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UNIVALENT HARMONIC FUNCTIONS GENERATED BY
RUSCHEWEYH DERIVATIVES OF ANALYTIC FUNCTIONS

Om P. Ahuja, Subzar Beig and V. Ravichandran

Abstract. For λ ≥ 0, p > 0 and a normalized univalent function f defined on
the unit disk D, we consider the harmonic function defined by

Tλ,p[f ](z) =
Dλf(z) + pz(Dλf(z))′

p+ 1
+
Dλf(z)− pz(Dλf(z))′

p+ 1
, z ∈ D,

where the operator Dλ is the familiar λ-Ruscheweyh derivative operator. We find
some necessary and sufficient conditions for the univalence, starlikeness and convex-
ity as well as the growth estimate of the function Tλ,p[f ]. An extension of the above
operator is also given.
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1. Introduction

Let H denote the class of complex-valued harmonic functions f = h + ḡ defined in
the unit disk D = {z ∈ C : |z| < 1}, where h and g are analytic functions given by

h(z) = z +
∞∑
m=2

amz
m, g(z) =

∞∑
m=1

bmz
m. (1)

By Lewy’s Theorem [9], the function f = h+ ḡ ∈ H is sense-preserving if and only
if the Jacobian Jf (z) = |h′(z)|2 − |g′(z)|2 is positive, or equivalently |g′| < |h′| in D.
Let SH be the subclass of H consisting of univalent and sense-preserving functions.
A domain is said to be convex in the direction of real (or imaginary) axis if every line
parallel to the real (or imaginary) axis has a connected intersection with the domain.
The following theorem due to Clunie and Sheil-Small [5] and Sheil-Small [16] gives a
technique of constructing univalent harmonic mappings in a given direction, known
as “Shearing Method.”
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Theorem 1. Let the function f = h+ ḡ be harmonic and locally univalent function
in D. Then

(1) the function F = h − g ∈ S and F (D) is convex in the direction of real axis
⇐⇒ the function f = h + ḡ is univalent and convex in the direction of real
axis.

(2) the function F = h+ g ∈ S and F (D) is convex in the direction of imaginary
axis ⇐⇒ the function f = h + ḡ is univalent and convex in the direction of
imaginary axis.

Using Theorem 1, Clunie and Sheil-Small [5] proved that if the functions H0 and
G0 are analytic in D with H0(z) +G0(z) = z/(1− z) and G′0(z)/H

′
0(z) = −z, then

the resulting harmonic function T0 := H0 + G0 is univalent and maps D onto the
right half-plane {w ∈ C : Rew > −1/2}. In fact,

T0(z) =
1

2

(
z

1− z
+

z

(1− z)2

)
+

1

2

(
z

1− z
− z

(1− z)2

)
which may be expressed as

T0(z) =
1

2
(I(z) + zI ′(z)) +

1

2
(I(z)− zI ′(z))

where
I(z) =

z

1− z
is the analytic right-half plane mapping. The function T0 is well-known in the theory
of univalent harmonic functions and it acts extremal for many harmonic inequalities
concerning the subclass of SH consisting of convex functions.

Let A denote the class of all analytic functions f defined in D normalized by
f(0) = 0 = f ′(0) − 1 and suppose that S is its subclass consisting of univalent
functions. Motivated by the description of the right half-plane mapping T0, we
define a differential operator which is closely related to Ruscheweyh derivatives. If
f ∈ A, then for each λ ≥ 0 and p > 0, we define

Tλ,p[f ](z) =
Dλf(z) + pz(Dλf(z))′

p+ 1
+
Dλf(z)− pz(Dλf(z))′

p+ 1
, z ∈ D, (2)

where the operator Dλ : A → A is λ-Ruscheweyh derivative of

f(z) = z +

∞∑
m=2

amz
m (3)
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given by

Dλf(z) =
z

(1− z)λ+1
∗ f(z) = z +

∞∑
m=2

(λ+ 1)m−1
(m− 1)!

amz
m, (4)

where
(λ+ 1)m−1 = (λ+ 1)(λ+ 2) · · · (λ+m− 1).

Here ∗ is the convolution (or Hadamard product) of two power series of given two
functions. For properties of Ruscheweyh derivatives, one may refer to [1, 2, 13]. The
following example justify the need of the operator defined by (2).

Example 1. The operator T0(z) = T0,1[I] was introduced and studied by Clunie and
Sheil-Small[5]. In 2008, Muir [10] proved that Tp[I] = T0,p[I] is a harmonic right
half-plane mapping of D onto the right half-plane {w ∈ C : Rew > −1/(1 + p)} for
each p > 0. The operator Tp[f ] = T0,p[f ] for f ∈ S and p > 0 was studied by Muir
[11]. In [15], Ruscheweyh and Suffridge defined continuous extension of the de la
Vallee Poussin means Vµ : D −→ C, by

Vµ(z) =
µz

µ+ 1
2F1(1, 1− µ, 2 + µ,−z), µ > 0

where 2F1 is the Gaussian hypergeometric function. These authors also proved that
the mapping

Tp[Vµ] =
Vµ + pzV ′µ
p+ 1

+
Vµ − pzV ′µ
p+ 1

(5)

is a harmonic mapping of D onto a convex domain for each µ ≥ 1
2 and p ≥ 0.

2. preliminaries

Let Rλ(α) denote the class of functions f ∈ A satisfying the condition

Re

(
z(Dλf(z))′

Dλf(z)

)
> α

for some λ > −1, α < 1, and for all z ∈ D, where Dλ : A → A is the λ−Ruscheweyh
derivative operator defined by (4). The class Rλ(α) was introduced and studied by
first author in [1, 2]. In particular, note that R0(α) = S∗(α), R1(α) = K(α) are
well-known subclasses of S consisting of starlike functions of order α and convex
functions of order α respectively. Let T , T S∗(α), T K(α) and T Rλ(α) be respec-
tively subclasses of A, S∗(α), K(α) and Rλ(α) whose elements can be expressed in
the form

f(z) = z −
∞∑
m=2

|am|zm, z ∈ D. (6)
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In [1], the first author observed that the family Rλ(α) includes several other sub-
classes of T . For example, the classes R[α] ≡ R1−2α(α) and R[α, β] ≡ R1−2α(β) for
α, β < 1 were respectively, studied in [17] and [4]. Recall that a function f in R[α]
is called prestarlike of order α (see [3]).

Lemma 2. Let f be an analytic function of the form (6), λ ≥ −1 and 0 ≤ α < 1.
Then the following statements are equivalent:

(1) f ∈ T Rλ(α)

(2)

∣∣∣∣ z(Dλ+1f(z))
Dλf(z) − 1

∣∣∣∣ ≤ 1− α, z ∈ D

(3)
∑∞

m=2
(m−α)(λ+1)m−1

(1−α)(m−1)! |am| ≤ 1.

For 0 ≤ α < 1, let FS∗H(α) and FKH(α) denote the subclasses ofH, respectively,
consisting of fully starlike of order α and fully convex of order α. These classes were
studied in [12]. Recall that

FS∗H(α) =

{
f ∈ SH :

∂

∂θ

(
arg
(
f(reiθ)

))
≥ α, 0 < r < 1, 0 ≤ θ < 2π

}
FKH(α) =

{
f ∈ SH :

∂

∂θ

(
arg

(
∂

∂θ
f(reiθ)

))
≥ α, 0 < r < 1, 0 ≤ θ < 2π

}
.

Let TH , T FS∗H(α) and T FKH(α) be subclasses, respectively of H, FS∗H(α) and
FKH(α) consisting of functions f = h+ g, where

f(z) = z −
∞∑
m=2

|am|zm, g(z) =
∞∑
m=1

|bm|zm, z ∈ D. (7)

Lemma 3. [7] Let α ∈ [0, 1) and the function f = h + ḡ be given by (1). If the
inequality

∞∑
m=1

(
m− α
1− α

|am|+
m+ α

1− α
|bm|

)
≤ 2, a1 = 1, (8)

holds, then f ∈ FS∗H(α). However, if the function f = h + ḡ is given by (7), then
the coefficient inequality (8) is necessary and sufficient for f to be in T FS∗H(α).

Lemma 4. [8] Let α ∈ [0, 1) and the function f = h + ḡ be given by (1). If the
inequality

∞∑
m=1

(
m(m− α)

1− α
|am|+

m(m+ α)

1− α
|bm|

)
≤ 2, a1 = 1, (9)

holds, then f ∈ FKH(α). However, if f = h+ ḡ is given by (7), then the coefficient
inequality (9) is necessary and sufficient for f to be in T FKH(α).
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If co-analytic part g of the function f = h+ ḡ is zero, then Lemma 3 and Lemma
4 yield the following results.

Lemma 5. Let α ∈ [0, 1) and the function f ∈ T be given by (6). Then

(a) f ∈ T S∗(α)⇐⇒
∑∞

m=2(m− α)|am| ≤ 1− α,

(b) f ∈ T K(α)⇐⇒
∑∞

m=2m(m− α)|am| ≤ 1− α.

3. Main results

The first result of this section determines the condition for the local univalence of
the operator Tλ,p[f ] defined by (2).

Lemma 6. Let p > 0, λ ≥ 0 and the function f ∈ A. Then the function Tλ,p[f ] is
locally univalent and sense-preserving in D if and only if Dλf is convex in D.

Proof. Write Tλ,p[f ] = H + Ḡ, where

H =
Dλf(z) + pz(Dλf(z))′

p+ 1
and G =

Dλf(z)− pz(Dλf(z))′

p+ 1
. (10)

In view of Lewy’s Theorem, Tλ,p[f ] is locally univalent and sense-preserving in D if
and only if |G′| < |H ′|, or equivalently if and only if

|(1− p)(Dλf(z))′ − pz(Dλf(z))′′| < |(1 + p)(Dλf(z))′ + pz(Dλf(z))′′|.

Clearly (Dλf)′ 6= 0 in D, above inequality is equivalent to∣∣∣∣1p −
(

1 +
z(Dλf(z))′′

(Dλf(z))′

)∣∣∣∣ < ∣∣∣∣1p +

(
1 +

z(Dλf(z))′′

(Dλf(z))′

) ∣∣∣∣
or

Re

(
1 +

z(Dλf(z))′′

(Dλf(z))′

)
> 0.

This last condition is equivalent to convexity of Dλf .

For λ = 0 and p > 0, we have

Corollary 7. [10] For f ∈ S, the function Tp[f ] defined in Example 1 is locally
univalent and sense-preserving in D if and only if f is convex analytic in D.
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Corollary 8. Let p > 0, λ ≥ 0 and the function f ∈ T be given by (6). Then the
function Tλ,p[f ] is locally univalent and sense-preserving in D if and only if

∞∑
m=2

m2(λ+ 1)m−1
(m− 1)!

|am| ≤ 1. (11)

Proof. In view of Lemma 6, Tλ,p[f ] is locally univalent and sense-preserving in D if
and only if

(Dλf)(z) = z −
∞∑
m=2

(λ+ 1)m−1
(m− 1)!

|am|zm,

is convex. The result now follows from Lemma 5(b).

Theorem 9. Let p > 0, λ ≥ 0 and the function f ∈ A. Then the function Tλ,p[f ]
is convex in the direction of imaginary axis if and only if Dλf is convex in D.

Proof. Suppose Tλ,p[f ] = H +G, where H and G are given by (10). The necessary
part is obviously true by Lemma 6. For the sufficient part, note that the analytic
function

M(z) = H(z) +G(z) =
2Dλf(z)

p+ 1

satisfies

M ′ =
2

p+ 1
(Dλf(z))′ 6= 0

Re

(
1 +

zM ′′(z)

M ′(z)

)
= Re

(
1 +

z(Dλf(z))′′

(Dλf(z))′

)
> 0.

This, in particular, shows that H + G is univalent and convex in the direction of
imaginary axis. Using Theorem 1, we obtain the desired result.

Corollary 10. Let p > 0, λ ≥ 0 and the function f ∈ T be given by (6). Then
the function Tλ,p[f ] is convex in the direction of imaginary axis if and only if the
coefficient inequality

∞∑
m=2

m2(λ+ 1)m−1
(m− 1)!

|am| ≤ 1

is satisfied.

Theorem 11. Suppose 0 ≤ α < 1 and p > 1. Let the function f ∈ A is given by
(3). If the condition

∞∑
m=1

(pm2 − α)(λ+ 1)m−1
(1− α)(m− 1)!(p+ 1)

|am| ≤ 1, am = 1 (12)
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is satisfied, then the function Tλ,p[f ] ∈ FS∗H(α) and the function Dλf ∈ K. More-
over, if the function f ∈ T is given by (6), then (12) is necessary for the function
Tλ,p[f ] to be in T FS∗H(α).

Proof. Using (2) and (3), we have

Tλ,p[f ](z) =

∞∑
m=1

(1 + pm)

p+ 1

(λ+ 1)m−1
(m− 1)!

amz
m +

∞∑
m=1

(1− pm)

p+ 1

(λ+ 1)m−1
(m− 1)!

amzm.

For m ≥ 1, setting

Am =
(pm+ 1)(λ+ 1)m−1

(p+ 1)(m− 1)!
am, and Bm =

(1− pm)(λ+ 1)m−1
(p+ 1)(m− 1)!

am (13)

it can be seen that the inequality

∞∑
m=1

(
m− α
1− α

|Am|+
m+ α

1− α
|Bm|

)
≤ 2,

is equivalent to (12). By Lemma 3, Tλ,p[f ] ∈ FS∗H(α) and hence Dλf ∈ K by
Lemma 6. In order to prove necessary condition, we assume that am ≤ 0 for m ≥ 2.
It follows from (13) that Am ≤ 0 for all m ≥ 2 and Bm ≥ 0 for all m ≥ 1. Again, it
follows by Lemma 3 that (12) is satisfied if and only if Tλ,p[f ] ∈ T FS∗H(α).

In [6], Goodman proved that if f(z) = z+
∑∞

m=2 amz
m is inA and if

∑∞
m=2m

2|am| ≤
1, then f ∈ K. However, for α = 0, Theorem 11 provides the following stronger re-
sult.

Corollary 12. Under the hypothesis of Theorem 11, if the condition

∞∑
m=2

m2(λ+ 1)m−1
(m− 1)!

|am| ≤
1

p
, (14)

is satisfied, then the function Tλ,p[f ] ∈ FS∗H and the function Dλf ∈ K.

Corollary 13. If the function f(z) = z −
∑∞

m=2 p|am|zm, p ≥ 1 is in T , then
Dλf ∈ T K if and only if Tλ,p[f ] ∈ T FS∗H .

Proof. If Tλ,p[f ] ∈ T FS∗H , then Tλ,p[f ] is locally univalent. By Lemma 6, Dλf ∈
T K. Conversely, suppose that Dλf ∈ T K. Note that

Dλf(z) = z −
∞∑
m=2

p(λ+ 1)m−1
(m− 1)!

|am|zm.

It follows from Lemma 5 that Dλf ∈ T K if and only if (14) holds. By Corollary 12,
Tλ,p[f ] ∈ T FS∗H .
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Theorem 14. Under the hypothesis of Theorem 11, if the condition

∞∑
m=1

m(pm2 − α)(λ+ 1)m−1
(1− α)(p+ 1)(m− 1)!

|am| ≤ 1, a1 = 1, (15)

is satisfied, then Tλ,p[f ] ∈ FKH(α). Furthermore, if am ≤ 0 for all m ≥ 2, then the
condition (15) is necessary for Tλ,p[f ] to be in T FKH(α).

Proof. Following the proof of Theorem 11, substituting Am and Bm from (13), the
inequality

∞∑
m=1

(
m(m− α)

1− α
|Am|+

m(m+ α)

1− α
|Bm|

)
≤ 2,

is equivalent to (15). By using Lemma 4, it follows that Tλ,p[f ] ∈ FKH(α). On the
other hand, if am ≤ 0 for all m ≥ 2, it is straight forward to see that Am ≤ 0 for
m ≥ 2 and Bm ≥ 0 for m ≥ 1. Thus Tλ,p[f ] ∈ T FKH(α) if and only if (15) holds.

Theorem 15. Suppose 0 ≤ α < 1 and p ≥ 1. If a function f of the form (6) is in
T Rλ(α), then

(a)
∣∣ (Tλ,p[f ]) (z)

∣∣ ≤ 2p
p+1r + 4p(1−α)

(p+1)(2−α)r
2,

(b)
∣∣ (Tλ,p[f ]) (z)

∣∣ ≥ 2p
p+1r −

4p(1−α)
(p+1)(2−α)r

2

where |z| |= r < 1. The results are sharp.

Proof. Using (6) and (2), we obtain

∣∣(Tλ,p[f ]
)
(z)
∣∣ =

∣∣∣∣z − ∞∑
m=2

(pm+ 1)

p+ 1

(λ+ 1)m−1
(m− 1)!

|am|zm
∣∣∣∣

+

∣∣∣∣(1− p)p+ 1
z +

∞∑
m=2

(1− pm)

p+ 1

(λ+ 1)m−1
(m− 1)!

|am|zm
∣∣∣∣

≤ 2p

p+ 1
r +

2p

p+ 1

( ∞∑
m=2

m
(λ+ 1)m−1

(m− 1)!
|am|

)
r2

≤ 2p

p+ 1
r +

2p(1− α)

p+ 1

( ∞∑
m=2

(m− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2

+
2p(1− α)α

(p+ 1)(2− α)

( ∞∑
m=2

(2− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2
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≤ 2p

p+ 1
r +

2p(1− α)

p+ 1
r2

+
2p(1− α)α

(p+ 1)(2− α)

( ∞∑
m=2

(m− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2

≤ 2p

p+ 1
r +

4p(1− α)

(p+ 1)(2− α)
r2,

by using Lemma 2.
For the other inequality

∣∣(Tλ,p[f ]
)
(z)
∣∣ ≥ r − ∞∑

m=2

(pm+ 1)

p+ 1

(λ+ 1)m−1
(m− 1)!

|am|rm

− (p− 1)

p+ 1
r −

∞∑
m=2

(pm− 1)(λ+ 1)m−1
(p+ 1)(m− 1)!

|am|rm

≥ 2

p+ 1
r − 2p

p+ 1

( ∞∑
m=2

m(λ+ 1)m−1
(m− 1)!

|am|
)
r2

=
2

p+ 1
r − 2p(1− α)

p+ 1

( ∞∑
m=2

(m− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2

− 2p(1− α)α

(p+ 1)(2− α)

( ∞∑
m=2

(2− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2

≥ 2

p+ 1
r − 2p(1− α)

p+ 1
r2

− 2p(1− α)α

(p+ 1)(2− α)

( ∞∑
m=2

(m− α)(λ+ 1)m−1
(1− α)(m− 1)!

|am|
)
r2

≥ 2

p+ 1
r − 2p(1− α)

p+ 1
r2 − 2p(1− α)α

(p+ 1)(2− α)
r2

≥ 2

p+ 1
r − 4p(1− α)

(p+ 1)(2− α)
r2.

4. concluding remarks

In this section, we introduce a new operator Tλ,p,α which is an extension of the
operator Tλ,p. We will give some results as remarks which are nice extensions of
some of the results in the previous section.
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For f ∈ A, λ ≥ 0, p > 0 and 0 ≤ α < 1, we define for z ∈ D,

Tλ,p,α[f ](z) =
Dλf(z) + p

(
z(Dλf(z))′ − αDλf(z)

)
1 + p(1− α)

+
Dλf(z)− p (z(Dλf(z))′ − αDλf(z))

1 + p(1− α)
.

Clearly, we see that Tλ,p,0[f ] = Tλ,p[f ].

Remark 1. Going through the lines of the proof of Lemma 6, we see Tλ,p,α[f ] is
locally univalent and sense-preserving in D if and only if Dλf is convex of order α
in D for all p > 0 and λ ≥ 0.

Remark 2. Suppose f(z) = z −
∑∞

m=2 |am|zm ∈ T . Then the operator Tλ,p,α[f ] is
locally univalent and sense-preserving in D if and only if

∞∑
m=2

m(m− α)(λ+ 1)m−1
(m− 1)!

|am| ≤ (1− α), p > 0, λ ≥ 0, 0 ≤ α < 1. (16)

Proof. In view of Remark 1, Tλ,p,α[f ] is locally univalent and sense-preserving in D
if and only if

(Dλf)(z) = z −
∞∑
m=2

(λ+ 1)m−1
(m− 1)!

|am|zm,

is convex of order α. The result now follows from Lemma 5(b).

The reader can also check the corresponding results regarding the operator Tλ,p,α
which are done for Tλ,p in the previous section.
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