho\left(\mu\right)$$
$$< \frac{1}{s}.$$

Thus, T is a generalized (κ, ν) -Reich contraction. Now result follows from Corollary 7.

Corollary 9. Let (X, d_b, s) be a complete cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a generalized λ -Banach contraction. Then the mapping T has unique fixed point in X.

Proof. Taking $\mu = \theta$ and S = T in Theorem 6, the result follows.

Corollary 10. Let (X, d_b, s) be a complete cone b_2 -metric space over Banach algebra A and $T: X \to X$ be a generalized μ -Kannan contraction. Then the mapping T has unique fixed point in X.

Proof. Taking $\lambda = \theta$ and S = T in Theorem 6, the result follows.

Conflict of Interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] B. Singh, S. Jain and P. Bhagat, Cone 2-metric space and fixed point theorem of contractive mappings. Comment. Math., Vol. **52**, no. 2, (2012), 143-151.

[2] G. Jungck, S. Radenović, S. Radojević, V. Rakócević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. Vol. 57, (2009), 13 pages.

[3] H. Çakallı, A. Sönmez, Ç. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., Vol. 25, (2012), 429-433.

[4] H. Liu and S.-Y. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., Vol. **2013**, (2013), 10 pages.

[5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., Vol. **30**, (1989), 26-37.

[6] J. Fernandez, N. Malviya, K. Saxena, Cone b_2 -metric spaces over Banach algebra with applications, São Paulo J. Math. Sci., Vol. **11**, no. 1, (2017), 221–239.

[7] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Vol. **332**, (2007), 1468-1476.

[8] M. Dordević, D. Dorić, Z. Kadelburg, S. Radenović, D. Spasić, Fixed point results under c-distance in tvs-cone metric spaces, Fixed Point Theory Appl. Vol. **2011**, (2011), 9 pages.

[9] N. Hussian, M.H. Shah, KKM mappings in cone *b*-metric spaces, Comput. Math. Appl., Vol. **62**, no. 4, (2011) 1677-1684.

[10] S.Gähler, 2-metricsche Räume und ihre topologische strukture, Math. Nachr., Vol. **26**, (1963), 115-148.

[11] S.Gähler, Über die Uniformisierbarkeit 2-metricsche Räume, Math. Nachr., 28, (1965), 235-244.

[12] S.Gähler, Zur geometric 2-metricsche Räume, Revne Roumaine der Mathem. Pures et Appliques, **11**, (1966), 665-667.

[13] S. Czerwik, Contraction mappings in *b*-metric spaces, Acta Mathematica Et Informatica Universitatis Ostraviensis Vol. **1**, no. 1, (1993), 5-11.

[14] S. Radenović, B.E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57, (2009), 1701-1707.

[15] S. Xu, S.Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach, algebras without assumption of normality, Fixed Point Theory Appl., Vol. **2014**, (2014), 12 pages.

[16] T. Wang, J. Yin, Q. Yan, Fixed point theorems on cone 2-metric spaces over Banach algebras and an application, Fixed Point Theory Appl., **2015**, (2015), 13 pages.

[17] V.H. Badshah, P. Bhagat, S. Shukla, Some fixed point results on $(\varphi, L, \mathfrak{m})$ -weak contraction in cone 2-metric spaces, Asia Pacific Journal of Mathematics, Vol. **3**, no. 1, (2016), 24-37.

[18] W.S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., Vol. **72**, no. 5, (2010) 2259-2261.

[19] Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, Vol. **11**, no. 2, (2010) 259-264.

[20] Z. Mustafa, V. Parvaneh, J.R. Roshan, Z. Kadelburg, b_2 -Metric spaces and some fixed point theorems, Fixed Point Theory and Applications, Vol. **2014**, (2014), 24 pages.

[21] Z. Kadelburg, S. Radenović, V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., Vol. **24**, (2011), 370-374.

[22] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasi-contractions in ordered cone metric spaces, Comput. Math. Appl., Vol. **59**, (2010) 3148-3159.

[23] Z. Kadelburg, S. Radenović, A note on various types of cones and fixed point results in cone metric spaces. Asian J. Math. Appl., Vol. **2013**, (2013), 7 pages.

V. H. Badshah School of Studies in Mathematics, Vikram University, Ujjain, (M.P.), India email: *vhbadshah@yahoo.co.in*

Prakash Bhagat Department of Applied Mathematics,, NMIMS, Shirpur, India email: prakash1175@yahoo.com

Satish Shukla Department of Applied Mathematics, Shri Vaishnav Institute of Technology & Science(M.P.) Gram Baroli, Sanwer Road, Indore , 453331 India email: satishmathematics@yahoo.co.in