SOME COMMON FIXED POINT THEOREMS IN CONE B_{2}-METRIC SPACES OVER BANACH ALGEBRA

V.H. Badshah, Prakash Bhagat and Satish Shukla

Abstract. In this paper, some common fixed point theorems for generalized (λ, μ)-Reich pairs in a complete cone b_{2}-metric spaces over Banach algebra are proved. Our results generalize and extend some well-known results from 2-metric, b-metric and cone metric spaces. An example is presented which illustrate the main result of this paper.

2010 Mathematics Subject Classification: 47H10; 54H25
Keywords: Cone b_{2}-metric space, Picard sequence, contraction, fixed point.

1. Introduction and Preliminaries

The concept of 2-metric space has been investigated by S. Gahler in a series of papers [10, 11, 12]. In 2007, Huang and Zhang [7] introduced the notion of cone metric spaces as a generalization of metric spaces and proved some fixed point results for contractive mappings. In the papers [3,18, 19, 21] authors proved the equivalency of some notions in cone metric spaces and fixed point results in cone metric spaces; with their ordinary metric versions. Liu and Xu [4] defined the cone metric spaces over Banach algebra and proved some fixed point results for the contractive mappings with vector contractive constants. Liu and $\mathrm{Xu}[4]$ showed that the conclusions of the papers $[3,18,19,21]$ are not applicable if the cone metric spaces are taken over Banach algebra. Singh et al. [1] introduced cone 2-metric spaces which unifies both the concepts of cone metric and 2-metric spaces.

On the other hand, Bakhtin [5] and Czerwik [13] introduced b-metric spaces as a generalization of metric spaces. Hussain and Shah [9] introduced cone b-metric spaces as a generalization of b-metric spaces and cone metric spaces. Mustfa et al. [20] unified and generalized the notions of 2 -metric spaces and b-metric spaces by introducing the notion of b_{2}-metric spaces. Recently, Fernandez et al. [6] combined the concepts of b_{2}-metric spaces and cone metric spaces and introduced the notion of cone b_{2}-metric spaces over Banach algebra. They proved some fixed point theorems
in this new setting. In this paper, we improve and generalize the fixed point result of Fernandez et al. [6] and prove some common fixed point results for a pair of mappings called generalized (λ, μ)-Reich pair on cone b_{2}-metric spaces over Banach algebra. We also point out the non-feasibility of contractive conditions of Fernandez et al. [6].

We first state some well-known definitions and concepts which will be needed in the sequel.

Let A always be a real Banach algebra with a multiplicative unit e, that is, $e x=x e=x$ for all $x \in A$. An element $x \in A$ is said to be invertible if there is an inverse element $y \in A$ such that $x y=y x=e$. The inverse of x is denoted by x^{-1} (see [10]).

The following proposition can be found, e.g., in [10].
Proposition 1. Let A be a Banach algebra with the unit e, and $x \in A$. If the spectral radius $\rho(x)$ of x is less than 1, that is,

$$
\rho(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{1 / n}=\inf _{n \geq 1}\left\|x^{n}\right\|^{1 / n}<1
$$

then $e-x$ is invertible. Actually,

$$
(e-x)^{-1}=\sum_{i=0}^{\infty} x^{i}
$$

A subset P of A is called a cone if:
(1) P is nonempty closed and $\{\theta, e\} \subset P$;
(2) $\alpha P+\beta P \subset P$ for all nonnegative real numbers α, β;
(3) $P^{2}=P P \subset P$;
(4) $P \cap(-P)=\{\theta\}$
where θ and e are respectively the zero vector and unit of A.
Given a cone $P \subset A$, we define a partial ordering \preceq in A with respect to P by $x \preceq y$ (or equivalently $y \succeq x$) if and only if $y-x \in P$. We shall write $x \prec y$ (or equivalently $y \succ x$) to indicate that $x \preceq y$ but $x \neq y$, while $x \ll y$ (or equivalently $y \gg x$) will stand for $y-x \in \operatorname{int} P$, where int P denotes the interior of P.

The cone is called normal if there exists a number $K>0$ such that for all $x, y \in P$

$$
x \preceq y \Longrightarrow\|x\| \leq K\|y\| .
$$

The least number K satisfying the above inequality is called the normal constant of P. The cone P is called solid if $\operatorname{int} P \neq \emptyset$.

In the following, we always assume that the cone P is solid cone in Banach algebra A and \preceq is partial ordering with respect to P.

Proposition 2 ([15]). Let P be a cone in a Banach algebra $A, a \in P$ and $b, c \in A$ are such that $b \preceq c$, then $a b \preceq a c$.

Lemma 1 ([2, 14, 22]). Let A be a Banach algebra with a solid cone P. Then:
(a) If $a \preceq \lambda a$ with $a \in P$ and $0 \leq \lambda<1$, then $a=\theta$.
(b) If $\theta \preceq u \ll c$ for each $\theta \ll c$, then $u=\theta$.
(c) If $\left\|x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, then for any $\theta \ll c$, there exists $n_{0} \in \mathbb{N}$ such that, $x_{n} \ll c$ for all $n>n_{0}$.
(d) If $a, b, c \in P$ such that $a \preceq b$ and $b \ll c$, then $a \ll c$.
(e) If $a, b, c \in P$ such that $a \ll b$ and $b \preceq c$, then $a \ll c$.
(f) If $a, b, c \in P$ such that $a \ll b$ and $b \ll c$, then $a \ll c$.

Remark 1 ([14]). If $\rho(x)<1$ then $\left\|x^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$.
Definition 1 ([8, 23]). Let P be a solid cone in a Banach algebra A. A sequence $\left\{u_{n}\right\} \subset P$ is a c-sequence if for each $c \in A$ with $\theta \ll c$ there exists $n_{0} \in \mathbb{N}$ such that $u_{n} \ll c$ for $n>n_{0}$.

Proposition 3 ([15]). Let P be a solid cone in a Banach algebra A and let $\left\{u_{n}\right\}$ be a sequence in P. Suppose that $k \in P$ is an arbitrarily given vector and $\left\{u_{n}\right\}$ is a c-sequence in P. Then $\left\{k u_{n}\right\}$ is a c-sequence.

Proposition 4 ([15]). Let A be a Banach algebra with a unit e, P be a cone in A. Then, for any $a, b \in A, c \in P$ with $a \preceq b$ we have $a c \preceq b c$.

Lemma 2 ([15]). Let A be a Banach algebra and let x, y be vectors in A. If x and y commute, then the following hold:
(i) $\rho(x y) \leq \rho(x) \rho(y)$;
(ii) $\rho(x+y) \leq \rho(x)+\rho(y)$;
(iii) $|\rho(x)-\rho(y)| \leq \rho(x-y)$.

Lemma 3 ([15]). Let A be a Banach algebra and let k be a vector in A. If $0 \leq$ $\rho(k)<1$, then we have

$$
\rho\left((e-k)^{-1}\right) \leq(1-\rho(k))^{-1} .
$$

Definition $2([1,16,17])$. Let X be a nonempty set. Suppose the mapping $d: X \times$ $X \times X \rightarrow P$ satisfies:
(1) for every $x, y \in X$ with $x \neq y$ there exists $z \in X$ such that $d(x, y, z) \neq \theta$;
(2) if at least two of $x, y, z \in X$ are equal, then $d(x, y, z)=\theta$;
(3) $d(x, y, z)=d(p(x, y, z))$ for all $x, y, z \in X$, where $p(x, y, z)$ denotes all the permutations of x, y, z;
(4) $d(x, y, z) \preceq d(x, y, w)+d(x, w, z)+d(w, y, z)$ for all $x, y, z, w \in X$.

Then d is called a cone 2-metric on X, and (X, d) is called a cone 2-metric space over Banach algebra A.

Definition 3 ([9]). Let X be a nonempty set and A a real Banach algebra with cone P. A vector-valued function $d: X \times X \rightarrow P$ is said to be a cone b-metric function on X with the constant $s \geq 1$ if the following conditions are satisfied:

1. $\theta \preceq d(x, y)$, for all $x, y \in X$ and $d(x, y)=\theta$ if and only if $x=y$;
2. $d(x, y)=d(y, x)$ for all $x, y \in X$;
3. $d(x, z) \preceq s[d(x, y)+d(y, z)]$ for all $x, y, z \in X$.

The pair (X, d) is called the cone b-metric space. Observe that if $s=1$, then the ordinary triangle inequality in a cone metric space is satisfied, however it does not hold true when $s>1$. Thus the class of cone b-metric spaces is effectively larger than that of the ordinary cone metric spaces. A cone b-metric space will be called normal, if the underlying cone P is normal cone.

Definition 4 ([6]). Let X be a nonempty set and $d_{b}: X \times X \times X \rightarrow P$ be a mapping. Suppose, there exists $s \geq 1$ and the following conditions are satisfied:
(I) for every $x, y \in X$ with $x \neq y$ there exists $z \in X$ such that $d_{b}(x, y, z) \neq \theta$;
(II) if at least two of $x, y, z \in X$ are equal, then $d_{b}(x, y, z)=\theta$;
(III) $d_{b}(x, y, z)=d_{b}(p(x, y, z))$ for all $x, y, z \in X$, where $p(x, y, z)$ denotes all the permutations of x, y, z;
$(I V) d_{b}(x, y, z) \preceq s\left[d_{b}(x, y, w)+d_{b}(x, w, z)+d_{b}(w, y, z)\right]$ for all $x, y, z, w \in X$.
Then, the mapping d_{b} is called a cone b_{2}-metric over X and the triplet $\left(X, d_{b}, s\right)$ is called a cone b_{2}-metric space on Banach algebra A. If the cone P is normal, then $\left(X, d_{b}, s\right)$ is called a normal cone b_{2}-metric space over Banach algebra A.
Example 1. Let $X=\mathbb{R}$ and $A=C_{\mathbb{R}}^{1}[0,1]$ be the Banach algebra with the norm $\|x(t)\|=\|x(t)\|_{\infty}+\left\|x^{\prime}(t)\right\|_{\infty}$, the point-wise multiplication and the unit $e(t)=1$ for all $t \in[0,1]$. Let $P=\left\{\psi \in C_{\mathbb{R}}^{1}[0,1]: \psi(t) \geq 0\right.$ for all $\left.t \in[0,1]\right\}$ be the solid cone in A. Define the mapping $d_{b}: X \times X \times X \rightarrow P$ by

$$
d_{b}(x, y, z)=\min \left\{(x-y)^{2},(y-z)^{2},(z-x)^{2}\right\} e^{t}
$$

for all $x, y, z \in X$. Then $\left(X, d_{b}, s\right)$ is a cone b_{2}-metric space over Banach algebra A with $s=2$ for all $t \in[0,1]$. On the other hand, d_{b} is not a 2-cone metric space, for example, at points $x=1, y=5, z=15, w=2$ we have $d_{b}(x, y, z)=$ $16 e^{t}, d_{b}(x, y, w)=e^{t}, d_{b}(x, w, z)=e^{t}, d_{b}(w, y, z)=9 e^{t}$, and so,

$$
d_{b}(x, y, z) \succ d_{b}(x, y, w)+d_{b}(x, w, z)+d_{b}(w, y, z) .
$$

Example 2. Let $X=\{1,2,3,4\}$ and $A=\mathbb{R}^{2}$ be the Banach algebra with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right|$, with the multiplication defined by $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=$ $\left(x_{1} y_{1}, x_{2} y_{1}+x_{1} y_{2}\right)$ and the unit $e(t)=(1,0)$. Let $P=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \geq 0\right\}$ be the normal cone in A. Define the mapping $d_{b}: X \times X \times X \rightarrow P$ by

$$
d_{b}(1,2,3)=a(1,1), d_{b}(1,2,4)=b(1,1), d_{b}(2,3,4)=c(1,1), d_{b}(1,3,4)=\lambda(1,1)
$$

with symmetry in all variables and with $d(x, y, z)=(0,0)$ when at least two of the arguments are equal, where a, b, c are nonnegative reals such that $a+b+c>0$ and $\lambda=a+b+c+1$. Then, $\left(X, d_{b}, s\right)$ is a cone b_{2}-metric space over Banach algebra A with $s \geq \frac{\lambda}{\lambda-1}$. On the other hand, d_{b} is not a 2-cone metric space, for example, at points $x=1, y=3, z=4, w=2$ we have $d_{b}(x, y, z)=\lambda(1,1), d_{b}(x, y, w)=$ $a(1,1), d_{b}(x, w, z)=b(1,1), d_{b}(w, y, z)=c(1,1)$, and so,

$$
d_{b}(x, y, z) \succ d_{b}(x, y, w)+d_{b}(x, w, z)+d_{b}(w, y, z) .
$$

Definition 5 ([6]). Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over the Banach algebra A. A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if for every $c \in A$ with $\theta \ll c$ there exists $n_{0} \in \mathbb{N}$ such that $d_{b}\left(x_{n}, x_{m}, a\right) \ll c$ for all $n, m>n_{0}$ and $a \in X$.
Definition 6 ([6]). Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over the Banach algebra A. A sequence $\left\{x_{n}\right\}$ in X is called a convergent sequence and converges to $x \in X$ if for every $c \in A$ with $\theta \ll c$ there exists $n_{0} \in \mathbb{N}$ such that $d_{b}\left(x_{n}, x, a\right) \ll c$ for all $n>n_{0}$ and $a \in X$. We denote this fact by $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and x is called the limit of the sequence $\left\{x_{n}\right\}$.

Definition $7([6])$. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over the Banach algebra A. Then, $\left(X, d_{b}, s\right)$ is called complete if every Cauchy sequence in X converges to some $x \in X$.

Remark 2. Limit of a convergent sequence in a cone b_{2}-metric space over a Banach algebra is unique. Indeed, if $\left\{x_{n}\right\}$ converges to two distinct limits $x, y \in X$, then for every given $c \in A$ with $\theta \ll c$ there exists $n_{0} \in \mathbb{N}$ such that $d_{b}\left(x_{n}, x, a\right) \ll$ $\frac{c}{3 s}, d_{b}\left(x_{n}, y, a\right) \ll \frac{c}{3 s}$ for all $n>n_{0}$ and $a \in X$, therefore

$$
\begin{aligned}
d_{b}(x, y, a) & \preceq s\left[d_{b}\left(x, y, x_{n}\right)+d_{b}\left(x, x_{n}, a\right)+d_{b}\left(x_{n}, y, a\right)\right] \\
& \ll s\left[\frac{c}{3 s}+\frac{c}{3 s}+\frac{c}{3 s}\right] \\
& =c .
\end{aligned}
$$

The above inequality with Lemma 1 yields $d_{b}(x, y, a)=\theta$ for all $a \in X$, i.e., $x=y$. This contradiction proves the result.

The proof of the following remark is similar to the above remark.
Remark 3. Every convergent sequence in a cone b_{2}-metric space over a Banach algebra is a Cauchy sequence.

2. FixEd point theorems

In this section, we introduce some new concepts and prove a common fixed point theorem.

Definition 8. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a mapping. Then, the mapping T is called a generalized λ-Banach contraction if there exists $\lambda \in P$ such that $\rho(\lambda)<\frac{1}{s}$ and the following condition is satisfied:

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \lambda d_{b}(x, y, a) \tag{1}
\end{equation*}
$$

for all $x, y, a \in X$. The mapping T is said to be a generalized λ-Kannan contraction if there exists $\lambda \in P$ such that $\rho(\lambda)<\frac{1}{2 s}$ and the following condition is satisfied:

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \lambda\left[d_{b}(x, T x, a)+d_{b}(y, T y, a)\right] \tag{2}
\end{equation*}
$$

for all $x, y, a \in X$.

Definition 9. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a mapping. Then, the mapping T is called a generalized (λ, μ)-Reich contraction if there exist $\lambda, \mu \in P$ such that $\rho(\lambda)+2 \rho(\mu)<\frac{1}{s}$ and the following condition is satisfied:

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \lambda d_{b}(x, y, a)+\mu\left[d_{b}(x, T x, a)+d_{b}(y, T y, a)\right] \tag{3}
\end{equation*}
$$

for all $x, y, a \in X$.
It is easy to see that the class of generalized (λ, μ)-Reich contractions is a unification and generalization of classes of generalized λ-Banach and generalized μ-Kannan contractions.

Remark 4. In [6], Fernandez et al. used the following condition:

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \kappa d_{b}(x, y, a)+\lambda d_{b}(x, T x, a)+\mu d_{b}(y, T y, a) \tag{4}
\end{equation*}
$$

for all $x, y, a \in X$, where $s \rho(\kappa)+s \rho(\lambda)+\rho(\mu)<1$ and $s^{2}+s \rho(\lambda)<1$. Observe that, since $s \geq 1$ and $\rho(\lambda) \geq 0$, therefore, the condition $s^{2}+s \rho(\lambda)<1$ is not feasible. Therefore, the fixed point results of Fernandez et al. [6] are not consistent for any given mapping and for any given cone b_{2}-metric space.

We define a more general class as follows:
Definition 10. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over Banach algebra A and $T, S: X \rightarrow X$ be two mappings. Then, the pair (T, S) is called a generalized $(\lambda, \mu)-$ Reich pair if there exist $\lambda, \mu \in P$ such that $\rho(\lambda)+2 \rho(\mu)<\frac{1}{s}$ and the following condition is satisfied:

$$
\begin{equation*}
d_{b}(T x, S y, a) \preceq \lambda d_{b}(x, y, a)+\mu\left[d_{b}(x, T x, a)+d_{b}(y, S y, a)\right] \tag{5}
\end{equation*}
$$

for all $x, y, a \in X$.
It is obvious that every generalized (λ, μ)-Reich contraction T is actually a generalized (λ, μ)-Reich pair with $S=I$.

Next, we discuss the nature and some results about common fixed points of a generalized (λ, μ)-Reich pair in a cone b_{2}-metric space over Banach algebra.

Proposition 5. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over Banach algebra A and $T, S: X \rightarrow X$ be two mappings such that the pair (T, S) is a generalized (λ, μ)-Reich pair. If $x^{*} \in X$ is a fixed point of T (or of S), then x^{*} is a unique common fixed point of the pair (T, S).

Proof. Suppose, x^{*} is a fixed point of T, i.e., $T x^{*}=x^{*}$. Since the pair (T, S) is a generalized (λ, μ)-Reich pair we have

$$
\begin{aligned}
d_{b}\left(x^{*}, S x^{*}, a\right) & =d_{b}\left(T x^{*}, S x^{*}, a\right) \\
& \preceq \lambda d_{b}\left(x^{*}, x^{*}, a\right)+\mu\left[d_{b}\left(x^{*}, T x^{*}, a\right)+d_{b}\left(x^{*}, S x^{*}, a\right)\right] \\
& =\lambda \cdot \theta+\mu\left[\theta+d_{b}\left(x^{*}, S x^{*}, a\right)\right]
\end{aligned}
$$

i.e., $(e-\mu) d_{b}\left(x^{*}, S x^{*}, a\right) \preceq \theta$. Since $\rho(\mu)<1$, we have $e-\mu \in P$ is invertible, and so, the last inequality yields $d_{b}\left(x^{*}, S x^{*}, a\right)=\theta$ for all $a \in X$. Therefore, $S x^{*}=x^{*}$. Thus, x^{*} is a common fixed point of the pair (T, S).

For uniqueness, suppose x^{*}, y^{*} are two distinct common fixed points of the pair (T, S), i.e., $T x^{*}=S x^{*}=x^{*}, T y^{*}=S y^{*}=y^{*}$ and $x^{*} \neq y^{*}$. Then, we have

$$
\begin{aligned}
d_{b}\left(x^{*}, y^{*}, a\right) & =d_{b}\left(T x^{*}, S y^{*}, a\right) \\
& \preceq \lambda d_{b}\left(x^{*}, y^{*}, a\right)+\mu\left[d_{b}\left(x^{*}, T x^{*}, a\right)+d_{b}\left(y^{*}, S y^{*}, a\right)\right] \\
& =\lambda d_{b}\left(x^{*}, y^{*}, a\right)+\mu[\theta+\theta]
\end{aligned}
$$

i.e., $(e-\lambda) d_{b}\left(x^{*}, y^{*}, a\right) \preceq \theta$. Again, it shows that $d_{b}\left(x^{*}, y^{*}, a\right)=\theta$ for all $a \in X$, i.e., $x^{*}=y^{*}$. This contradiction proves the uniqueness.

If x^{*} is a fixed point of the mapping S. Then by similar process one can find the desired result.

Remark 5. It is clear from the above remark that if (T, S) is a generalized (λ, μ) Reich pair, then T cannot have more than one fixed point; and similar is true for the mapping S.

The following lemmas will be used in establishing the common fixed point results for a generalized (λ, μ)-Reich pair.

Lemma 4. Let $\left(X, d_{b}, s\right)$ be a cone b_{2}-metric space over Banach algebra A and $T, S: X \rightarrow X$ be two mappings such that the pair (T, S) is a generalized (λ, μ)-Reich pair and λ, μ commute. If the sequence $\left\{x_{n}\right\} \subset X$ is defined by $x_{2 n+1}=T x_{2 n}$, $x_{2 n+2}=S x_{2 n+1}, n \geq 0$ and $x_{0} \in X$ is arbitrary, then there exists $\alpha \in P$ such that $\rho(\alpha)<\frac{1}{s}$ and

$$
d_{b}\left(x_{n}, x_{n+1}, a\right) \preceq \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right) \text { for all } a \in X \text {. }
$$

Furthermore, for the sequence $\left\{x_{n}\right\}$ with initial value $x_{0} \in X$, we have

$$
d_{b}\left(x_{k}, x_{k-1}, x_{t}\right)=\theta \text { for all } k>t .
$$

Proof. Let $x_{0} \in X$ be arbitrary point. Then since the pair (T, S) is a generalized (λ, μ)-Reich pair we obtain:

$$
\begin{aligned}
& d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \\
= & d_{b}\left(T x_{2 n}, S x_{2 n+1}, a\right) \\
\preceq & \lambda d_{b}\left(x_{2 n}, x_{2 n+1}, a\right)+\mu\left[d_{b}\left(x_{2 n}, T x_{2 n}, a\right)+d_{b}\left(x_{2 n+1}, S x_{2 n+1}, a\right)\right] \\
= & \lambda d_{b}\left(x_{2 n}, x_{2 n+1}, a\right)+\mu\left[d_{b}\left(x_{2 n}, x_{2 n+1}, a\right)+d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right)\right] .
\end{aligned}
$$

The above inequality shows that

$$
(e-\mu) d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \preceq(\lambda+\mu) d_{b}\left(x_{2 n}, x_{2 n+1}, a\right) .
$$

Since $\rho(\mu)<1$, therefore the vector $e-\mu$ is invertible, and so, we have

$$
d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \preceq(\lambda+\mu)(e-\mu)^{-1} d_{b}\left(x_{2 n}, x_{2 n+1}, a\right) .
$$

Set $\alpha=(\lambda+\mu)(e-\mu)^{-1}$ in the above inequality we have

$$
\begin{equation*}
d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \preceq \alpha d_{b}\left(x_{2 n}, x_{2 n+1}, a\right) . \tag{6}
\end{equation*}
$$

Following similar process as the above and using the above inequality we obtain:

$$
\begin{align*}
d_{b}\left(x_{2 n+2}, x_{2 n+3}, a\right) & =d_{b}\left(S x_{2 n+1}, T x_{2 n+2}, a\right) \\
& \preceq \alpha d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \\
& \preceq \alpha^{2} d_{b}\left(x_{2 n}, x_{2 n+1}, a\right) . \tag{7}
\end{align*}
$$

Successive use of the inequalities (6) and (7) yields:

$$
\begin{equation*}
d_{b}\left(x_{2 n+1}, x_{2 n+2}, a\right) \preceq \alpha^{2 n+1} d_{b}\left(x_{0}, x_{1}, a\right) . \tag{8}
\end{equation*}
$$

Similarly, we can prove:

$$
\begin{equation*}
d_{b}\left(x_{2 n+2}, x_{2 n+3}, a\right) \preceq \alpha^{2 n+2} d_{b}\left(x_{0}, x_{1}, a\right) . \tag{9}
\end{equation*}
$$

It follows from the inequalities (8) and (9) that

$$
\begin{equation*}
d_{b}\left(x_{n}, x_{n+1}, a\right) \preceq \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right) \text { for all } a \in X . \tag{10}
\end{equation*}
$$

We shall show that $\rho(\alpha)<1$. Since λ, μ commute we have:

$$
\begin{aligned}
(\lambda+\mu)(e-\mu)^{-1} & =(\lambda+\mu)\left[\sum_{i=0}^{\infty} \mu^{i}\right]=\sum_{i=0}^{\infty}(\lambda+\mu) \mu^{i} \\
& =\left[\sum_{i=0}^{\infty} \mu^{i}\right](\lambda+\mu)=(e-\mu)^{-1}(\lambda+\mu) .
\end{aligned}
$$

Therefore, $\lambda+\mu$ and $(e-\mu)^{-1}$ commute. Now using Lemma 2 and Lemma 3 and the fact that $\rho(\lambda)+2 \rho(\mu)<\frac{1}{s}<1$ we obtain

$$
\begin{aligned}
\rho(\alpha) & =\rho\left((\lambda+\mu)(e-\mu)^{-1}\right) \\
& \leq \rho(\lambda+\mu) \rho\left((e-\mu)^{-1}\right) \\
& \leq(\rho(\lambda)+\rho(\mu))(1-\rho(\mu))^{-1} \\
& \leq\left(\frac{1}{s}-\rho(\mu)\right)(1-\rho(\mu))^{-1} \\
& <\frac{1}{s} .
\end{aligned}
$$

If $\left\{x_{n}\right\}$ is the sequence defined as above and $k>t$. We construct a sequence $\left\{y_{n}\right\}$ defined by $y_{0}=x_{t}, y_{n}=x_{n+t}$. Then for $k>t$ from the inequality (10) we have:

$$
\begin{aligned}
d_{b}\left(x_{k-1}, x_{k}, x_{t}\right) & =d_{b}\left(y_{k-t-1}, y_{k-t}, y_{0}\right) \\
& \preceq \alpha^{k-t-1} d_{b}\left(y_{0}, y_{1}, y_{0}\right) \\
& =\alpha^{k-t-1} \cdot \theta \\
& =\theta
\end{aligned}
$$

which completes the proof.
Lemma 5. Let $\left(X, d_{b}, s\right)$ be a cone- b_{2}-metric space over Banach algebra A and suppose for any sequence $\left\{x_{n}\right\}$ the following condition is satisfied:

$$
d_{b}\left(x_{n}, x_{n+1}, a\right) \preceq \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right) \text { for all } a \in X
$$

where $\rho(\alpha)<\frac{1}{s}$; and $d_{b}\left(x_{k-1}, x_{k}, x_{t}\right)=\theta$ for $k>t, a \in X$. Then the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. Suppose, $x_{0} \in X$ is arbitrary and $\left\{x_{n}\right\}$ be the sequence with initial value x_{0}. We shall show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Then, by given condition we have

$$
\begin{equation*}
d_{b}\left(x_{n}, x_{n+1}, a\right) \preceq \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right) \text { for all } a \in X . \tag{11}
\end{equation*}
$$

Suppose $n, m \in \mathbb{N}$ and $m>n$. Then, we have:

$$
d_{b}\left(x_{n}, x_{m}, a\right) \preceq s\left[d_{b}\left(x_{n}, x_{m}, x_{m-1}\right)+d_{b}\left(x_{n}, x_{m-1}, a\right)+d_{b}\left(x_{m-1}, x_{m}, a\right)\right] .
$$

Since $d_{b}\left(x_{k-1}, x_{k}, x_{t}\right)=\theta$ for $k>t, a \in X$ using the inequality (11) in the above inequality we obtain:

$$
\begin{aligned}
d_{b}\left(x_{n}, x_{m}, a\right) & \preceq s\left[\theta+d_{b}\left(x_{n}, x_{m-1}, a\right)+\alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right)\right] \\
\preceq & s\left[\theta+\alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right)+d_{b}\left(x_{n}, x_{m-1}, a\right)\right] \\
\preceq & s \alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right)+s^{2}\left[d_{b}\left(x_{n}, x_{m-1}, x_{m-2}\right)\right. \\
& \left.+d_{b}\left(x_{n}, x_{m-2}, a\right)+d_{b}\left(x_{m-2}, x_{m-1}, a\right)\right] \\
\preceq & s \alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right)+s^{2} \alpha^{m-2} d_{b}\left(x_{0}, x_{1}, a\right)+s^{2} d_{b}\left(x_{n}, x_{m-2}, a\right) .
\end{aligned}
$$

By repeating this process we obtain:

$$
\begin{aligned}
d_{b}\left(x_{n}, x_{m}, a\right) \preceq & s \alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right)+s^{2} \alpha^{m-2} d_{b}\left(x_{0}, x_{1}, a\right) \\
& +\cdots+s^{m-n} \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right) \\
\preceq & s^{m-n} \alpha^{n} d_{b}\left(x_{0}, x_{1}, a\right)+s^{m-n-1} \alpha^{n+1} d_{b}\left(x_{0}, x_{1}, a\right)+\cdots \\
& +s^{2} \alpha^{m-2} d_{b}\left(x_{0}, x_{1}, a\right)+s \alpha^{m-1} d_{b}\left(x_{0}, x_{1}, a\right) \\
= & s^{m-n} \alpha^{n}\left[e+s^{-1} \alpha+\cdots+s^{-(m-n-1)} \alpha^{m-n-1}\right] d_{b}\left(x_{0}, x_{1}, a\right) \\
\preceq & s^{m-n} \alpha^{n}\left[e+s^{-1} \alpha+s^{-2} \alpha^{2}+\cdots\right] d_{b}\left(x_{0}, x_{1}, a\right) .
\end{aligned}
$$

Since $\rho\left(s^{-1} \alpha\right)=\frac{1}{s} \rho(\alpha)<\frac{1}{s^{2}}<1$, then the vector $e-s^{-1} \alpha$ is invertible and

$$
\left(e-s^{-1} \alpha\right)^{-1}=e+s^{-1} \alpha+s^{-2} \alpha^{2}+\cdots
$$

Therefore, the above inequality yields

$$
\begin{equation*}
d_{b}\left(x_{n}, x_{m}, a\right) \preceq s \alpha^{n}\left(e-s^{-1} \alpha\right)^{-1} d_{b}\left(x_{0}, x_{1}, a\right) . \tag{12}
\end{equation*}
$$

Since $\rho(\alpha)<\frac{1}{s}<1$, therefore $\left\|\alpha^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, and so, for every $c \in P^{\circ}$ there exists $n_{0} \in \mathbb{N}$ such that $\alpha^{n} \ll c$ for all $n>n_{0}$. It shows that the sequence $\left\{\alpha^{n}\right\}$ is a c-sequence. By Proposition 3 the sequence $\left\{s \alpha^{n}\left(e-s^{-1} \alpha\right)^{-1} d_{b}\left(x_{0}, x_{1}, a\right)\right\}$ is also a c-sequence. Therefore, it follows from the above inequality that for every $c \in A$ with $\theta \ll c$, there exists $n_{1} \in \mathbb{N}$ such that, $d_{b}\left(x_{n}, x_{m}, a\right) \ll c$ for all $n>n_{1}$. Thus, $\left\{x_{n}\right\}$ is a Cauchy sequence.

The next theorem gives a sufficient condition for the existence and uniqueness of the common fixed point of a generalized (λ, μ)-Reich pair.

Theorem 6. Let $\left(X, d_{b}, s\right)$ be a complete cone b_{2}-metric space over Banach algebra A and $T, S: X \rightarrow X$ be two mappings such that the pair (T, S) is a generalized (λ, μ)-Reich pair. Then the pair (T, S) has unique common fixed point in X.

Proof. Suppose, $x_{0} \in X$ be arbitrary and $\left\{x_{n}\right\}$ be defined by $x_{2 n+1}=T x_{2 n}, x_{2 n+2}=$ $S x_{2 n+1}$. Then, by Lemma 4 and Lemma 5 the sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

By completeness of X, there exists $x^{*} \in X$ such that $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$. We shall show that x^{*} is the unique common fixed point of the pair (T, S). Then, for any $n \in \mathbb{N}$ and for all $a \in X$ we have

$$
\begin{aligned}
d_{b}\left(x_{2 n}, T x^{*}, a\right) & =d_{b}\left(S x_{2 n-1}, T x^{*}, a\right) \\
& \preceq \lambda d_{b}\left(x_{2 n-1}, x^{*}, a\right)+\mu\left[d_{b}\left(S x_{2 n-1}, x_{2 n-1}, a\right)+d_{b}\left(x^{*}, T x^{*}, a\right)\right] \\
& \preceq \lambda d_{b}\left(x_{2 n-1}, x^{*}, a\right)+\mu\left[d_{b}\left(x_{2 n}, x_{2 n-1}, a\right)+d_{b}\left(x^{*}, T x^{*}, a\right)\right] .
\end{aligned}
$$

Using the above inequality we obtain

$$
\begin{aligned}
d_{b}\left(x^{*}, T x^{*}, a\right) \preceq & s\left[d_{b}\left(x^{*}, T x^{*}, x_{2 n}\right)+d_{b}\left(x^{*}, x_{2 n}, a\right)+d_{b}\left(x_{2 n}, T x^{*}, a\right)\right] \\
= & s\left[d_{b}\left(x^{*}, x_{2 n}, T x^{*}\right)+d_{b}\left(x^{*}, x_{2 n}, a\right)\right. \\
& +\lambda d_{b}\left(x_{2 n-1}, x^{*}, a\right)+\mu\left[d_{b}\left(x_{2 n}, x_{2 n-1}, a\right)+d_{b}\left(x^{*}, T x^{*}, a\right)\right] .
\end{aligned}
$$

The above inequality implies that

$$
\begin{aligned}
(e-s \mu) d_{b}\left(x^{*}, T x^{*}, a\right) \preceq & s\left[d_{b}\left(x^{*}, x_{2 n}, T x^{*}\right)+d_{b}\left(x^{*}, x_{2 n}, a\right)\right. \\
& \left.+\lambda d_{b}\left(x_{2 n-1}, x^{*}, a\right)+\mu d_{b}\left(x_{2 n}, x_{2 n-1}, a\right)\right] .
\end{aligned}
$$

Again, since $\rho(\mu)<\frac{1}{s}$ we have

$$
\begin{aligned}
d_{b}\left(x^{*}, T x^{*}, a\right) \preceq & s(e-s \mu)^{-1}\left[d_{b}\left(x^{*}, x_{2 n}, T x^{*}\right)+d_{b}\left(x^{*}, x_{2 n}, a\right)\right. \\
& \left.+\lambda d_{b}\left(x_{2 n-1}, x^{*}, a\right)+\mu d_{b}\left(x_{2 n}, x_{2 n-1}, a\right)\right]
\end{aligned}
$$

Since $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, the sequences:

$$
\left\{d_{b}\left(x_{n}, x^{*}, a\right)\right\} \text { and }\left\{d_{b}\left(x_{2 n}, x_{2 n-1}, a\right)\right\}
$$

are c-sequences for all $a \in X$. Therefore, by Proposition 3 the sequence formed by the right hand side of the above inequality is also a c-sequence. Therefore, it follows from the last inequality that $\left\{d_{b}\left(x^{*}, T x^{*}, a\right)\right\}$ is a c-sequence for all $a \in X$, and so, there exists $n_{2} \in \mathbb{N}$ such that $d_{b}\left(x^{*}, T x^{*}, a\right) \ll c$ for all $n>n_{2}$ and for all $a \in X$. It shows that $d_{b}\left(x^{*}, T x^{*}, a\right)=\theta$ for all $a \in X$. Thus, $T x^{*}=x^{*}$, i.e., x^{*} is a fixed point of T.

By Proposition 5 it follows that x^{*} is the unique common fixed point of the pair (T, S).

Example 3. Let $X=\{(a, 0): a \in[0, \infty)\} \cup\{(0, b)\}$, where $b>0$ is fixed; and $A=C_{\mathbb{R}}^{1}[0,1]$ be the Banach algebra with the norm $\|x(t)\|=\|x(t)\|_{\infty}+\left\|x^{\prime}(t)\right\|_{\infty}$, the point-wise multiplication and the unit $e(t)=1$ for all $t \in[0,1]$. Let $P=\{\psi \in$ $C_{\mathbb{R}}^{1}[0,1]: \psi(t) \geq 0$ for all $\left.t \in[0,1]\right\}$ be the solid cone in A. Define the mapping $d_{b}: X \times X \times X \rightarrow P$ as the $\frac{4}{b^{2}} e^{t}$ times the square of the area of triangle formed by the vertices $x, y, z \in X$ in \mathbb{R}^{2}, where $t \in[0,1]$, e.g.

$$
d_{b}((a, 0),(c, 0),(0, b))=(a-c)^{2} e^{t}
$$

Then $\left(X, d_{b}, s\right)$ is a complete cone b_{2}-metric space over Banach algebra A with $s=2$. Define two mapping $T, S: X \rightarrow X$ by:

$$
T(a, 0)=\left\{\begin{array}{ll}
\frac{1}{4}(a, 0), & \text { if } a \in \mathbb{Q} ; \\
(0,0), & \text { otherwise; }
\end{array} \quad S(a, 0)= \begin{cases}\frac{1}{4}(a, 0), & \text { if } a \in \mathbb{R} \backslash \mathbb{Q} ; \\
(0,0), & \text { otherwise }\end{cases}\right.
$$

and $T(0, b)=S(0, b)=(0,0)$. Then by some routine calculations one can see that the pair (T, S) is a generalized (λ, μ)-Reich pair with $\lambda=\frac{1}{16}, \mu=\frac{1}{9}$. Thus, all the conditions of Theorem 6 are satisfied, and so, there exists a unique common fixed point of the pair (T, S). Indeed, $(0,0)$ is the unique common fixed point of the pair (T, S).

Corollary 7. Let $\left(X, d_{b}, s\right)$ be a complete cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a generalized (λ, μ)-Reich contraction. Then the mapping T has unique fixed point in X.

Proof. Taking $S=T$ in Theorem 6, the result follows.
The following corollary is an improvement of the fixed point result of Fernandez et al. [6] (see Remark 4).

Corollary 8. Let $\left(X, d_{b}, s\right)$ be a complete cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a mapping satisfying the following condition:

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \kappa d_{b}(x, y, a)+\lambda d(T x, x, a)+\mu d_{b}(T y, y, a) \tag{13}
\end{equation*}
$$

for all $x, y, a \in X$, where $\kappa, \mu, \rho \in P$ such that $s \rho(\kappa)+s \rho(\lambda)+s \rho(\mu)<1$ and κ, λ, μ commute. Then the mapping T has unique fixed point in X.

Proof. For any fixed pair x, y in X, since d_{b} is symmetric, interchange the role of x and y in (13) we obtain

$$
\begin{equation*}
d_{b}(T x, T y, a) \preceq \kappa d_{b}(x, y, a)+\lambda d(T y, y, a)+\mu d_{b}(T x, x, a) . \tag{14}
\end{equation*}
$$

It follows from (13) and (14) that:

$$
\begin{aligned}
d_{b}(T x, T y, a) & \preceq \kappa d_{b}(x, y, a)+\frac{\lambda+\mu}{2}\left[d(T x, x, a)+d_{b}(T y, y, a)\right] \\
& =\kappa d_{b}(x, y, a)+\nu\left[d(T x, x, a)+d_{b}(T y, y, a)\right]
\end{aligned}
$$

where $\nu=\frac{\lambda+\mu}{2}$. Since $s \rho(\kappa)+s \rho(\mu)+s \rho(\mu)<1$, we have

$$
\begin{aligned}
\rho(\kappa)+2 \rho(\nu) & =\rho(\kappa)+2 \rho\left(\frac{\lambda+\mu}{2}\right) \\
& =\rho(\kappa)+\rho(\lambda+\mu) \\
& \leq \rho(\kappa)+\rho(\lambda)+\rho(\mu) \\
& <\frac{1}{s} .
\end{aligned}
$$

Thus, T is a generalized (κ, ν)-Reich contraction. Now result follows from Corollary 7.

Corollary 9. Let $\left(X, d_{b}, s\right)$ be a complete cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a generalized λ-Banach contraction. Then the mapping T has unique fixed point in X.

Proof. Taking $\mu=\theta$ and $S=T$ in Theorem 6, the result follows.
Corollary 10. Let $\left(X, d_{b}, s\right)$ be a complete cone b_{2}-metric space over Banach algebra A and $T: X \rightarrow X$ be a generalized μ-Kannan contraction. Then the mapping T has unique fixed point in X.

Proof. Taking $\lambda=\theta$ and $S=T$ in Theorem 6, the result follows.
Conflict of Interest. On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

[1] B. Singh, S. Jain and P. Bhagat, Cone 2-metric space and fixed point theorem of contractive mappings. Comment. Math., Vol. 52, no. 2, (2012), 143-151.
[2] G. Jungck, S. Radenović, S. Radojević, V. Rakócević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl. Vol. 57, (2009), 13 pages.
[3] H. Çakall, A. Sönmez, Ç. Genç, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., Vol. 25, (2012), 429-433.
[4] H. Liu and S.-Y. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl., Vol. 2013, (2013), 10 pages.
[5] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., Vol. 30, (1989), 26-37.
[6] J. Fernandez, N. Malviya, K. Saxena, Cone b_{2}-metric spaces over Banach algebra with applications, São Paulo J. Math. Sci., Vol. 11, no. 1, (2017), 221-239.
[7] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Vol. 332, (2007), 1468-1476.
[8] M. Dordević, D. Dorić, Z. Kadelburg, S. Radenović, D. Spasić, Fixed point results under c-distance in tvs-cone metric spaces, Fixed Point Theory Appl. Vol. 2011, (2011), 9 pages.
[9] N. Hussian, M.H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., Vol. 62, no. 4, (2011) 1677-1684.
[10] S.Gähler, 2-metricsche Räume und ihre topologische strukture, Math. Nachr., Vol. 26, (1963), 115-148.
[11] S.Gähler,Über die Uniformisierbarkeit 2-metricsche Räume, Math. Nachr., 28, (1965), 235-244.
[12] S.Gähler, Zur geometric 2-metricsche Räume, Revne Roumaine der Mathem. Pures et Appliques, 11, (1966), 665-667.
[13] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica Et Informatica Universitatis Ostraviensis Vol. 1, no. 1, (1993), 5-11.
[14] S. Radenović, B.E. Rhoades, Fixed point theorem for two non-self mappings in cone metric spaces, Comput. Math. Appl., 57, (2009), 1701-1707.
[15] S. Xu, S.Radenovic, Fixed point theorems of generalized Lipschitz mappings on cone metric spaces over Banach, algebras without assumption of normality, Fixed Point Theory Appl., Vol. 2014, (2014), 12 pages.
[16] T. Wang, J. Yin, Q. Yan, Fixed point theorems on cone 2-metric spaces over Banach algebras and an application, Fixed Point Theory Appl., 2015, (2015), 13 pages.
[17] V.H. Badshah, P. Bhagat, S. Shukla, Some fixed point results on $(\varphi, L, \mathfrak{m})$-weak contraction in cone 2-metric spaces, Asia Pacific Journal of Mathematics, Vol. 3, no. 1, (2016), 24-37.
[18] W.S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., Vol. 72, no. 5, (2010) 2259-2261.
[19] Y. Feng, W. Mao, The equivalence of cone metric spaces and metric spaces, Fixed Point Theory, Vol. 11, no. 2, (2010) 259-264.
[20] Z. Mustafa, V. Parvaneh, J.R. Roshan, Z. Kadelburg, b_{2}-Metric spaces and some fixed point theorems, Fixed Point Theory and Applications, Vol. 2014, (2014), 24 pages.
[21] Z. Kadelburg, S. Radenović, V. Rakočević, A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., Vol. 24, (2011), 370374.
[22] Z. Kadelburg, M. Pavlović, S. Radenović, Common fixed point theorems for ordered contractions and quasi-contractions in ordered cone metric spaces, Comput. Math. Appl., Vol. 59, (2010) 3148-3159.
[23] Z. Kadelburg, S. Radenović, A note on various types of cones and fixed point results in cone metric spaces. Asian J. Math. Appl., Vol. 2013, (2013), 7 pages.

V. H. Badshah

School of Studies in Mathematics,
Vikram University,
Ujjain, (M.P.), India
email: vhbadshah@yahoo.co.in
Prakash Bhagat
Department of Applied Mathematics,, NMIMS, Shirpur,
India
email: prakash1175@yahoo.com
Satish Shukla
Department of Applied Mathematics, Shri Vaishnav Institute of Technology \& Science(M.P.)
Gram Baroli, Sanwer Road, Indore , 453331 India
email:satishmathematics@yahoo.co.in

