COEFFICIENT ESTIMATES FOR BI-CONCAVE FUNCTIONS OF SAKAGUCHI TYPE

Hatun Özlem GÜney

Abstract. In this study, a new class $\mathcal{C} \mathcal{S}_{\Sigma}^{p, q}(s, t, \alpha)$ of analytic and bi-concave functions with Sakaguchi type in the open unit disc were presented. The estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found for functions belonging to this class.

2010 Mathematics Subject Classification: Primary 30C45, secondary 30C50.
Keywords: Analytic function, Sakaguchi function, bi-univalent function, concave function.

1. Introduction, Preliminaries and Definition

Let $\mathbb{C}, \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$ and \mathbb{R} denote the set of complex numbers, the extended complex plain and the set of real numbers respectively. Let \mathbb{D} denote the open unit disk. Let \mathcal{A} indicate the class of analytic functions in $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ given by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

normalized by the condition $f(0)=0=f^{\prime}(0)-1$. Let \mathcal{S} be the set of all normalized analytic functions in \mathcal{A} which are univalent in \mathbb{D}.

A univalent function $f: \mathbb{D} \rightarrow \overline{\mathbb{C}}$ is called concave when $f(\mathbb{D})$ is concave, i.e. $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is convex. Concave univalent functions have already been studied in detail by several authors (see [1, 2, 3, 4, 7]).

A function $f: \mathbb{D} \rightarrow \mathbb{C}$ is called a member of concave univalent functions with an opening angle $\pi \alpha$ at infinity for $\alpha \in(1,2]$ if f satisfies the conditions given below:

1. f is analytic in \mathbb{D} which has normalization condition $f(0)=0=f^{\prime}(0)-1$. Additionaly, $f(1)=\infty$.
2. f maps \mathbb{D} conformally onto a set whose complement is convex with respect to \mathbb{C}.
3. The opening angle of $f(\mathbb{D})$ at infinity is less than or equal to $\pi \alpha, \alpha \in(1,2]$.

Let us denote the class of concave univalent functions of order β by $C_{\beta}(\alpha)$.
The analytic characterization for functions in $C_{\beta}(\alpha)$ are as follows : For $\alpha \in(1,2]$ and $\beta \in[0,1), f \in C_{\beta}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re} P_{f}(z)>\beta, \quad \forall z \in \mathbb{D} \tag{2}
\end{equation*}
$$

for

$$
P_{f}(z)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-1-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right] \quad \text { and } \quad f(0)=0=f^{\prime}(0)-1 .
$$

Also each $f \in C_{\beta}(\alpha)$ has the Taylor expansion given by (1). Especially, for $\beta=0$, we can obtain the class of concave univalent functions $C_{0}(\alpha)$ which was studied in [2]. The closed set $\overline{\mathbb{C}} \backslash f(\mathbb{D})$ is convex and unbounded for $f \in C_{0}(\alpha), \alpha \in(1,2]$.

Now we define the class of concave functions with Sakaguchi type and order β by $C S_{\beta}(s, t, \alpha)$ as follows:
For $\alpha \in(1,2], \beta \in[0,1), s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1, f \in C S_{\beta}(s, t, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re} P_{f}(z)>\beta, \quad \forall z \in \mathbb{D}, \tag{3}
\end{equation*}
$$

for

$$
P_{f}(z)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)^{\prime}\right.}{(f(s z)-f(t z))^{\prime}}\right] .
$$

It is obvious that $C S_{\beta}(1,0, \alpha) \equiv C_{\beta}(\alpha)$.
For all $f \in \mathcal{S}$, the Koebe $1 / 4$ theorem [8] confirms that the image of \mathbb{D} under each univalent function $f \in \mathcal{S}$ covers a disk of radius $1 / 4$. Hence, each $f \in \mathcal{A}$ has an inverse f^{-1}, described by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{D})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) .
$$

If f is univalent and $g=f^{-1}$ is univalent in \mathbb{D}, the function $f \in \mathcal{A}$ is known to be bi-univalent in \mathbb{D}. If f given by (1) is bi-univalent, then $g=f^{-1}$ can be arranged in the form of Taylor expansion given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\cdots \tag{4}
\end{equation*}
$$

Also, a function f is bi-concave if both f and f^{-1} are concave.
Let us denote Σ the class of all bi-univalent functions in \mathbb{D}. Lewin [10] investigated the class Σ and showed that $\left|a_{2}\right|<1.51$ for the function $f(z) \in \Sigma$. Also, several researchers obtained the coefficient boundaries for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of bi-univalent functions for some subclasses of the class Σ in $[9,12,13]$. In addition, certain subclasses of bi-univalent functions, and also univalent functions consisting of strongly starlike, starlike and convex functions were studied by Brannan and Taha [5]. Some properties of bi-convex, bi-univalent and bi-starlike function classes have already been investigated by Brannan and Taha [5]. Furthermore, estimations for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ were found by Bulut [6] for bi-starlike functions. The class of bi-concave functions was studied by Sakar and Güney in [11].

Now, we define the definition of bi-concave functions of Sakaguchi type as follows:
Definition 1.The function f in (1) is called $\sum_{C S_{\beta}(s, t, \alpha)}$ if the conditions given below are satisfied: $f \in \Sigma$ and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right]\right\}>\beta \quad, z \in \mathbb{D} \text { and } 0 \leq \beta<1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right]\right\}>\beta \quad, w \in \mathbb{D} \text { and } 0 \leq \beta<1 \tag{6}
\end{equation*}
$$

where g is given by (4) and $s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1$. In other words, $\sum_{C S_{\beta}(s, t, \alpha)}$ is the class of bi-concave functions of Sakaguchi type and order β.

It is obvious that $\sum_{C S_{\beta}(1,0, \alpha)} \equiv \sum_{C_{\beta}(\alpha)} \quad$ (see [11]).
We next define the following subclass of \mathcal{A}, analogous to the definition given by Xu et al. [14].
Definition 2. Let us define the functions $p, q: \mathbb{D} \rightarrow \mathbb{C}$ satisfying the following condition

$$
\min \{\operatorname{Re}(p(z)), \operatorname{Re}(q(z))\}>0 \quad(z \in \mathbb{D}) \text { and } p(0)=q(0)=1
$$

Hatun Özlem GÜNEY - Coefficient Estimates for Bi-Concave functions ...

Also let the function f, defined by (1.1), be in \mathcal{A}. Then $f \in \mathcal{C} \mathcal{S}_{\Sigma}^{p, q}(s, t, \alpha)$ if the following conditions are satisfied: $f \in \Sigma$ and

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right] \in p(\mathbb{D}),(z \in \mathbb{D}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right] \in q(\mathbb{D}),(w \in \mathbb{D}) \tag{8}
\end{equation*}
$$

where the g is given in (4) and $s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1$.
Remark. If we let

$$
\begin{equation*}
p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad q(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{D}) \tag{9}
\end{equation*}
$$

in the class $\mathcal{C} \mathcal{S}_{\Sigma}^{p, q}(s, t, \alpha)$ then we have $\sum_{C S_{\beta}(s, t, \alpha)}$.
The aim of this paper is to estimate the initial coefficients for the bi-concave functions of Sakaguchi type in \mathbb{D}.

2. Initial Coefficient Boundary for $\left|a_{2}\right|$ and $\left|a_{3}\right|$

The estimations of initial coefficients for the class $\mathcal{C} \mathcal{S}_{\Sigma}^{p, q}(s, t, \alpha)$ of bi-concave functions of Sakaguchi type are presented in this section.
Theorem 1. If the function $f(z)$ given by (1) is in $\mathcal{C} \mathcal{S}_{\Sigma}^{p, q}(s, t, \alpha)$ then

$$
\begin{array}{r}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{1}{\left|\left[4-2 u_{2}\right]\right|^{2}}\left\{(\alpha+1)^{2}+\frac{\left(\alpha^{2}-1\right)}{2}\left[\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right]+\frac{(\alpha-1)^{2}}{8}\left[\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}\right]\right\}}\right. \\
\quad ; \sqrt{\left.\frac{1}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|}\left\{\frac{(\alpha-1)}{2}\left[\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]+4(\alpha+1)\right\}\right\}} \tag{10}
\end{array}
$$

and

$$
\begin{aligned}
& \qquad\left|a_{3}\right| \leq \min \left\{\frac{(\alpha+1)^{2}}{\left|4-2 u_{2}\right|^{2}}+\frac{(\alpha-1)}{8\left|9-3 u_{3}\right|}\left(\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right)\right. \\
& +\frac{\left(\alpha^{2}-1\right)}{2\left|4-2 u_{2}\right|^{2}}\left(\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right)+\frac{(\alpha-1)^{2}}{8\left|4-2 u_{2}\right|^{2}}\left(\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}\right) \\
& ; \frac{4}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|} \times
\end{aligned}
$$

$$
\begin{equation*}
\left.\left[(\alpha+1)+\frac{(\alpha-1)}{4\left|9-3 u_{3}\right|}\left(\left|\left(9-3 u_{3}\right)-u_{2}\left(4-2 u_{2}\right)\right|\left|p^{\prime \prime}(0)\right|+\left|u_{2}\left(4-2 u_{2}\right)\right|\left|q^{\prime \prime}(0)\right|\right)\right]\right\} \tag{11}
\end{equation*}
$$

where $u_{n}=\sum_{k=1}^{n} s^{n-k} t^{k-1}, s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1$.
Proof. Firstly, we can write the argument inequalities in 7 and 8 in their equivalent forms as follows:

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right]=p(z) \quad(z \in \mathbb{D}) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right]=q(w) \quad(w \in \mathbb{D}) . \tag{13}
\end{equation*}
$$

In addition, $p(z)$ and $q(w)$ can be expended to Taylor-Maclaurin series as given below respectively

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots
$$

and

$$
q(w)=1+q_{1} w+q_{2} w^{2}+.
$$

Now upon equating the coefficients of $\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right]$ with those of $p(z)$ and the coefficients of $\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right]$ with those of $q(w)$, we can write $p(z)$ and $q(w)$ as follows.

$$
\begin{equation*}
p(z)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right]=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=\frac{2}{\alpha-1}\left[\frac{\alpha+1}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right]=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\ldots \tag{15}
\end{equation*}
$$

Since

$$
\begin{aligned}
\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}} & =\frac{1+\sum_{n=2}^{\infty} n^{2} a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} n a_{n} u_{n} z^{n-1}} \\
& =1+\left[4-2 u_{2}\right] a_{2} z+\left(\left[9-3 u_{3}\right] a_{3}-2 u_{2}\left[4-2 u_{2}\right] a_{2}^{2}\right) z^{2}+\ldots
\end{aligned}
$$

where $u_{n}=\sum_{k=1}^{n} s^{n-k} t^{k-1}$ and $\frac{1+z}{1-z}=1+2 \sum_{n=1}^{\infty} z^{n}=1+2 z+2 z^{2}+2 z^{3}+\ldots$ we obtain that

$$
\frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1+z}{1-z}-\frac{(s-t)\left(z f^{\prime}(z)\right)^{\prime}}{(f(s z)-f(t z))^{\prime}}\right]
$$

$$
\begin{aligned}
& =\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2}-1+(\alpha+1) z+(\alpha+1) z^{2}+\ldots-\left[4-2 u_{2}\right] a_{2} z-\left(\left[9-3 u_{3}\right] a_{3}-2 u_{2}\left[4-2 u_{2}\right] a_{2}^{2}\right) z^{2}+\ldots\right] \\
& =\frac{2}{(\alpha-1)}\left[\frac{(\alpha-1)}{2}+\left((\alpha+1)-\left[4-2 u_{2}\right] a_{2}\right) z+\left((\alpha+1)-\left(\left[9-3 u_{3}\right] a_{3}-2 u_{2}\left[4-2 u_{2}\right] a_{2}^{2}\right) z^{2}+\ldots\right]\right. \\
& =1+\frac{2\left[(\alpha+1)-\left[4-2 u_{2}\right] a_{2}\right]}{(\alpha-1)} z+\frac{2\left[(\alpha+1)-\left[9-3 u_{3}\right] a_{3}+2 u_{2}\left[4-2 u_{2}\right] a_{2}^{2}\right]}{(\alpha-1)} z^{2}+\ldots .
\end{aligned}
$$

Then

$$
\begin{equation*}
p_{1}=\frac{2\left[(\alpha+1)-\left[4-2 u_{2}\right] a_{2}\right]}{(\alpha-1)} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{2\left[(\alpha+1)-\left[9-3 u_{3}\right] a_{3}+2 u_{2}\left[4-2 u_{2}\right] a_{2}^{2}\right]}{(\alpha-1)} \tag{17}
\end{equation*}
$$

From (4) and (6), we have

$$
\begin{aligned}
\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}} & =\frac{1-4 a_{2} w+9\left(2 a_{2}^{2}-a_{3}\right) w^{2}+\ldots}{1-2 u_{2} a_{2} w+3 u_{3}\left(2 a_{2}^{2}-a_{3}\right) w^{2}} \\
& =1+\left[2 u_{2}-4\right] a_{2} w+\left[\left(9-3 u_{3}\right)\left(2 a_{2}^{2}-a_{3}\right)+2 u_{2}\left(2 u_{2}-4\right) a_{2}^{2}\right] w^{2}+\ldots
\end{aligned}
$$

where $u_{n}=\sum_{k=1}^{n} s^{n-k} t^{k-1}$ and we know $\frac{1-w}{1+w}=1+2 \sum_{n=1}^{\infty}(-1)^{n} w^{n}=1-2 w+$ $2 w^{2}-2 w^{3}+\ldots$. Then from $q(w)$ given by (15), we have

$$
\begin{aligned}
& \frac{2}{\alpha-1}\left[\frac{(\alpha+1)}{2} \frac{1-w}{1+w}-\frac{(s-t)\left(w g^{\prime}(w)\right)^{\prime}}{(g(s w)-g(t w))^{\prime}}\right]=\frac{2}{(\alpha-1)}\left[\frac{(\alpha+1)}{2}-(\alpha+1) w+(\alpha+1) w^{2}-\ldots\right. \\
& \left.-1-\left[2 u_{2}-4\right] a_{2} w-\left[\left(9-3 u_{3}\right)\left(2 a_{2}^{2}-a_{3}\right)+2 u_{2}\left(2 u_{2}-4\right) a_{2}^{2}\right] w^{2}+\ldots\right] \\
& =1-\frac{2\left[(\alpha+1)+\left[2 u_{2}-4\right] a_{2}\right]}{(\alpha-1)} w+\frac{2\left[(\alpha+1)-\left[\left(9-3 u_{3}\right)\left(2 a_{2}^{2}-a_{3}\right)+2 u_{2}\left(2 u_{2}-4\right) a_{2}^{2}\right]\right]}{(\alpha-1)} w^{2}+\ldots
\end{aligned}
$$

So we can obtain q_{1} and q_{2} as follows

$$
\begin{gather*}
q_{1}=-\frac{2\left[(\alpha+1)+\left[2 u_{2}-4\right] a_{2}\right]}{(\alpha-1)} \tag{18}\\
q_{2}=\frac{2\left[(\alpha+1)-\left[\left(9-3 u_{3}\right)\left(2 a_{2}^{2}-a_{3}\right)+2 u_{2}\left(2 u_{2}-4\right) a_{2}^{2}\right]\right]}{(\alpha-1)} \tag{19}
\end{gather*}
$$

From (16) and(18) we obtain

$$
\begin{equation*}
p_{1}=-q_{1} \tag{20}
\end{equation*}
$$

and
$a_{2}^{2}=\frac{(\alpha+1)^{2}}{\left[4-2 u_{2}\right]^{2}}-\frac{\left(\alpha^{2}-1\right)}{2\left[4-2 u_{2}\right]^{2}}\left[p_{1}-q_{1}\right]+\frac{(\alpha-1)^{2}}{8\left[4-2 u_{2}\right]^{2}}\left[p_{1}^{2}+q_{1}^{2}\right]$
or
$a_{2}^{2}=\frac{1}{\left[4-2 u_{2}\right]^{2}}\left\{(\alpha+1)^{2}-\frac{\left(\alpha^{2}-1\right)}{2}\left[p_{1}-q_{1}\right]+\frac{(\alpha-1)^{2}}{8}\left[p_{1}^{2}+q_{1}^{2}\right]\right\}$.
Also, from (17) and (19) we obtain that
$a_{2}^{2}=\frac{(1-\alpha)}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}\left[p_{2}+q_{2}\right]+\frac{4(\alpha+1)}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}$
or
$a_{2}^{2}=\frac{1}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}\left\{(1-\alpha)\left[p_{2}+q_{2}\right]+4(\alpha+1)\right\}$.
Therefore, we find from (21) and (22)
$\left|a_{2}\right|^{2}=\frac{1}{\left|\left[4-2 u_{2}\right]\right|^{2}}\left\{(\alpha+1)^{2}+\frac{\left(\alpha^{2}-1\right)}{2}\left[\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right]+\frac{(\alpha-1)^{2}}{8}\left[\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}\right]\right\}$.
and
$\left|a_{2}\right|^{2}=\frac{1}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|}\left\{\frac{(\alpha-1)}{2}\left[\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right]+4(\alpha+1)\right\}$.
So we obtain the upper bound of $\left|a_{2}\right|$ as stated in (10).
Now, to obtain the upper bound for the coefficient $\left|a_{3}\right|$ we use (17) and (19). So we obtain
$(\alpha-1)\left(p_{2}-q_{2}\right)=4\left[9-3 u_{3}\right] a_{2}^{2}-4\left[9-3 u_{3}\right] a_{3}$.
From (21), we find
$4\left[9-3 u_{3}\right] a_{3}=-(\alpha-1)\left(p_{2}-q_{2}\right)+\frac{4\left[9-3 u_{3}\right]}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}\left\{(1-\alpha)\left[p_{2}+q_{2}\right]+4(\alpha+1)\right\}$
or
$a_{3}=-\frac{(\alpha-1)}{4\left[9-3 u_{3}\right]}\left(p_{2}-q_{2}\right)+\frac{1}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}\left\{(1-\alpha)\left[p_{2}+q_{2}\right]+4(\alpha+1)\right\}$
$\Rightarrow a_{3}=\frac{4(\alpha+1)}{\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}$

> Hatun Özlem GÜNEY - Coefficient Estimates for Bi-Concave functions ...

$$
\begin{equation*}
-\frac{8(\alpha-1)}{4\left[9-3 u_{3}\right]\left[4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right]}\left[\left[\left(9-3 u_{3}\right)-u_{2}\left(4-2 u_{2}\right)\right] p_{2}+\left[u_{2}\left(4-2 u_{2}\right)\right] q_{2}\right] . \tag{23}
\end{equation*}
$$

We thus find that

$$
\begin{aligned}
& \left|a_{3}\right| \leq \frac{4}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|} \times \\
& \quad\left[(\alpha+1)+\frac{(\alpha-1)}{4\left|9-3 u_{3}\right|}\left(\left|\left(9-3 u_{3}\right)-u_{2}\left(4-2 u_{2}\right)\right|\left|p^{\prime \prime}(0)\right|+\left|u_{2}\left(4-2 u_{2}\right)\right|\left|q^{\prime \prime}(0)\right|\right)\right] .
\end{aligned}
$$

Also, we obtain from (22)

$$
\begin{gather*}
4\left[9-3 u_{3}\right] a_{3}=-(\alpha-1)\left(p_{2}-q_{2}\right)+\frac{4\left[9-3 u_{3}\right]}{\left[4-2 u_{2}\right]^{2}}\left\{(\alpha+1)^{2}-\frac{\left(\alpha^{2}-1\right)}{2}\left[p_{1}-q_{1}\right]+\frac{(\alpha-1)^{2}}{8}\left[p_{1}^{2}+q_{1}^{2}\right]\right\} \\
\Rightarrow a_{3}=\frac{(\alpha+1)^{2}}{\left[4-2 u_{2}\right]^{2}}-\frac{(\alpha-1)}{4\left[9-3 u_{3}\right]}\left(p_{2}-q_{2}\right)-\frac{\left(\alpha^{2}-1\right)}{2\left[4-2 u_{2}\right]^{2}}\left(p_{1}-q_{1}\right)+\frac{(\alpha-1)^{2}}{8\left[4-2 u_{2}\right]^{2}}\left(p_{1}^{2}+q_{1}^{2}\right) . \tag{24}
\end{gather*}
$$

We thus find that $\left|a_{3}\right| \leq \frac{(\alpha+1)^{2}}{\left|4-2 u_{2}\right|^{2}}+\frac{(\alpha-1)}{8\left|9-3 u_{3}\right|}\left(\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|\right)+\frac{\left(\alpha^{2}-1\right)}{2\left|4-2 u_{2}\right|^{2}}\left(\left|p^{\prime}(0)\right|+\left|q^{\prime}(0)\right|\right)+\frac{(\alpha-1)^{2}}{8\left|4-2 u_{2}\right|^{2}}\left(\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}\right)$.
So, the proof of Theorem 1 is completed.
If we set

$$
p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad q(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{D})
$$

in Theorem 1, we can obtain the following corollary.
Corollary 1. Let f given by (1) be in the class $\sum_{C S_{\beta}(s, t, \alpha)} \quad(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{4\{(\alpha-1)(1-\beta)+(\alpha+1)\}}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|}}
$$

and

$$
\begin{aligned}
& \left|a_{3}\right| \leq \frac{4}{\left|4\left(9-3 u_{3}\right)-8 u_{2}\left(4-2 u_{2}\right)\right|} \times \\
& \quad\left[(\alpha+1)+\frac{(\alpha-1)}{\left|9-3 u_{3}\right|}\left(\left|\left(9-3 u_{3}\right)-u_{2}\left(4-2 u_{2}\right)\right|+\left|u_{2}\left(4-2 u_{2}\right)\right|\right)(1-\beta)\right]
\end{aligned}
$$

where $u_{n}=\sum_{k=1}^{n} s^{n-k} t^{k-1}, s, t \in \mathbb{C}$ with $s \neq t,|t| \leq 1$.
Last of all, if we take $s=1$ and $t=0$ in Theorem 1 and Corollary 1 , we can obtain Theorem 2.1 and Corollary 3.1 in [11] respectively.

Hatun Özlem GÜNEY - Coefficient Estimates for Bi-Concave functions ...

References

[1] Altınkaya Ş, Yalçın S., General Properties of Multivalent Concave Functions Involving Linear Operator of Carlson-Shaffer Type, Comptes rendus de l'Académie bulgare des Sciences, 2016; 69, 12: 1533-1540.
[2] Avkhadiev FG, Wirths KJ, Concave schlicht functions with bounded opening angle at infinity, Lobachevskii J. Math. 2005; 17: 3-10.
[3] Avkhadiev FG, Pommerenke Ch, Wirths KJ, Sharp inequalities for the coefficient of concave schlicht functions, Comment. Math. Helv., 2006; 81: 801-807.
[4] Bayram H, Altınkaya Ş, General Properties of Concave Functions Defined by the Generalized Srivastava-Attiya Operator, Journal of Computational Analysis and Applications,2017; 23,3: 408-416.
[5] Brannan DA, Taha TS, On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math. 1986; 2, 31: 70-77.
[6] Bulut S, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math.2013; 43, 2: 59-65.
[7] Cruz L, Pommerenke Ch, On concave univalent functions, Complex Var. Elliptic Equ. 2007; 52: 153-159.
[8] Duren PL. Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
[9] Frasin BA, Aouf MK, New subclasses of bi-univalent functions, Appl. Math. Lett. 2011; 24: 1569-1573.
[10] Lewin M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 1967 ; 18: 63-68.
[11] Sakar FM, Güney HÖ, Coefficient Estimates For Bi-Concave Functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.2019; 68, 1: 53-60.
[12] Srivastava HM, Mishra AK, Gochhayat P, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 2010; 23: 1188-1192.
[13] Xu QH, Xiao HG, Srivastava HM, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput. 2012; 23,218: 11461-11465.
[14] Xu QH, Gui YC, Srivastava HM. Coefficinet estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 2012; 25:990-994.

Hatun Özlem Güney
Department of Mathematics, Faculty of Science,

Hatun Özlem GÜNEY - Coefficient Estimates for Bi-Concave functions ...

University of Dicle,
Diyarbakır, Turkey
email: ozlemg@dicle.edu.tr

