SOME SUFFICIENT CONDITIONS ON ANALYTIC FUNCTIONS ASSOCIATED WITH POISSON DISTRIBUTION SERIES

S. PORWAL

ABSTRACT. The main object of this paper is to obtain some sufficient conditions for the convolution operator I(m)f(z) belonging to the classes $\alpha - UCV(\beta)$ and $\alpha - ST(\beta)$.

2010 Mathematics Subject Classification: 30C45.

Keywords: Harmonic, Univalent functions, Poisson Distribution Series.

1. INTRODUCTION

Let \mathcal{A} be the class of consisting of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
(1)

which are analytic in the open unit disc $U = \{z : z \in C \text{ and } |z| < 1\}$ and satisfy the normalization condition f(0) = f'(0) - 1 = 0. Further, we denote by S the subclass of A consisting of functions of the form (1) which are also univalent in U. Further, we denote by T the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n.$$
 (2)

A function $f \in S$ of the form (1) is said to be starlike of order α , if and only if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha, \quad z \in U,$$

and is said to be convex of order α , if and only if

$$\Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > \alpha, \quad z \in U.$$

The classes of all starlike and convex functions of order α are denoted by $S^*(\alpha)$ and $C(\alpha)$, respectively, studied by Robertson [12].

In 1997, Bharti *et al.* [2] introduced the following subclasses of analytic univalent functions in the following way

A function f of the form (1) is in $\alpha - ST(\beta)$, if it satisfies the following condition

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} \ge \alpha \left|\frac{zf'(z)}{f(z)} - 1\right| + \beta, \quad \alpha \ge 0, 0 \le \beta < 1,$$
(3)

and $f \in \alpha - UCV(\beta)$ if and only if $zf' \in \alpha - ST(\beta)$.

By specialzing the parameters in $\alpha - UCV(\beta)$ and $\alpha - ST(\beta)$ we obtain the following known subclasses of S studied earlier by various researchers.

- 1. $\alpha UCV(0) \equiv \alpha UCV$ studied by Kanas and Wisniowska [5]
- 2. $\alpha ST(0) \equiv \alpha ST$ studied by Kanas and Wisniowska [6].
- 3. $1 UCV(0) \equiv UCV$ studied by Goodman [3]
- 4. $1 ST(0) \equiv SP$ studied by Goodman [4].
- 5. $0 UCV(\beta) \equiv C(\beta)$ and $0 ST(\beta) \equiv S^*(\beta)$ studied by Robertson [12].

Ruscheweyh [13] introduced the operator $D^{\mu}: \mathcal{A} \to \mathcal{A}$ defined by the Hadamard product

$$D^{\mu}f(z) = f(z) * \frac{z}{(1-z)^{\mu+1}}, \quad (\mu \ge -1, z \in U),$$
(4)

which implies that

$$D^{n}f(z) = \frac{z(z^{n-1}f(z))^{(n)}}{n!}, \quad (n \in N_0 = \{0, 1, 2, \ldots\}).$$

We observe that the power series of $D^{\mu}f(z)$ for the function f of the form (1) in view of (4) is given by

$$D^{\mu}f(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\mu)}{\Gamma(1+\mu)(n-1)!} a_n z^n, \quad (z \in U).$$

Using the Ruscheweyh derivative Kanas and Yuguchi [7] introduced the class $UR(\mu, \alpha)$ as

$$UR(\mu, \alpha) = \left\{ f \in \Re \left\{ \frac{z(D^{\mu}f(z))'}{D^{\mu}f(z)} \right\} \ge \alpha \left| \frac{z(D^{\mu}f(z))'}{D^{\mu}f(z)} - 1 \right|, \quad \alpha \ge 0, z \in U \right\}.$$

It is easy to see that $UR(1, \alpha) \equiv \alpha - UCV$ and $UR(0, \alpha) = \alpha - ST$.

The confluent hypergeometric function is given by power series

$$F(a;c;z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n(1)_n} z^n,$$

where a, c are complex numbers such that $c \neq 0, -1, -2, \ldots$ and $(a)_n$ is the Pochhammer symbol defined in terms of the Gamma function, by

$$(a)_{n} = \frac{\Gamma(a+n)}{\Gamma(a)}$$
$$= \begin{cases} 1, & \text{if } n = 0\\ a(a+1)\dots(a+n-1), & \text{if } n \in N = \{1, 2, 3, \dots\} \end{cases}$$

is convergent for all finite value of z.

Recently, Porwal [9] introduced Poisson distribution series as follows

$$K(m,z) = z + \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} z^n.$$

The convolution (or Hadamard product) of two power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ is defined as the power series

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^n.$$

Now, we consider the linear operator $I(m) : \mathcal{A} \to \mathcal{A}$ defined by

$$\begin{split} I(m)f &= K(m,z)*f(z) \\ &= z + \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} e^{-m} a_n z^n \end{split}$$

In the present paper, motivated by the results of [9] and on connections between various subclasses of analytic univalent functions by using generalized Bessel functions [10], hypergeometric distribution series [1], Poisson distribution series [8], Confluent hypergeometric series [11], we establish some sufficient conditions for the convolution operator I(m)f(z) belonging to the classes $\alpha - UCV(\beta)$ and $\alpha - ST(\beta)$.

2. MAIN RESULTS

To establish our main results, we shall require the following lemmas.

Lemma 1. ([7]) Let $0 \le k < \infty$ and let $f \in \mathcal{A}$ be of the form (1). If $f \in UR(\mu, k)$, then

$$|a_n| \le \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N/\{1\},$$
 (5)

where $P_1 = P_1(k)$ is the coefficient of z in the function

$$P_k(z) = 1 + \sum_{n=1}^{\infty} P_n(\alpha) z^n,$$
(6)

which is the extremal function for the class $UR(\mu, k)$ by the range of the expression $1 + \frac{zf''(z)}{f'(z)}$, $(z \in U)$, where $P_1 = P_1(k)$ is given as above above by (6).

Lemma 2. $([\mathcal{I}])$ Let $f \in \mathcal{A}$ be of the form (1). If

$$\sum_{n=2}^{\infty} [n(1+\alpha) - (\alpha+\beta)]|a_n| \le 1-\beta,$$
(7)

then $f \in \alpha - ST(\beta)$.

Lemma 3. ([7]) Let $f \in \mathcal{A}$ be of the form (1). If

$$\sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)]|a_n| \le 1 - \beta,$$
(8)

then $f \in \alpha - UCV(\beta)$.

Theorem 4. If m > 0, $f \in UR(\mu, k)$ and the inequality

$$(1+\alpha)\frac{P_1m}{1+\mu}F(P_1+1;2+\mu;m) + (1-\beta)F(P_1;1+\mu;m) \le (1-\beta)(e^m+1), \quad (9)$$

is satisfied, then $I(m)f \in \alpha - ST(\beta)$.

Proof. Let f be of the form (1) belong to the class $UR(\mu, k)$. To show that $I(m)f \in \alpha - ST(\beta)$, we have to prove that

$$\sum_{n=2}^{\infty} [n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} |a_n| \le 1 - \beta.$$

Since $f \in UR(\mu, k)$, then by Lemma 1, we have

$$|a_n| \le \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N.$$

Now

$$\begin{split} T_1 &= \sum_{n=2}^{\infty} [n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} |a_n| \\ &\leq \sum_{n=2}^{\infty} [n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \sum_{n=2}^{\infty} [(1+\alpha)(n-1) + (1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} + (1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} \right] \\ &= e^{-m} \left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} + (1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)} \right] \\ &= e^{-m} \left[(1+\alpha) \frac{P_1m}{1+\mu} F(P_1+1;2+\mu;m) + (1-\beta) \left(F(P_1;1+\mu;m)-1\right) \right] \\ &\leq 1-\beta \end{split}$$

by the given hypothesis.

This completes the proof of Theorem 4.

Theorem 5. If m > 0, $f \in UR(\mu, k)$ and the inequality

$$(1+\alpha)\frac{P_{1}(P_{1}+1)m^{2}}{(1+\mu)(2+\mu)}F(P_{1}+2;3+\mu;m) + (3+2\alpha-\beta)\frac{P_{1}m}{1+\mu}F(P_{1}+1;2+\mu;m) + (1-\beta)F(P_{1};1+\mu;m) \leq (1-\beta)(e^{m}+1), (10)$$
is satisfied, then $I(m)f \in \alpha - UCV(\beta).$

Proof. Let f be of the form (1) belong to the class $UR(\mu, k)$. To show that $I(m)f \in \alpha - UCV(\beta)$, we have to prove that

$$\sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} |a_n| \le 1 - \beta.$$

Since $f \in UR(\mu, k)$, then by Lemma 1, we have

$$|a_n| \le \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N.$$

Now

$$\begin{split} T_2 &= \sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} |a_n| \\ &\leq \sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{(n-1)!} e^{-m} \frac{(P_1)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \sum_{n=2}^{\infty} [(1+\alpha)(n-1)(n-2) + (3+2\alpha-\beta)(n-1) + (1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{(P_1)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-3)!} \frac{(P_1)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} + (3+2\alpha-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{(P_1)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \right] \\ &+ (1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{(P_1)_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \left[(1+\alpha) \frac{P_1(P_1+1)m^2}{(1+\mu)(2+\mu)} F(P_1+2;3+\mu;m) + (3+2\alpha-\beta) \frac{P_1m}{1+\mu} F(P_1+1;2+\mu;m) \right. \\ &+ (1-\beta) (F(P_1;1+\mu;m)-1)] \\ &\leq 1-\beta \end{split}$$

by the given hypothesis.

Thus the proof of Theorem 5 is established.

Theorem 6. If m > 0, $f \in UR(\mu, k)$ then $G(m, z) = \int_0^z \frac{I(m)f(t)}{t} dt$ is in $\alpha - UCV(\beta)$ if (9) is satisfied.

Proof. It is easy to see that

$$G(m, z) = z + \sum_{n=2}^{\infty} \frac{m^{n-1}}{n!} e^{-m} z^n.$$

To show that $G(m, z) \in \alpha - UCV(\beta)$, we have to prove that

$$\sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m} |a_n| \le 1 - \beta.$$

Since $f \in UR(\mu, k)$, then by Lemma 1, we have

$$|a_n| \le \frac{(P_1)_{n-1}\Gamma(1+\mu)}{\Gamma(n+\mu)}, \quad n \in N.$$

Now

$$\begin{split} T_{3} &= \sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m} |a_{n}| \\ &\leq \sum_{n=2}^{\infty} n[n(1+\alpha) - (\alpha+\beta)] \frac{m^{n-1}}{n!} e^{-m} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \sum_{n=2}^{\infty} [(1+\alpha)(n-1) + (1-\beta)] \frac{m^{n-1}}{(n-1)!} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \\ &= e^{-m} \left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} + (1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \right] \\ &= e^{-m} \left[(1+\alpha) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-2)!} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} + (1-\beta) \sum_{n=2}^{\infty} \frac{m^{n-1}}{(n-1)!} \frac{(P_{1})_{n-1} \Gamma(1+\mu)}{\Gamma(n+\mu)} \right] \\ &= e^{-m} \left[(1+\alpha) \frac{P_{1}m}{1+\mu} F(P_{1}+1;2+\mu;m) + (1-\beta) \left(F(P_{1};1+\mu;m)-1\right) \right] \\ &\leq 1-\beta \end{split}$$

by the given hypothesis.

This completes the proof of Theorem 6.

References

[1] M.S. Ahmad, Q. Mehmood, W. Nazeer and A.U. Haq, An application of a Hypergeometric distribution series on certain analytic functions, Sci. Int. (Lahore), 27(4) (2015), 2989-2992.

[2] R. Bharati, R Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17-32.

[3] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56(1) (1991), 87–92.

[4] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155(2) (1991), 364–370.

[5] S. Kanas and A Wisinowaska, *Conic regions and k-uniform convexity*, J. Comput Appl. Math., 105 (1999), 327-336.

[6] S. Kanas and A. Wisniowska, *Conic regions and k-starlike functions*, Rev. Roum. Math. Pure Appl., 45 (2000), 647-657.

[7] S. Kanas and T. Yaguchi, Subclasses of k-uniformly convex and starlike functions defined by generalized derivative II, Pub. Inst. Math. (Beograd) (N.S.), 69 (83) (2001), 91-100. S. Porwal – Some Sufficient Conditions on Analytic Functions Associated ...

[8] G. Murugusundaramoorthy, Subclasses of starlike and convex functions involving Poisson distribution series, Afr. Mat., 28 (7-8)(2017), 1357-1366.

[9] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014, Art. ID 984135, 3 pp.

[10] Saurabh Porwal and Moin Ahmad, Some sufficient condition for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43(2015), 163-172.

[11] Saurabh Porwal and Shivam Kumar, Confluent hypergeometric distribution and its applications on certain classes of univalent functions, Afr. Mat., 28 (2017), 1-8.

[12] M.S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374 408.

[13] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

Saurabh Porwal Lecturer Mathematics Sri Radhey Lal Arya Inter College, Ehan, Hathras (U.P.) India email: saurabhjcb@rediffmail.com