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1. Introduction

Let A be the class of consisting of functions f(z) of the form

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1} and satisfy the
normalization condition f(0) = f ′(0)− 1 = 0. Further, we denote by S the subclass
of A consisting of functions of the form (1) which are also univalent in U . Further,
we denote by T the subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2

|an|zn. (2)

A function f ∈ S of the form (1) is said to be starlike of order α, if and only if

<
{
zf ′(z)

f(z)

}
> α, z ∈ U,

and is said to be convex of order α, if and only if

<
{

1 +
zf ′′(z)

f ′(z)

}
> α, z ∈ U.

25

http://www.uab.ro/auajournal/


S. Porwal – Some Sufficient Conditions on Analytic Functions Associated . . .

The classes of all starlike and convex functions of order α are denoted by S∗(α)
and C(α), respectively, studied by Robertson [12].

In 1997, Bharti et al. [2] introduced the following subclasses of analytic univalent
functions in the following way
A function f of the form (1) is in α− ST (β), if it satisfies the following condition

<
{
zf ′(z)

f(z)

}
≥ α

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+ β, α ≥ 0, 0 ≤ β < 1, (3)

and f ∈ α− UCV (β) if and only if zf ′ ∈ α− ST (β).
By specialzing the parameters in α − UCV (β) and α − ST (β) we obtain the

following known subclasses of S studied earlier by various researchers.

1. α− UCV (0) ≡ α− UCV studied by Kanas and Wisniowska [5]

2. α− ST (0) ≡ α− ST studied by Kanas and Wisniowska [6].

3. 1− UCV (0) ≡ UCV studied by Goodman [3]

4. 1− ST (0) ≡ SP studied by Goodman [4].

5. 0− UCV (β) ≡ C(β) and 0− ST (β) ≡ S∗(β) studied by Robertson [12].

Ruscheweyh [13] introduced the operator Dµ : A → A defined by the Hadamard
product

Dµf(z) = f(z) ∗ z

(1− z)µ+1
, (µ ≥ −1, z ∈ U), (4)

which implies that

Dnf(z) =
z(zn−1f(z))(n)

n!
, (n ∈ N0 = {0, 1, 2, . . .}).

We observe that the power series of Dµf(z) for the function f of the form (1) in
view of (4) is given by

Dµf(z) = z +

∞∑
n=2

Γ(n+ µ)

Γ(1 + µ)(n− 1)!
anz

n, (z ∈ U).

Using the Ruscheweyh derivative Kanas and Yuguchi [7] introduced the class UR(µ, α)
as

UR(µ, α) =

{
f ∈ <

{
z(Dµf(z))′

Dµf(z)

}
≥ α

∣∣∣∣z(Dµf(z))′

Dµf(z)
− 1

∣∣∣∣ , α ≥ 0, z ∈ U
}
.

It is easy to see that UR(1, α) ≡ α− UCV and UR(0, α) = α− ST .

26



S. Porwal – Some Sufficient Conditions on Analytic Functions Associated . . .

The confluent hypergeometric function is given by power series

F (a; c; z) =

∞∑
n=0

(a)n
(c)n(1)n

zn,

where a, c are complex numbers such that c 6= 0,−1,−2, . . . and (a)n is the Pochham-
mer symbol defined in terms of the Gamma function, by

(a)n =
Γ(a+ n)

Γ(a)

=

{
1, if n = 0

a(a+ 1) . . . (a+ n− 1), if n ∈ N = {1, 2, 3, . . .}

is convergent for all finite value of z.
Recently, Porwal [9] introduced Poisson distribution series as follows

K (m, z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn.

The convolution (or Hadamard product) of two power series f(z) =
∑∞

n=0 anz
n

and g(z) =
∑∞

n=0 bnz
n is defined as the power series

(f ∗ g)(z) =

∞∑
n=0

anbnz
n.

Now, we consider the linear operator I(m) : A → A defined by

I(m)f = K(m, z) ∗ f(z)

= z +
∞∑
n=2

mn−1

(n− 1)!
e−manz

n.

In the present paper, motivated by the results of [9] and on connections be-
tween various subclasses of analytic univalent functions by using generalized Bessel
functions [10], hypergeometric distribution series [1], Poisson distribution series [8],
Confluent hypergeometric series [11], we establish some sufficient conditions for the
convolution operator I(m)f(z) belonging to the classes α−UCV (β) and α−ST (β).

2. Main Results

To establish our main results, we shall require the following lemmas.
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Lemma 1. ([7]) Let 0 ≤ k <∞ and let f ∈ A be of the form (1). If f ∈ UR(µ, k),
then

|an| ≤
(P1)n−1Γ(1 + µ)

Γ(n+ µ)
, n ∈ N/ {1} , (5)

where P1 = P1(k) is the coefficient of z in the function

Pk (z) = 1 +

∞∑
n=1

Pn(α)zn, (6)

which is the extremal function for the class UR(µ, k) by the range of the expression

1 + zf ′′(z)
f ′(z) , (z ∈ U), where P1 = P1(k) is given as above above by (6).

Lemma 2. ([7]) Let f ∈ A be of the form (1). If

∞∑
n=2

[n(1 + α)− (α+ β)]|an| ≤ 1− β, (7)

then f ∈ α− ST (β).

Lemma 3. ([7]) Let f ∈ A be of the form (1). If

∞∑
n=2

n[n(1 + α)− (α+ β)]|an| ≤ 1− β, (8)

then f ∈ α− UCV (β).

Theorem 4. If m > 0, f ∈ UR(µ, k) and the inequality

(1 + α)
P1m

1 + µ
F (P1 + 1; 2 + µ;m) + (1− β)F (P1; 1 + µ;m) ≤ (1− β)(em + 1), (9)

is satisfied, then I(m)f ∈ α− ST (β).

Proof. Let f be of the form (1) belong to the class UR(µ, k). To show that I(m)f ∈
α− ST (β), we have to prove that

∞∑
n=2

[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m|an| ≤ 1− β.

Since f ∈ UR(µ, k), then by Lemma 1, we have

|an| ≤
(P1)n−1Γ(1 + µ)

Γ(n+ µ)
, n ∈ N.
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Now

T1 =

∞∑
n=2

[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m|an|

≤
∞∑

n=2

[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m
∞∑

n=2

[(1 + α)(n− 1) + (1− β)]
mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m

[
(1 + α)

∞∑
n=2

mn−1

(n− 2)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)
+ (1− β)

∞∑
n=2

mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

]

= e−m

[
(1 + α)

∞∑
n=2

mn−1

(n− 2)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)
+ (1− β)

∞∑
n=2

mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

]

e−m
[
(1 + α)

P1m

1 + µ
F (P1 + 1; 2 + µ;m) + (1− β) (F (P1; 1 + µ;m)− 1)

]
≤ 1− β

by the given hypothesis.
This completes the proof of Theorem 4.

Theorem 5. If m > 0, f ∈ UR(µ, k) and the inequality

(1+α)
P1(P1 + 1)m2

(1 + µ)(2 + µ)
F (P1+2; 3+µ;m)+(3+2α−β)

P1m

1 + µ
F (P1+1; 2+µ;m)+(1−β)F (P1; 1+µ;m) ≤ (1−β)(em+1), (10)

is satisfied, then I(m)f ∈ α− UCV (β).

Proof. Let f be of the form (1) belong to the class UR(µ, k). To show that I(m)f ∈
α− UCV (β), we have to prove that

∞∑
n=2

n[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m|an| ≤ 1− β.

Since f ∈ UR(µ, k), then by Lemma 1, we have

|an| ≤
(P1)n−1Γ(1 + µ)

Γ(n+ µ)
, n ∈ N.
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Now

T2 =

∞∑
n=2

n[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m|an|

≤
∞∑

n=2

n[n(1 + α)− (α+ β)]
mn−1

(n− 1)!
e−m

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m
∞∑

n=2

[(1 + α)(n− 1)(n− 2) + (3 + 2α− β)(n− 1) + (1− β)]
mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m

[
(1 + α)

∞∑
n=2

mn−1

(n− 3)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)
+ (3 + 2α− β)

∞∑
n=2

mn−1

(n− 2)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

+(1− β)

∞∑
n=2

mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

]

= e−m
[
(1 + α)

P1(P1 + 1)m2

(1 + µ)(2 + µ)
F (P1 + 2; 3 + µ;m) + (3 + 2α− β)

P1m

1 + µ
F (P1 + 1; 2 + µ;m)

+(1− β) (F (P1; 1 + µ;m)− 1)]

≤ 1− β

by the given hypothesis.
Thus the proof of Theorem 5 is established.

Theorem 6. If m > 0, f ∈ UR(µ, k) then G(m, z) =
∫ z
0
I(m)f(t)

t dt is in α−UCV (β)
if (9) is satisfied.

Proof. It is easy to see that

G(m, z) = z +
∞∑
n=2

mn−1

n!
e−mzn.

To show that G(m, z) ∈ α− UCV (β), we have to prove that

∞∑
n=2

n[n(1 + α)− (α+ β)]
mn−1

n!
e−m|an| ≤ 1− β.

Since f ∈ UR(µ, k), then by Lemma 1, we have

|an| ≤
(P1)n−1Γ(1 + µ)

Γ(n+ µ)
, n ∈ N.
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Now

T3 =

∞∑
n=2

n[n(1 + α)− (α+ β)]
mn−1

n!
e−m|an|

≤
∞∑

n=2

n[n(1 + α)− (α+ β)]
mn−1

n!
e−m

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m
∞∑

n=2

[(1 + α)(n− 1) + (1− β)]
mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

= e−m

[
(1 + α)

∞∑
n=2

mn−1

(n− 2)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)
+ (1− β)

∞∑
n=2

mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

]

= e−m

[
(1 + α)

∞∑
n=2

mn−1

(n− 2)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)
+ (1− β)

∞∑
n=2

mn−1

(n− 1)!

(P1)n−1Γ(1 + µ)

Γ(n+ µ)

]

e−m
[
(1 + α)

P1m

1 + µ
F (P1 + 1; 2 + µ;m) + (1− β) (F (P1; 1 + µ;m)− 1)

]
≤ 1− β

by the given hypothesis.
This completes the proof of Theorem 6.
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