# A CLASS OF $\beta$-UNIFORMLY UNIVALENT FUNCTIONS DEFINED BY SALAGEAN TYPE $Q$-DIFFERENCE OPERATOR 

M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali

Abstract. In this paper, using the Salagean $q$-difference operator, we define a class of $\beta$-uniformly functions and obtain coefficient estimates, distortion theorems, radii of close -to- convexity, starlikeness and convexity for functions in this class. Further we determine partial sums results for the functions class.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic function, Salagean type $q$-difference, uniformly functions, distortion, partial sums.

## 1. Introduction

Let $S$ be the class of analytic and univalent functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad z \in \mathbb{U}=\{z: z \in \mathbb{C}:|z|<1\} \tag{1.1}
\end{equation*}
$$

and $T$ be the subclass of $S$ consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; z \in \mathbb{U}\right) . \tag{1.2}
\end{equation*}
$$

Also let $S^{*}(\alpha)$ and $C(\alpha)$ denote the subclasses of $S$ which are, respectively, starlike and convex functions of order $\alpha, 0 \leq \alpha<1$, satisfying

$$
\begin{equation*}
S^{*}(\alpha)=\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, 0 \leq \alpha<1 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C(\alpha)=\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, 0 \leq \alpha<1 . \tag{1.4}
\end{equation*}
$$

For convenience, we write $S^{*}(0)=S^{*}$ and $C(0)=C \quad$ (see Robertson [19] and Srivastava and Owa [29]).

From (1.3) and (1.4) we have

$$
\begin{equation*}
f(z) \in C(\alpha) \Longleftrightarrow z f^{\prime}(z) \in S^{*}(\alpha) \tag{1}
\end{equation*}
$$

Let
$T^{*}(\alpha)=S^{*}(\alpha) \cap T$ and $K(\alpha)=C(\alpha) \cap T$ (see Silverman [29]).
Goodman ([11] and [12]) defined the following subclasses of $S^{*}(C)$.
Definition 1. A function $f(z)$ is uniformly starlike (convex) in $\mathbb{U}$ if $f(z)$ is in $S^{*}(C)$ and has the property that for every circular are $\gamma$ contained in $\mathbb{U}$, with center $\zeta$ also in $\mathbb{U}$, the arc $f(\gamma)$ is starlike (convex) with respect to $f(\zeta)$. The classes of uniformly starlike and convex functions are denoted by $U S T$ and $U C V$, respectively (for details see [11] and [12])).

$$
\begin{equation*}
f(z) \in U C V \Leftrightarrow \Re\left\{1+(z-\zeta) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0,(z, \zeta) \in \mathbb{U} \times \mathbb{U} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f(z) \in U S T \Leftrightarrow \Re\left\{\frac{f(z)-f(\zeta)}{(z-\zeta) f^{\prime}(z)}\right\} \geq 0, \quad(z, \zeta) \in \mathbb{U} \times \mathbb{U} . \tag{1.6}
\end{equation*}
$$

It is well known (see [17, 21]) that

$$
\begin{equation*}
f(z) \in U C V \Longleftrightarrow\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}, z \in \mathbb{U} . \tag{1.7}
\end{equation*}
$$

In [21], Ronning introduced the new class of starlike functions related to $U C V$ by

$$
\begin{equation*}
f(z) \in S_{p} \Longleftrightarrow\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}, z \in \mathbb{U} . \tag{1.8}
\end{equation*}
$$

Further Ronning [20], generalized the class $S_{p}$ by introducing a parameter $\alpha$ by:
Definition 2. [20] A function $f(z)$ of the form (1.1) is in the class $S_{p}(\alpha)$ if it satisfies

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \Re\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}(-1 \leq \alpha<1, z \in \mathbb{U}) \tag{1.9}
\end{equation*}
$$

and $f(z) \in U C V(\alpha)$ if and only if $z f^{\prime}(z) \in S_{p}(\alpha)$.
By $\beta-U C V(0 \leq \beta<\infty)$, we denote the class of all $\beta$-uniformly convex functions introduced by Kanas and Wisniowska [15]. Recall that a function $f(z) \in S$
M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions
is said to be $\beta$-uniformly convex in $\mathbb{U}$ if the image of every circular arc contained in $\mathbb{U}$ with center at $\zeta$, where $|\zeta| \leq \beta$, is convex. Note that the class $1-U C V$ coincides with the class $U C V$.

It is known that $f(z) \in \beta-U C V$ if and only if it satisfies the following condition:

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in \mathbb{U}, 0 \leq \beta<\infty) \tag{1.10}
\end{equation*}
$$

The class $\beta-U S T(0 \leq \beta<\infty)$, of $\beta$-uniformly starlike functions (see [16]) is associated with $\beta-U C V$ by the relation

$$
\begin{equation*}
f(z) \in \beta-U C V \Leftrightarrow z f^{\prime}(z) \in \beta-U S T . \tag{1.11}
\end{equation*}
$$

Thus, the class $\beta-U S T$, with $0 \leq \beta<\infty$, is ths subclass of $S$ satisfies the following condition:

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \quad(z \in \mathbb{U}, 0 \leq \beta<\infty) \tag{1.12}
\end{equation*}
$$

For $f(z) \in S$, Salagean [23] ( see also [3]) defined the operator:

$$
\begin{align*}
& D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
& D^{n} f(z)=D\left(D^{n-1} f(z)\right) \\
&=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\}\right) . \tag{1.13}
\end{align*}
$$

For $0<q<1$, the Jackson's $q$-derivative of a function $f(z) \in S$ is given by (see $[1,4,7,10,14,24,25])$

$$
D_{q} f(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{(1-q) z} & \text { for } z \neq 0  \tag{1.14}\\
f^{\prime}(0) & \text { for } z=0
\end{array}\right.
$$

and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.14), we have

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.15}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} \quad(0<q<1) \tag{1.16}
\end{equation*}
$$

If $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For a function $h(z)=z^{k}$, we obtain $D_{q} h(z)=D_{q} z^{k}=$ $\frac{1-q^{k}}{1-q} z^{k-1}=[k]_{q} z^{k-1}$ and $\lim _{q \rightarrow 1^{-}} D_{q} h(z)=k z^{k-1}=h^{\prime}(z)$, where $h^{\prime}$ is the ordinary derivative of $h$.

Recently for $f \in S$, Govindaraj and Sivasubramanian [13] (also see [18]) defined the Salagean $q$-difference operator by:

$$
\begin{align*}
& D_{q}^{0} f(z)= f(z) \\
& D_{q}^{1} f(z)= z D_{q} f(z), \\
& \vdots  \tag{1.17}\\
& D_{q}^{n} f(z)=z D_{q}\left(D_{q}^{n-1} f(z)=z+\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k} \quad(0<q<1, z \in \mathbb{U}) .\right.
\end{align*}
$$

We note that $\lim _{q \rightarrow 1^{-}} D_{q}^{n} f(z)=D^{n} f(z)$, where $D^{n} f(z)$ is defined by (1.13).
For $\beta \geq 0,-1 \leq \alpha<1,0<q<1$ and $n \in \mathbb{N}_{0}$, denote by $S_{q}^{n}(\alpha, \beta)$ the subclass of $S$ satisfying

$$
\begin{equation*}
\Re\left\{\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-\alpha\right\}>\beta\left|\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right|, z \in \mathbb{U} . \tag{1.18}
\end{equation*}
$$

Let $T_{q}(n, \alpha, \beta)=S_{q}^{n}(\alpha, \beta) \cap T$. We note that
(i) $\lim _{q \rightarrow 1^{-}} T_{q}(n, \alpha, \beta)=T(n, \alpha, \beta) \quad$ (see Aouf [2]),
(ii) $T_{q}(0, \alpha, \beta)=T_{q}(\alpha, \beta)=\left\{f \in T: \Re\left\{\frac{z D_{q} f(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z D_{q} f(z)}{f(z)}\right|\right\}$;
(iii) $T_{q}(1, \alpha, \beta)=C_{q}(\alpha, \beta)=\left\{f \in T: \Re\left\{\frac{z D_{q}\left(D_{q}^{1} f(z)\right)}{D_{q}^{1} f(z)}-\alpha\right\}>\beta\left|\frac{z D_{q}\left(D_{q}^{1} f(z)\right)}{D_{q}^{1} f(z)}\right|\right\}$;
(iv) $\lim _{q \rightarrow 1^{-}} T_{q}(\alpha, \beta)=T(\alpha, \beta)=\left\{f \in T: \Re\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|\right\}$;
(v) $\lim _{q \rightarrow 1^{-}} C_{q}(\alpha, \beta)=C(\alpha, \beta)=\left\{f \in T: \Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\alpha\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|\right\} ;$
(vi) $\lim _{q \rightarrow 1^{-}} T_{q}(n, \alpha, \beta)=C(n, \alpha, \beta)=\left\{f \in T: \Re\left\{1+\frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}}-\alpha\right\}>\beta\left|\frac{z\left(D^{n} f(z)\right)^{\prime \prime}}{\left(D^{n} f(z)\right)^{\prime}}\right|\right\}$;
(vii) $T_{q}(0, \alpha, 0)=T_{q}^{*}(\alpha)=\Re\left\{\frac{z D_{q} f(z)}{f(z)}\right\}>\alpha$;
(viii) $T_{q}(1, \alpha, 0)=K_{q}(\alpha)=\Re\left\{\frac{z D_{q}\left(D_{q} f(z)\right)}{D_{q} f(z)}\right\}>\alpha$;
(ix) $\lim _{q \rightarrow 1^{-}} T_{q}^{*}(\alpha)=T^{*}(\alpha)$;
$(x) \lim _{q \rightarrow 1^{-}} K_{q}(\alpha)=K(\alpha)$.

## 2. COEFFICIENT ESTIMATES

Unless indicated, we assume that $-1 \leq \alpha<1, \beta \geq 0,0<q<1, n \in \mathbb{N}_{0}, f(z) \in T$ and $z \in \mathbb{U}$.

Theorem 1. A function $f(z) \in T_{q}(n, \alpha, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] a_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

Proof. Assume that the inequality (2.1) holds. Then it is suffices to show that

$$
\beta\left|\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right|-\Re\left\{\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right\} \leq 1-\alpha .
$$

We have

$$
\begin{aligned}
& \beta\left|\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right|-\Re\left\{\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right\} \\
\leq & (1+\beta)\left|\frac{z D_{q}\left(D_{q}^{n} f(z)\right)}{D_{q}^{n} f(z)}-1\right| \\
\leq & \frac{(1+\beta) \sum_{k=2}^{\infty}[k]_{q}^{n}\left([k]_{q}-1\right) a_{k}}{1-\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k}} .
\end{aligned}
$$

This last expression is bounded above by $(1-\alpha)$ since (2.1) holds.
Conversely we show that if $f(z) \in T_{q}(n, \alpha, \beta)$ and $z$ is real, then

$$
\frac{1-\sum_{k=2}^{\infty}[k]_{q}^{n}\left([k]_{q}\right) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k-1}}-\alpha \geq \beta\left|\frac{\sum_{k=2}^{\infty}[k]_{q}^{n}\left([k]_{q}-1\right) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k-1}}\right| .
$$

Letting $z \rightarrow 1^{-}$along the real axis, we obtain the desired inequality (2.1).
Hence the proof of Theorem 1 is completed.
Corollary 1. Let the function $f(z) \in T_{q}(n, \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]} \quad(k \geq 2) . \tag{2.2}
\end{equation*}
$$

The result is sharp for

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]} z^{k} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions

## 3. GROWTH AND DISTORTION THEOREMS

Theorem 2. Let $f(z) \in T_{q}(n, \alpha, \beta)$. Then for $0 \leq i \leq n$,

$$
\begin{equation*}
\left|D_{q}^{i} f(z)\right| \geq|z|-\frac{1-\alpha}{[2]_{q}^{n-i}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2} \tag{3.1}
\end{equation*}
$$

and

$$
\left|D_{q}^{i} f(z)\right| \leq|z|+\frac{1-\alpha}{[2]_{q}^{n-i}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2}
$$

The equalities in (3.1) and (3.2) are attained for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{[2]_{q}^{n}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]} z^{2} . \tag{3.3}
\end{equation*}
$$

Proof. Note that $f(z) \in T_{q}(n, \alpha, \beta)$ if and only if $D_{q}^{i} f(z) \in T_{q}(n-i, \alpha, \beta)$, where

$$
\begin{equation*}
D_{q}^{i} f(z)=z-\sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} z^{k} \tag{3.4}
\end{equation*}
$$

Using Theorem 1, we have

$$
\begin{aligned}
& {[2]_{q}^{n-i}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right] \sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} } \\
\leq & \sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] a_{k} \leq 1-\alpha,
\end{aligned}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} \leq \frac{1-\alpha}{\left.[2]_{q}^{n-i}[22]_{q}(1+\beta)-(\alpha+\beta)\right]} . \tag{3.5}
\end{equation*}
$$

It follows from (3.4) and (3.5) that

$$
\begin{equation*}
\left|D_{q}^{i} f(z)\right| \geq|z|-|z|^{2} \sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} \geq|z|-\frac{1-\alpha}{\left.[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2}, \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{q}^{i} f(z)\right| \leq|z|+|z|^{2} \sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} \leq|z|-\frac{1-\alpha}{\left.[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2} . \tag{3.7}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions

Finally, we note that the bounds in (3.1) and (3.2) are attained for $f(z)$ defined by

$$
\begin{equation*}
D_{q}^{i} f(z)=z-\frac{1-\alpha}{\left.[2]_{q}^{n-i}[22]_{q}(1+\beta)-(\alpha+\beta)\right]} z^{2} \quad(z \in \mathbb{U}) . \tag{3.8}
\end{equation*}
$$

This completes the proof of Theorem 2.
Corollary 2. Let $f(z) \in T_{q}(n, \alpha, \beta)$. Then

$$
\begin{equation*}
|f(z)| \geq|z|-\frac{1-\alpha}{\left.[2]_{q}^{n}[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2}, \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq|z|+\frac{1-\alpha}{\left.[2]_{q}^{n}[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2} . \tag{3.10}
\end{equation*}
$$

The sharpenss are attained for the function $f(z)$ given by (3.3).
Proof. Taking $i=0$ in Theorem 2, we can easily obtain (3.9) and (3.10).

Corollary 3. Let $f(z) \in T_{q}(n, \alpha, \beta)$. Then

$$
\begin{equation*}
\left|D_{q}^{1} f(z)\right| \geq|z|-\frac{1-\alpha}{[2]_{q}^{n-1}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2} \quad(z \in \mathbb{U}), \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{q}^{1} f(z)\right| \leq|z|+\frac{1-\alpha}{[2]_{q}^{n-1}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]}|z|^{2} \quad(z \in \mathbb{U}) . \tag{3.12}
\end{equation*}
$$

The equalities in (3.11) and (3.12) are attained for the function $f(z)$ given by (3.3). Proof. Note that $D_{q}^{1} f(z)=z D_{q} f(z)$. Hence taking $i=1$ in Theorem 2, we have the corollary.

Corollary 4. Let $f(z) \in T_{q}(n, \alpha, \beta)$. Then the unite disc $\mathbb{U}$ is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{[2]_{q}^{n}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]-(1-\alpha)}{\left.[2]_{q}^{n}[2]_{q}(1+\beta)-(\alpha+\beta)\right]} . \tag{3.13}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (3.3).

## 4. CLOSURE THEOREM

Let the functions $f_{j}(z)$ be defined, for $j=1,2, \ldots, m$, by

$$
\begin{equation*}
f_{j}(z)=z-\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad\left(a_{k, j} \geq 0, z \in \mathbb{U}\right) . \tag{4.1}
\end{equation*}
$$

Theorem 3. Let the function $f_{j}(z)$ defined by (4.1) be in the class $T_{q}(n, \alpha, \beta)$ for every $j=1,2, \ldots, m$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{m} c_{j} f_{j}(z), \tag{4.2}
\end{equation*}
$$

is also in the same class, where $c_{j} \geq 0, \sum_{j=1}^{m} c_{j}=1$.
Proof. According to (4.2), we can write

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(\sum_{j=1}^{m} c_{j} a_{k, j}\right) z^{k} . \tag{4.3}
\end{equation*}
$$

Further, since $f_{j}(z) \in T_{q}(n, \alpha, \beta)$, we get

$$
\begin{equation*}
\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] a_{k, j} \leq 1-\alpha . \tag{4.4}
\end{equation*}
$$

Hence

$$
\begin{gather*}
\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left(\sum_{j=1}^{m} c_{j} a_{k, j}\right) \\
=\sum_{j=1}^{m} c_{j}\left[\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] a_{k, j}\right] \\
\leq\left(\sum_{j=1}^{m} c_{j}\right)(1-\alpha)=1-\alpha, \tag{4.5}
\end{gather*}
$$

which implies that $h(z) \in T_{q}(n, \alpha, \beta)$. Thus we have the theorem.
Corollary 5. The class $T_{q}(n, \alpha, \beta)$ is closed under convex linear combination.

Proof. Let $f_{j}(z)$ defined by (4.1) be in the class $T_{q}(n, \alpha, \beta)$. It is sufficient to show that if

$$
\begin{equation*}
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1) \tag{4.6}
\end{equation*}
$$

then $h(z) \in T_{q}(n, \alpha, \beta)$. By, taking $m=2, c_{1}=\mu$ and $c_{2}=1-\mu(0 \leq \mu \leq 1)$ in Theorem 3, we have the corollary.

As a consequence of Corollary 5 , there exist extreme points of the class $T_{q}(n, \alpha, \beta)$.
Theorem 4. Let $f_{1}(z)=z$ and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]} z^{k} \quad(k \geq 2 ; 0 \leq \alpha<1) \tag{4.7}
\end{equation*}
$$

Then $f(z) \in T_{q}(n, \alpha, \beta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z) \tag{4.8}
\end{equation*}
$$

where $\mu_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \mu_{k}=1$.
Proof. Suppose that

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z)=z-\sum_{k=2}^{\infty} \frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]} \mu_{k} z^{k} . \tag{4.9}
\end{equation*}
$$

Then

$$
\begin{gather*}
\sum_{k=2}^{\infty} \frac{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]}{1-\alpha} \cdot \frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]} \mu_{k} \\
=\sum_{k=2}^{\infty} \mu_{k}=1-\mu_{1} \leq 1 \tag{4.10}
\end{gather*}
$$

So by Theorem $1, f(z) \in T_{q}(n, \alpha, \beta)$.
Conversely, assume that the function $f(z) \in T_{q}(n, \alpha, \beta)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{\left.[k]_{q}^{n}[k]_{q}(1+\beta)-(\alpha+\beta)\right]} \quad(k \geq 2) . \tag{4.11}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{k}=\frac{\left.[k]_{q}^{n}[k]_{q}(1+\beta)-(\alpha+\beta)\right]}{1-\alpha} a_{k} \quad(k \geq 2), \tag{4.12}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions
and

$$
\begin{equation*}
\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k}, \tag{4.13}
\end{equation*}
$$

we can see that $f(z)$ can be expressed in the form (4.8). This completes the proof of Theorem 4.

Corollary 6. The extreme points of the class $T_{q}(n, \alpha, \beta)$ are the functions $f_{k}(z)$ $(k \geq 1)$ given in Theorem 4.

## 5. RADII OF CLOSE -TO- CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 5. Let $f(z) \in T_{q}(n, \alpha, \beta)$. Then $f(z)$ is close -to- convex of order $\rho$ $(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=r_{1}(n, \alpha, \beta, \rho, q):=\inf _{k}\left[\frac{(1-\rho)\left[[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\right]}{k(1-\alpha)}\right]^{\frac{1}{(k-1)}} \quad(k \geq 2) \tag{5.1}
\end{equation*}
$$

The result is sharp, for $f(z)$ given by (2.3).
Proof. We must show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \text { for } \quad|z|<r_{1}(n, \alpha, \beta, \rho, q)
$$

From (1.2), we have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho,
$$

if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.2}
\end{equation*}
$$

But, by Theorem 1, (5.2) will be true if

$$
\left(\frac{k}{1-\rho}\right)|z|^{k-1} \leq \frac{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{\left.(1-\rho)\left[[k]_{q}^{n}[k]_{q}(1+\beta)-(\alpha+\beta)\right]\right]}{k(1-\alpha)}\right]^{\frac{1}{(k-1)}} \quad(k \geq 2) . \tag{5.3}
\end{equation*}
$$

Theorem 5 follows from (5.3).
Theorem 6. If $f(z) \in T_{q}(n, \alpha, \beta)$, then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=r_{2}(n, \alpha, \beta, \rho, q)=\inf _{k}\left[\frac{(1-\rho)\left[[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{(k-1)}} \quad(k \geq 2) . \tag{5.4}
\end{equation*}
$$

The result is sharp, with $f(z)$ given by (2.3).
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \text { for }|z|<r_{2}(n, \alpha, \beta, \rho) .
$$

We have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho,
$$

if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k-\rho}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.5}
\end{equation*}
$$

But, by Theorem 1, (5.5) will be true if

$$
\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \leq \frac{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]}{1-\alpha}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho)\left[[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{(k-1)}} \quad(k \geq 2) . \tag{5.6}
\end{equation*}
$$

Theorem 6 follows from (5.6).

Corollary 7. If $f(z) \in T_{q}(n, \alpha, \beta)$, then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=r_{3}(n, \alpha, \beta, \rho, q)=\inf _{k}\left[\frac{\left.(1-\rho)[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\right]}{k(k-\rho)(1-\alpha)}\right]^{\frac{1}{(k-1)}} \quad(k \geq 2) . \tag{5.7}
\end{equation*}
$$

The result is sharp, with $f(z)$ given by (2.3).

## 6. PARTIAL SUMS

For $f(z)$ of the form (1.1), the sequence of partial sums is given by

$$
f_{m}(z)=z+\sum_{k=2}^{m} a_{k} z^{k} \quad(m \in \mathbb{N} \backslash\{1\})
$$

Silverman [27] determined sharp lower bounds for the real part of each of $\frac{f(z)}{f_{m}(z)}$, $\frac{f_{m}(z)}{f(z)}, \frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}$ and $\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}$, when $f \in S^{*}$ or $f \in C$.

We will follow the work of Silverman [27] and also the works cited in $[5,6,8,9$, 22 and 26] on partial sums of analytic functions, to obtain our results of this section. We let

$$
\begin{equation*}
\Psi_{q, k}^{n}=\Psi_{q}^{n}(k, \alpha, \beta)=[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] . \tag{6.1}
\end{equation*}
$$

Theorem 7. If $f \in S$ satisfies the condition (2.1), then

$$
\begin{equation*}
\Re\left(\frac{f(z)}{f_{m}(z)}\right) \geq \frac{\Psi_{q, m+1}^{n}-1+\alpha}{\Psi_{q, m+1}^{n}} \quad(z \in \mathbb{U}) \tag{6.2}
\end{equation*}
$$

where

$$
\Psi_{q, k}^{n} \geq\left\{\begin{array}{cc}
1-\alpha, & \text { if } k=2,3, \ldots, m  \tag{6.3}\\
\Psi_{q, m+1}^{n}, & \text { if } k=m+1, m+2, \ldots
\end{array}\right.
$$

The result (6.2) is sharp with the function given by

$$
\begin{equation*}
f(z)=z+\frac{1-\alpha}{\Psi_{q, m+1}^{n}} z^{m+1} \quad(m \in \mathbb{N}) . \tag{6.4}
\end{equation*}
$$

Proof. Define the function $g(z)$ by

$$
\frac{1+g(z)}{1-g(z)}=\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\left[\frac{f(z)}{f_{m}(z)}-\frac{\Psi_{q, m+1}^{n}-1+\alpha}{\Psi_{q, m+1}^{n}}\right]
$$

$$
\begin{equation*}
=\frac{1+\sum_{k=2}^{m} a_{k} z^{k-1}+\left(\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}{1+\sum_{k=2}^{m} a_{k} z^{k-1}} . \tag{6.5}
\end{equation*}
$$

It suffices to show that $|g(z)| \leq 1$. Now from (6.5) we can write

$$
g(z)=\frac{\left(\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{m} a_{k} z^{k-1}+\left(\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}} .
$$

Hence we obtain

$$
|g(z)| \leq \frac{\left(\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right|}{2-2 \sum_{k=2}^{m}\left|a_{k}\right|-\left(\frac{\Psi_{a, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right|}
$$

Now $|g(z)| \leq 1$ if and only if

$$
2\left(\frac{\Psi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right| \leq 2-2 \sum_{k=2}^{m}\left|a_{k}\right| .
$$

or, equivalently,

$$
\sum_{k=2}^{m}\left|a_{k}\right|+\sum_{k=m+1}^{\infty} \frac{\Psi_{q, m+1}^{n}}{1-\alpha}\left|a_{k}\right| \leq 1
$$

From the condition (2.1), it is sufficient to show that

$$
\sum_{k=2}^{m}\left|a_{k}\right|+\sum_{k=m+1}^{\infty} \frac{\Psi_{q, m+1}^{n}}{1-\alpha}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{\Psi_{q, k}^{n}}{1-\alpha}\left|a_{k}\right|,
$$

which is equivalent to

$$
\begin{equation*}
\sum_{k=2}^{m}\left(\frac{\Psi_{q, k}^{n}-1+\alpha}{1-\alpha}\right)\left|a_{k}\right|+\sum_{k=m+1}^{\infty}\left(\frac{\Psi_{q, k}^{n}-\Psi_{q, m+1}^{n}}{1-\alpha}\right)\left|a_{k}\right| \geq 0 \tag{6.6}
\end{equation*}
$$

To see that the function given by (6.4) gives the sharp result, we observe that for $z=r e^{i \pi / m}$

$$
\frac{f(z)}{f_{m}(z)}=1+\frac{1-\alpha}{\Psi_{q, m+1}^{n}} z^{k} \rightarrow 1-\frac{1-\alpha}{\Psi_{q, m+1}^{n}}=\frac{\Psi_{q, m+1}^{n}-1+\alpha}{\Psi_{q, m+1}^{n}} \text { where } r \rightarrow 1^{-} .
$$

This completes the proof of Theorem 7.

We next determine bounds for $\frac{f_{m}(z)}{f(z)}$.
Theorem 8. If $f \in S$ of the form (1.1) satisfies the condition (2.1), then

$$
\begin{equation*}
\Re\left(\frac{f_{m}(z)}{f(z)}\right) \geq \frac{\Psi_{q, m+1}^{n}}{\Psi_{q, m+1}^{n}+1-\alpha} \quad(z \in \mathbb{U}) \tag{6.7}
\end{equation*}
$$

where $\Psi_{q, m+1}^{n} \geq 1-\alpha$ and

$$
\Psi_{q, k}^{n} \geq\left\{\begin{array}{cc}
1-\alpha, & \text { if } k=2,3, \ldots, m  \tag{6.8}\\
\Psi_{q, m+1}^{n}, & \text { if } k=m+1, m+2, \ldots
\end{array}\right.
$$

The result (6.7) is sharp with the function given by (6.4).
Proof. The proof follows by defining

$$
\frac{1+g(z)}{1-g(z)}=\frac{\Psi_{q, m+1}^{n}+1-\alpha}{1-\alpha}\left[\frac{f_{m}(z)}{f(z)}-\frac{\Psi_{q, m+1}^{n}}{\Psi_{q, m+1}^{n}+1-\alpha}\right]
$$

and much akin are to similar arguments in Theorem 7. So, we omit it.
We next turns to ratios involving derivatives.
Theorem 9. If $f \in S$ satisfies the condition (2.1), then

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}\right) \geq \frac{\Psi_{q, m+1}^{n}-(m+1)(1-\alpha)}{\Psi_{q, m+1}^{n}} \quad(z \in \mathbb{U}) \tag{6.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{\Psi_{q, m+1}^{n}}{\Psi_{q, m+1}^{n}+(m+1)(1-\alpha)} \quad(z \in \mathbb{U}) \tag{6.10}
\end{equation*}
$$

where $\Psi_{q, m+1}^{n} \geq(m+1)(1-\alpha)$ and

$$
\Psi_{q, k}^{n} \geq\left\{\begin{array}{cc}
k(1-\alpha), & \text { if } k=2,3, \ldots, m  \tag{6.11}\\
k\left(\frac{\Psi_{q, m+1}^{n}}{(m+1)}\right), & \text { if } k=m+1, m+2, \ldots
\end{array}\right.
$$

The results are sharp with the function given by (6.4).
Proof. We write

$$
\frac{1+g(z)}{1-g(z)}=\frac{\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\left[\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}-\left(\frac{\Psi_{q, m+1}^{n}-(m+1)(1-\alpha)}{\Psi_{q, m+1}^{n}}\right)\right]
$$

where

$$
g(z)=\frac{\left(\frac{\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}{2+2 \sum_{k=2}^{m} k a_{k} z^{k-1}+\left(\frac{\Psi_{m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k a_{k} z^{k-1}} .
$$

Now $|g(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{m} k\left|a_{k}\right|+\left(\frac{\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k\left|a_{k}\right| \leq 1
$$

From the condition (2.1), it is sufficient to show that

$$
\sum_{k=2}^{m} k\left|a_{k}\right|+\left(\frac{\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{\Psi_{q, k}^{n}}{1-\alpha}\left|a_{k}\right|
$$

which is equivalent to

$$
\sum_{k=2}^{m}\left(\frac{\Psi_{q, k}^{n}-k(1-\alpha)}{1-\alpha}\right)\left|a_{k}\right|+\sum_{k=m+1}^{\infty}\left(\frac{(m+1) \Psi_{q, k}^{n}-k \Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right)\left|a_{k}\right| \geq 0
$$

To prove the result (6.10), define the function $g(z)$ by

$$
\frac{1+g(z)}{1-g(z)}=\frac{(m+1)(1-\alpha)+\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\left[\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}-\frac{\Psi_{q, m+1}^{n}}{(m+1)(1-\alpha)+\Psi_{q, m+1}^{n}}\right]
$$

and by similar arguments in first part we get desired result.

## Remark 1.

(i) Putting $n=\beta=0$ in our results we get the results for the class $T_{q}^{*}(\alpha)$,
(ii) Putting $n=1$ and $\beta=0$ in our results we get the results for the class $K_{q}(\alpha)$.

Remark 2. Our results in Theorems 7, 8 and 9 , respectively, modified the results obtained by Vijaya et al. [30, Theorems 4.1, 4.2 and 4.3 with $\mu=1$, respectively].

## References

[1] M. H. Annby and Z. S. Mansour, $q$-Fractional Calculas Equations, Lecture Noes in Math., 2056, Springer-Verlag Berlin Heidelberg, 2012.
M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions
[2] M. K. Aouf, A subclass of uniformly convex functions with negative coefficients, Mathematica, Tome 52 (75), 33(2010), no. 2, 99-111.
[3] M. K. Aouf, Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., 2006 (2006), Article ID38258, 1-6.
[4] M. K. Aouf, H. E. Darwish and G. S. Salagean, On a generalization of starlike functions with negative coefficients, Romania, Math. (Cluj) 43, 66 (2001), no. 1, 3-10.
[5] M. K. Aouf, A. O. Mostafa, A. Y. Lashin and B. M. Munassar, Partial sums for a certain subclass of marmorphic univalent functions, Sarajevo J. Math., 10 (23) (2014), 161-169.
[6] M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan, Partial sums of certain of analytic functions difined by Dziok-Srivastava operator, Acta Univ. Apulensis, (2012), no. 30, 65-76.
[7] A. Aral, V. Gupta and R. P. Agarwal, Applications of $q$-Calculas in Operator Theory, Springer, New York, NY, USA, 2013.
[8] B.A. Frasin, Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir, 21 (2005), 135-145.
[9] B.A. Frasin and G. Murugusundaramoorthy, Partial sums of certain analytic and univalent functions, Mathematica, Tome 53 (75), (2011), no. 2, 131-142.
[10] G. Gasper and M. Rahman, Basic hypergeometric series, Combridge Univ. Press, Cambrididge, U. K., (1990).
[11] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[12] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364 - 370.
[13] M. Govindaraj and S. Sivasubramanian, On a class of analytic function related to conic domains involving $q$-calculus, Analysis Math., 43 (3) (2017), no. 5, 475487.
[14] F. H. Jackson, On $q$-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 (1908), 253 - 281.
[15] S. Kanas and A. Wisniowska, Conic regions and $k$-uniformly convexity, J. Comput. Appl. Math., 104 (1999), 327 - 336.
[16] S. Kanas and A. Wisniowska, Conic regions and starlike functions, Rev. Roum. Math. Pures Appl., 45, 4 (2000), 647 - 657.
[17] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57 (1997), 165 - 175.
[18] G. Murugusundaramoorthy and K. Vijaya, Subclasses of $b i$-univalent functions defined by Salagean type $q$ - difference operator, arXiv:1710.00143v 1 [ Math. CV] 30 Sep (2017).
M.K. Aouf, A.O. Mostafa and F.Y. Al-Quhali - Uniformly univalent functions
[19] M. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
[20] F. Ronning, On starlike functions associated with the parabolic regions, Ann. Marae Curie-Sklodowska sect. A, 45 (1991), no. 14, 117-122.
[21] F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), $189-196$.
[22] T. Rosy, K. G. Subramanian and G. Murugusundaramoorthy, Neighborhoods and partial sums of starlike functions based on Ruscheweyeh derivatives, J. Ineq. Pure Appl. Math., 64 (2003), no. 4, Art., 4, 1 - 8.
[23] G. Salagean, Subclasses of univalent functions, Lecture note in Math., SpringerVerlag, 1013 (1983), 362 - 372.
[24] T. M. Seoudy and M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstract and Appl. Anal. 2014 (2014), 1-7.
[25] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of $q$-convex functions of complex order, J. Math. Inequal, 10 (2016), no. 1, 135-145.
[26] T. Sheil-Small. A note on partial sums of convex schlicht functions, Bull. London Math. Soc., 2 (1970), 165 - 168.
[27] H. Silverman, Partial sums of starlike and convex functions, J. Math. Appl., 209 (1997), 221 - 227.
[28] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), no. 1, 109 - 116.
[29] H.M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[30] K. Vijaya, G. Murugusundaramoorthy and S. Yalcin, Certain class of analytic functions involving Salagean type $q$-difference operator, Konuralp J. Math., 6 (2018), no. 2, 264-271.
M. K. Aouf, A. O. Mostafa and F. Y. Al-Quhali Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt. email: mkaouf127@yahoo.com email: adelaeg254@yahoo.com email: fyalquhali89@gmail.com

