SOME SUFFICIENT CONDITIONS ON ANALYTIC FUNCTIONS ASSOCIATED WITH POISSON DISTRIBUTION SERIES

S. Porwal

Abstract. The main object of this paper is to obtain some sufficient conditions for the convolution operator $I(m) f(z)$ belonging to the classes $\alpha-U C V(\beta)$ and $\alpha-S T(\beta)$.

2010 Mathematics Subject Classification: 30C45.
Keywords: Harmonic, Univalent functions, Poisson Distribution Series.

1. Introduction

Let \mathcal{A} be the class of consisting of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z: z \in C$ and $|z|<1\}$ and satisfy the normalization condition $f(0)=f^{\prime}(0)-1=0$. Further, we denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions of the form (1) which are also univalent in U. Further, we denote by T the subclass of \mathcal{S} consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty}\left|a_{n}\right| z^{n} . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{S}$ of the form (1) is said to be starlike of order α, if and only if

$$
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad z \in U,
$$

and is said to be convex of order α, if and only if

$$
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad z \in U .
$$

The classes of all starlike and convex functions of order α are denoted by $S^{*}(\alpha)$ and $C(\alpha)$, respectively, studied by Robertson [12].

In 1997, Bharti et al. [2] introduced the following subclasses of analytic univalent functions in the following way A function f of the form (1) is in $\alpha-S T(\beta)$, if it satisfies the following condition

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq \alpha\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|+\beta, \quad \alpha \geq 0,0 \leq \beta<1, \tag{3}
\end{equation*}
$$

and $f \in \alpha-U C V(\beta)$ if and only if $z f^{\prime} \in \alpha-S T(\beta)$.
By specialzing the parameters in $\alpha-U C V(\beta)$ and $\alpha-S T(\beta)$ we obtain the following known subclasses of \mathcal{S} studied earlier by various researchers.

1. $\alpha-U C V(0) \equiv \alpha-U C V$ studied by Kanas and Wisniowska [5]
2. $\alpha-S T(0) \equiv \alpha-S T$ studied by Kanas and Wisniowska [6].
3. $1-U C V(0) \equiv U C V$ studied by Goodman [3]
4. $1-S T(0) \equiv S P$ studied by Goodman [4].
5. $0-U C V(\beta) \equiv C(\beta)$ and $0-S T(\beta) \equiv S^{*}(\beta)$ studied by Robertson [12].

Ruscheweyh [13] introduced the operator $D^{\mu}: \mathcal{A} \rightarrow \mathcal{A}$ defined by the Hadamard product

$$
\begin{equation*}
D^{\mu} f(z)=f(z) * \frac{z}{(1-z)^{\mu+1}}, \quad(\mu \geq-1, z \in U) \tag{4}
\end{equation*}
$$

which implies that

$$
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}, \quad\left(n \in N_{0}=\{0,1,2, \ldots\}\right)
$$

We observe that the power series of $D^{\mu} f(z)$ for the function f of the form (1) in view of (4) is given by

$$
D^{\mu} f(z)=z+\sum_{n=2}^{\infty} \frac{\Gamma(n+\mu)}{\Gamma(1+\mu)(n-1)!} a_{n} z^{n}, \quad(z \in U) .
$$

Using the Ruscheweyh derivative Kanas and Yuguchi [7] introduced the class $U R(\mu, \alpha)$ as

$$
U R(\mu, \alpha)=\left\{f \in \Re\left\{\frac{z\left(D^{\mu} f(z)\right)^{\prime}}{D^{\mu} f(z)}\right\} \geq \alpha\left|\frac{z\left(D^{\mu} f(z)\right)^{\prime}}{D^{\mu} f(z)}-1\right|, \quad \alpha \geq 0, z \in U\right\}
$$

It is easy to see that $U R(1, \alpha) \equiv \alpha-U C V$ and $U R(0, \alpha)=\alpha-S T$.

The confluent hypergeometric function is given by power series

$$
F(a ; c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}(1)_{n}} z^{n},
$$

where a, c are complex numbers such that $c \neq 0,-1,-2, \ldots$ and $(a)_{n}$ is the Pochhammer symbol defined in terms of the Gamma function, by

$$
\begin{aligned}
(a)_{n} & =\frac{\Gamma(a+n)}{\Gamma(a)} \\
& = \begin{cases}1, & \text { if } n=0 \\
a(a+1) \ldots(a+n-1), & \text { if } n \in N=\{1,2,3, \ldots\}\end{cases}
\end{aligned}
$$

is convergent for all finite value of z.
Recently, Porwal [9] introduced Poisson distribution series as follows

$$
K(m, z)=z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} z^{n}
$$

The convolution (or Hadamard product) of two power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ is defined as the power series

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

Now, we consider the linear operator $I(m): \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{aligned}
I(m) f & =K(m, z) * f(z) \\
& =z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} a_{n} z^{n} .
\end{aligned}
$$

In the present paper, motivated by the results of [9] and on connections between various subclasses of analytic univalent functions by using generalized Bessel functions [10], hypergeometric distribution series [1], Poisson distribution series [8], Confluent hypergeometric series [11], we establish some sufficient conditions for the convolution operator $I(m) f(z)$ belonging to the classes $\alpha-U C V(\beta)$ and $\alpha-S T(\beta)$.

2. Main Results

To establish our main results, we shall require the following lemmas.

Lemma 1. ([7]) Let $0 \leq k<\infty$ and let $f \in \mathcal{A}$ be of the form (1). If $f \in U R(\mu, k)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N /\{1\} \tag{5}
\end{equation*}
$$

where $P_{1}=P_{1}(k)$ is the coefficient of z in the function

$$
\begin{equation*}
P_{k}(z)=1+\sum_{n=1}^{\infty} P_{n}(\alpha) z^{n} \tag{6}
\end{equation*}
$$

which is the extremal function for the class $U R(\mu, k)$ by the range of the expression $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}, \quad(z \in U)$, where $P_{1}=P_{1}(k)$ is given as above above by (6).

Lemma 2. ([7]) Let $f \in \mathcal{A}$ be of the form (1). If

$$
\begin{equation*}
\sum_{n=2}^{\infty}[n(1+\alpha)-(\alpha+\beta)]\left|a_{n}\right| \leq 1-\beta \tag{7}
\end{equation*}
$$

then $f \in \alpha-S T(\beta)$.
Lemma 3. ([7]) Let $f \in \mathcal{A}$ be of the form (1). If

$$
\begin{equation*}
\sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)]\left|a_{n}\right| \leq 1-\beta \tag{8}
\end{equation*}
$$

then $f \in \alpha-U C V(\beta)$.
Theorem 4. If $m>0, f \in U R(\mu, k)$ and the inequality

$$
\begin{equation*}
(1+\alpha) \frac{P_{1} m}{1+\mu} F\left(P_{1}+1 ; 2+\mu ; m\right)+(1-\beta) F\left(P_{1} ; 1+\mu ; m\right) \leq(1-\beta)\left(e^{m}+1\right) \tag{9}
\end{equation*}
$$

is satisfied, then $I(m) f \in \alpha-S T(\beta)$.
Proof. Let f be of the form (1) belong to the class $U R(\mu, k)$. To show that $I(m) f \in$ $\alpha-S T(\beta)$, we have to prove that

$$
\sum_{n=2}^{\infty}[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m}\left|a_{n}\right| \leq 1-\beta .
$$

Since $f \in U R(\mu, k)$, then by Lemma 1 , we have

$$
\left|a_{n}\right| \leq \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N .
$$

Now

$$
\begin{aligned}
T_{1}= & \sum_{n=2}^{\infty}[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m}\left|a_{n}\right| \\
& \leq \sum_{n=2}^{\infty}[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m} \sum_{n=2}^{\infty}[(1+\alpha)(n-1)+(1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m}\left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}+(1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right] \\
& =e^{-m}\left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}+(1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right] \\
& e^{-m}\left[(1+\alpha) \frac{P_{1} m}{1+\mu} F\left(P_{1}+1 ; 2+\mu ; m\right)+(1-\beta)\left(F\left(P_{1} ; 1+\mu ; m\right)-1\right)\right] \\
& \leq 1-\beta
\end{aligned}
$$

by the given hypothesis.
This completes the proof of Theorem 4.
Theorem 5. If $m>0, f \in U R(\mu, k)$ and the inequality
$(1+\alpha) \frac{P_{1}\left(P_{1}+1\right) m^{2}}{(1+\mu)(2+\mu)} F\left(P_{1}+2 ; 3+\mu ; m\right)+(3+2 \alpha-\beta) \frac{P_{1} m}{1+\mu} F\left(P_{1}+1 ; 2+\mu ; m\right)+(1-\beta) F\left(P_{1} ; 1+\mu ; m\right) \leq(1-\beta)\left(e^{m}+1\right), \quad(10)$
is satisfied, then $I(m) f \in \alpha-U C V(\beta)$.
Proof. Let f be of the form (1) belong to the class $U R(\mu, k)$. To show that $I(m) f \in$ $\alpha-U C V(\beta)$, we have to prove that

$$
\sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m}\left|a_{n}\right| \leq 1-\beta
$$

Since $f \in U R(\mu, k)$, then by Lemma 1 , we have

$$
\left|a_{n}\right| \leq \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N
$$

Now

$$
\begin{aligned}
T_{2}= & \sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m}\left|a_{n}\right| \\
& \leq \sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m} \sum_{n=2}^{\infty}[(1+\alpha)(n-1)(n-2)+(3+2 \alpha-\beta)(n-1)+(1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m}\left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-3)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}+(3+2 \alpha-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right. \\
& \left.+(1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right] \\
& =e^{-m}\left[(1+\alpha) \frac{P_{1}\left(P_{1}+1\right) m^{2}}{(1+\mu)(2+\mu)} F\left(P_{1}+2 ; 3+\mu ; m\right)+(3+2 \alpha-\beta) \frac{P_{1} m}{1+\mu} F\left(P_{1}+1 ; 2+\mu ; m\right)\right. \\
& \left.+(1-\beta)\left(F\left(P_{1} ; 1+\mu ; m\right)-1\right)\right] \\
& \leq 1-\beta
\end{aligned}
$$

by the given hypothesis.
Thus the proof of Theorem 5 is established.
Theorem 6. If $m>0, f \in U R(\mu, k)$ then $G(m, z)=\int_{0}^{z} \frac{I(m) f(t)}{t} d t$ is in $\alpha-U C V(\beta)$ if (9) is satisfied.

Proof. It is easy to see that

$$
G(m, z)=z+\sum_{n=2}^{\infty} \frac{m^{n-1}}{n!} e^{-m} z^{n}
$$

To show that $G(m, z) \in \alpha-U C V(\beta)$, we have to prove that

$$
\sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m}\left|a_{n}\right| \leq 1-\beta
$$

Since $f \in U R(\mu, k)$, then by Lemma 1 , we have

$$
\left|a_{n}\right| \leq \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N
$$

Now

$$
\begin{aligned}
T_{3}= & \sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m}\left|a_{n}\right| \\
& \leq \sum_{n=2}^{\infty} n[n(1+\alpha)-(\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m} \sum_{n=2}^{\infty}[(1+\alpha)(n-1)+(1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\
& =e^{-m}\left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}+(1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right] \\
& =e^{-m}\left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}+(1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{\left(P_{1}\right)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)}\right] \\
& e^{-m}\left[(1+\alpha) \frac{P_{1} m}{1+\mu} F\left(P_{1}+1 ; 2+\mu ; m\right)+(1-\beta)\left(F\left(P_{1} ; 1+\mu ; m\right)-1\right)\right] \\
& \leq 1-\beta
\end{aligned}
$$

by the given hypothesis.
This completes the proof of Theorem 6.

References

[1] M.S. Ahmad, Q. Mehmood, W. Nazeer and A.U. Haq, An application of a Hypergeometric distribution series on certain analytic functions, Sci. Int. (Lahore), 27(4) (2015), 2989-2992.
[2] R. Bharati, R Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike funcitons, Tamkang J. Math., 28 (1997), 17-32.
[3] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1) (1991), 87-92.
[4] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(2) (1991), 364-370.
[5] S. Kanas and A Wisinowaska, Conic regions and k-uniform convexity, J. Comput Appl. Math., 105 (1999), 327-336.
[6] S. Kanas and A. Wisniowska, Conic regions and k-starlike functions, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657.
[7] S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex and starlike functions defined by generalized derivative II, Pub. Inst. Math. (Beograd) (N.S.), 69 (83) (2001), 91-100.
S. Porwal - Some Sufficient Conditions on Analytic Functions Associated ...
[8] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (7-8)(2017), 1357-1366.
[9] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014, Art. ID 984135, 3 pp.
[10] Saurabh Porwal and Moin Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43(2015), 163-172. [11] Saurabh Porwal and Shivam Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., 28 (2017), 1-8.
[12] M.S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374408.
[13] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

Saurabh Porwal
Lecturer Mathematics
Sri Radhey Lal Arya Inter College, Ehan, Hathras
(U.P.) India
email: saurabhjcb@rediffmail.com

