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ON A THIRD ORDER DIFFERENCE EQUATION

R. Abo-Zeid

Abstract. In this paper, we solve the difference equation

xn+1 =
xnxn−2

−axn + bxn−2
, n = 0, 1, ...,

where a and b are positive real numbers and the initial values x−2, x−1 and x0 are
real numbers. We find invariant sets and discuss the global behavior of the solutions
of that equation. We show that when a > 4

27b
3, under certain conditions there exist

solutions, either periodic or converge to periodic solutions.
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1. Introduction

In their paper [9], the authors studied some special cases of the difference equation

xn+1 =
α+ βxnxn−1 + γxn−1

A+Bxnxn−1 + Cxn−1
, n = 0, 1, ...,

with nonnegative parameters and with arbitrary nonnegative initial conditions such
that the denominator is always positive. In [15], Dehghan, et al. studied the global
attractivity of the positive equilibrium of some special cases that contains at least
one quaderatic term of the second order rational difference equations

xn+1 =
Ax2

n +Bxnxn−1 + Cx2
n−1 +Dxn + Exn−1 + F

αxn + βxn−1 + γ
, n = 0, 1, ...,

which has quadratic terms in their numerators and linear terms in their denomina-
tors. In [17], the authors investigated the global behaviour of non-negative solutions
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of the rational difference equation with arbitrary delay and quadratic terms in its
numerator:

xn+1 =
Ax2

n +Bxnxn−k + Cx2
n−k +Dxn + Exn−k

αxn + βxn−k + γ
, n = 0, 1, ...,

with k ∈ {1, 2, ...}, where all parameters are non-negative, with A+B+C+D+E > 0
and γ > 0.

In [2], we have studied the behavior of the solutions of the difference equation

xn+1 =
axnxn−1

−bxn + cxn−2
, n = 0, 1, ...,

where a, b, c are positive real numbers and the initial conditions x0, x−1, x−2 are
real numbers. Also, in [6] we have studied the global behavior of the fourth order
difference equation

xn+1 =
axnxn−2

−bxn + cxn−3
, n = 0, 1, ...,

where a, b, c are positive real numbers and the initial conditions x0, x−1, x−2, x−3

are real numbers. For more publications on global behavior of the solutions and
forbidden sets, one can see [1]- [23].
In this paper, we shall determine the forbidden set, find the solution and investigate
the behavior of the solutions of the equation

xn+1 =
xnxn−2

−axn + bxn−2
, n = 0, 1, ..., (1)

where a and b are positive real numbers and the initial values x−2, x−1 and x0 are
real numbers.

2. Solution of equation (1)

The reciprocal transformation

xn =
1

yn

reduces equation (1) into the third order linear homogeneous difference equation

yn+1 − byn + ayn−2 = 0, n = 0, 1.... (2)

The characteristic equation of equation (2) is

λ3 − bλ2 + a = 0. (3)
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Clear that equation (3) has a negative real root λ0 for all values of (a, b > 0).
Therefore, the roots of equation (3) are

λ0, λ± = −λ0 − b
2
±
√

(λ0 − b)2 − 4λ0(λ0 − b)
2

.

The roots of equation (3) depends on the relation between a and b.

Lemma 1. For equation (3), we have the following:

1. If a > 4
27b

3, then equation (3) has one negative real root and two complex
conjugate roots.

2. If a = 4
27b

3, then equation (3) has one negative real root and a repeated positive
real root.

3. If a < 4
27b

3, then equation (3) has three real different roots, one of them is
negative and two positive roots.

Proof. It is sufficient to see that, the discriminant of the polynomial

p(λ) = λ3 − bλ2 + a = 0

is
4 = −4b3a+ 27a2.

We shall consider the three cases given in lemma (1).
Case a > 4

27b
3:

When a > 4
27b

3, the roots of equation (3) are

λ0 < −
b

3
, λ± = −λ0 − b

2
± i
√

4λ0(λ0 − b)− (λ0 − b)2

2
.

Then the solution of equation (1) is

xn =
1

c1λn0 + (−aλ0 )
n
2 (c2 cosnϕ+ c3 sinnϕ)

, (4)

where

|λ±| =
√
λ0(λ0 − b) =

√
−a
λ0

and ϕ = tan−1(

√
3λ0 + b

λ0 − b
) ∈]0,

π

2
[.
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Using the initials x−2, x−1 and x0, the values of c1, c2 and c3 are:

c1 = 1
∆1

(c11
1
x0

+ c12
1
x−1

+ c13
1
x−2

),

c2 = 1
∆1

(c21
1
x0

+ c22
1
x−1

+ c23
1
x−2

)

and
c3 = 1

∆1
(c31

1
x0

+ c32
1
x−1

+ c33
1
x−2

),

(5)

where

c11 =
λ0

a

√
−λ0

a
sinϕ, c12 = −λ0

a
sin 2ϕ, c13 = −

√
−λ0

a
sinϕ,

c21 = −1

a
sin 2ϕ− 1

λ2
0

√
−λ0

a
sinϕ, c22 =

λ0

a
sin 2ϕ, c23 =

√
−λ0

a
sinϕ,

c31 = −1

a
cos 2ϕ− 1

λ2
0

√
−λ0

a
cosϕ, c32 =

λ0

a
cos 2ϕ+

1

λ2
0

, c33 =

√
−λ0

a
cosϕ− 1

λ0

(6)

and

∆1 =

∣∣∣∣∣∣∣
1 1 0

1
λ0

√
−λ0

a cosϕ −
√
−λ0

a sinϕ
1
λ20

−λ0
a cos 2ϕ λ0

a sin 2ϕ

∣∣∣∣∣∣∣ . (7)

By simple calculations, we can write the solution of equation (1) as

xn =
1

α1n
x0

+ α2n
x−1

+ α3n
x−2

, (8)

where
α1n = 1

∆1
(c11λ

n
0 + c21(−aλ0 )

n
2 cosnϕ+ c31(−aλ0 )

n
2 sinnϕ),

α2n = 1
∆1

(c12λ
n
0 + c22(−aλ0 )

n
2 cosnϕ+ c32(−aλ0 )

n
2 sinnϕ)

and

α3n = 1
∆1

(c13λ
n
0 + c23(−aλ0 )

n
2 cosnϕ+ c33(−aλ0 )

n
2 sinnϕ)

(9)

are such that cij , i, j = 1, 2, 3 are given in (6).
Case a = 4

27b
3:

When a = 4
27b

3, equation (3) has a negative root λ0 = − b
3 and a repeated positive

root 2b
3 .

Then the solution of equation (1) is

xn =
1

c1(− b
3)n + c2(2b

3 )n + c3(2b
3 )nn

. (10)
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Using the initials x−2, x−1 and x0, the values of c1, c2 and c3 in this case are:

c1 = 1
∆2

(c11
1
x0

+ c12
1
x−1

+ c13
1
x−2

),

c2 = 1
∆2

(c21
1
x0

+ c22
1
x−1

+ c23
1
x−2

)

and
c3 = 1

∆2
(c31

1
x0

+ c32
1
x−1

+ c33
1
x−2

),

(11)

where

c11 = − 27

8b3
, c12 =

9

2b2
, c13 = − 3

2b
,

c21 = −27

b3
, c22 = − 9

2b2
, c23 =

3

2b
,

c31 = − 81

4b3
, c32 =

27

4b2
, c33 =

9

2b

(12)

and

∆2 =

∣∣∣∣∣∣
1 1 0

(−3
b ) ( 3

2b) −( 3
2b)

(−3
b )

2 ( 3
2b)

2 −2( 3
2b)

2

∣∣∣∣∣∣ .
By simple calculations, we can write the solution of equation (1) in this case as

xn =
1

α1n
x0

+ α2n
x−1

+ α3n
x−2

, (13)

where

α1n = 1
∆2

(c11(− b
3)n + c21(2b

3 )n + c31(2b
3 )nn,

α2n = 1
∆2

(c12(− b
3)n + c22(2b

3 )n + c32(2b
3 )nn

and

α3n = 1
∆2

(c13(− b
3)n + c23(2b

3 )n + c33(2b
3 )nn

(14)

are such that cij , i, j = 1, 2, 3 are given in (12).
Case a < 4

27b
3:

When a < 4
27b

3, the roots of equation (3) are

λ0 > −
b

3
, λ± = −λ0 − b

2
±
√

(λ0 − b)2 − 4λ0(λ0 − b)
2

,

where
λ+ > λ− > |λ0| > 0.

Then the solution of equation (1) is
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xn =
1

c1λn0 + c2λn− + c3λn+
. (15)

Using the initials x−2, x−1 and x0, the values of c1, c2 and c3 in this case are:

c1 = 1
∆3

(c11
1
x0

+ c12
1
x−1

+ c13
1
x−2

),

c2 = 1
∆3

(c21
1
x0

+ c22
1
x−1

+ c23
1
x−2

)

and
c3 = 1

∆3
(c31

1
x0

+ c32
1
x−1

+ c33
1
x−2

),

(16)

where

c11 =
λ− − λ+

λ2
−λ

2
+

, c12 =
−λ2
− + λ2

+

λ2
−λ

2
+

, c13 =
λ− − λ+

λ−λ+
,

c21 =
λ+ − λ0

λ2
+λ

2
0

, c22 =
λ2

0 − λ2
+

λ2
+λ

2
0

, c23 =
λ+ − λ0

λ+λ0
,

c31 =
λ0 − λ−
λ2

0λ
2
−

, c32 =
λ2
− − λ2

0

λ2
0λ

2
−

, c33 =
λ0 − λ−
λ0λ−

(17)

and

∆3 =

∣∣∣∣∣∣∣
1 1 1
1
λ0

1
λ−

1
λ+

1
λ20

1
λ2−

1
λ2+

∣∣∣∣∣∣∣ .
By simple calculations, we can write the solution of equation (1) in this case as

xn =
1

α1n
x0

+ α2n
x−1

+ α3n
x−2

, (18)

where

α1n = 1
∆3

(c11λ
n
0 + c21λ

n
− + c31λ

n
+),

α2n = 1
∆3

(c12λ
n
0 + c22λ

n
− + c32λ

n
+)

and
α3n = 1

∆3
(c13λ

n
0 + c23λ

n
− + c33λ

n
+)

(19)

are such that cij , i, j = 1, 2, 3 are given in (17).
Using equations (8), (13) and (18), we can write the forbidden set of equation

(1) as

F =

∞⋃
n=−2

{(x0, x−1, x−2) ∈ R3 :
α1n

x0
+
α2n

x−1
+
α3n

x−2
= 0},
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where α1n, α2n and α3n are given as follows:
α1n, α2n and α3n are given in (9), a > 4

27b
3;

α1n, α2n and α3n are given in (14), a = 4
27b

3;
α1n, α2n and α3n are given in (19), a < 4

27b
3.

3. Global behavior of equation (1)

Consider the set

D = {(x, y, z) ∈ R3 :
λ2

x
− a

y
− aλ

z
= 0},

with {
λ = λ0, a > 4

27b
3 ;

λ = − b
3 , a = 4

27b
3.

Clear that, when a = 4
27b

3, the set D can be written as

D = {(x, y, z) ∈ R3 :
9

x
− 12b

y
+

4b2

z
= 0}.

Note that, for the point (x, y, z) ∈ R3, the relation
λ20
x + a

y + aλ0
z = 0 is equivalent

to c1(x, y, z) = 0, where c1 is given by either (5) or (11) according to the relations
a > 4

27b
3 and a = 4

27b
3 respectively.

Theorem 2. The set D is an invariant for equation (1).

Proof. Let (x0, x−1, x−2) ∈ D . We show that (xk, xk−1, xk−2) ∈ D for each k ∈ N .
The proof is by induction on k. The point (x0, x−1, x−2) ∈ D, implies

λ2
0

x0
− a

x−1
− aλ0

x−2
= 0.

Now for k = 1, we have

λ2
0

x1
− a

x0
− aλ0

x−1
=

λ2
0

x0x−2
(−ax0 + bx−2)− a

x0
− aλ0

x−1

=
1

x0x−1x−2
(−aλ2

0x0x−1 + bλ2
0x−1x−2 − ax−1x−2 − aλ0x0x−2)

=
1

x0x−1x−2
(−aλ2

0x0x−1 + (λ2
0b− a)x−1x−2 − aλ0x0x−2)
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=
1

x0x−1x−2
(−aλ2

0x0x−1 + λ3
0x−1x−2 − aλ0x0x−2)

= λ0(
λ2

0

x0
− a

x−1
− aλ0

x−2
) = 0.

This implies that (x1, x0, x−1) ∈ D.
Suppose that the (xk, xk−1, xk−2) ∈ D. That is

λ2
0

xk
− a

xk−1
− aλ0

xk−2
= 0.

Then
λ2

0

xk+1
− a

xk
− aλ0

xk−1
=

λ2
0

xkxk−2
(−axk + bxk−2)− a

xk
− aλ0

xk−1

=
1

xkxk−1xk−2
(−aλ2

0xkxk−1 + bλ2
0xk−1xk−2 − axk−1xk−2 − aλ0xkxk−2)

=
1

xkxk−1xk−2
(−aλ2

0xkxk−1 + (λ2
0b− a)xk−1xk−2 − aλ0xkxk−2)

=
1

xkxk−1xk−2
(−aλ2

0xkxk−1 + λ3
0xk−1xk−2 − aλ0xkxk−2)

= λ0(
λ2

0

xk
− a

xk−1
− aλ0

xk−2
) = 0.

Therefore, (xk+1, xk, xk−1) ∈ D.
This completes the proof.

Now assume that a < 4
27b

3. We shall consider the three sets

Di = {(x, y, z) ∈ R3 :
λ2

x
− a

y
− aλ

z
= 0}, i = 1, 2, 3,

with 
λ = λ0, i=1;
λ = λ−, i=2;
λ = λ+, i=3.

By simple calculations, we can see that:
Di is equivalent to c1(x, y, z) = 0, i=1;
Di is equivalent to c2(x, y, z) = 0, i=2;
Di is equivalent to c1(x, y, z) = 0, i=3,

where ci, i = 1, 2 and 3 are given by (16).
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Theorem 3. Each set of the sets Di, i = 1, 2 and 3 is an invariant for equation
(1).

Proof. The proof is similar to that of theorem (2) and will be omitted.

Theorem 4. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2) /∈
F ∪D. If a > 4

27b
3, then we have the following:

1. If a ≥ b+ 1, then {xn}∞n=−2 converges to zero.

2. If a < b+ 1, then we have the following:

(a) If a ≥ 1, then {xn}∞n=−2 converges to zero.

(b) If a < 1, then we have the following:

i. If a2 + ab− 1 > 0, then {xn}∞n=−2 converges to zero.

ii. If a2 + ab− 1 = 0, then {xn}∞n=−2 is bounded.

iii. If a2 + ab− 1 < 0, then {xn}∞n=−2 is unbounded.

Proof. The solution of equation (1) when a > 4
27b

3 is

xn =
1

c1λn0 + (− a
λ0

)
n
2 (c2 cosnϕ+ c3 sinnϕ))

.

1. When a > b+ 1, we have −a < − 3
√
a < λ0 < −1. That is (−aλ0 )n →∞ and λn0

is unbounded.
If a = b+ 1, then we have that −a < − 3

√
a < λ0 = −1. That is (−aλ0 )n →∞ as

n→∞ and the result follows.

2. When a < b+ 1, we have that λ0 > −1.

(a) If a ≥ 1, then −a ≤ − 3
√
a ≤ −1 < λ0. That is (−aλ0 )n → ∞, from which

the result follows.

(b) If a < 1, then a < 3
√
a and we have the following:

i. If a2 + ab − 1 > 0, then λ0 > −a > − 3
√
a > −1. This implies that

λn0 → 0 and (−aλ0 )n →∞, from which the result follows.

ii. If a2 + ab− 1 = 0, then λ0 = −a > − 3
√
a > −1. That is λn0 → 0.

But as

|c1λ
n
0 + c2 cosnϕ+ c3 sinnϕ| 6= 0 for all n ≥ 0, (20)

the quantity (20) attains its infemum value say ε > 0 and the result
follows.
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iii. If a2 + ab − 1 < 0, then −a > λ0 > − 3
√
a > −1. This implies that

λn0 → 0 and (−aλ0 )n → 0, from which the result follows.

Theorem 5. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2) /∈
F ∪D. If a = 4

27b
3, then we have the following:

1. If a ≥ b+ 1, then {xn}∞n=−2 converges to zero.

2. If a < b+ 1, then we have the following:

(a) If 0 < b < 3
2 , then {xn}∞n=−2 is unbounded.

(b) If 3
2 ≤ b < 3, then {xn}∞n=−2 converges to zero.

Proof. The solution of equation (1) when a = 4
27b

3 is

xn =
1

c1(− b
3)n + c2(2b

3 )n + c3(2b
3 )nn

.

1. When a ≥ b + 1, it is sufficient to see that λ0 = − b
3 ≤ −1 and the result

follows.

2. When a < b+ 1, we have that λ0 = − b
3 > −1.

(a) If 0 < b < 3
2 , then b

3 <
1
2 and 2b

3 < 1, from which the result follows.

(b) If 3
2 ≤ b < 3, then 1

2 ≤
b
3 ≤ 1 and 1 ≤ 2b

3 ≤ 2, from which the result
follows.

Theorem 6. Let {xn}∞n=−2 be a solution of equation (1) such that (x0, x−1, x−2) /∈
F ∪D3. If a < 4

27b
3, then we have the following:

1. If a > −1 + b, then we have the following:

(a) If 0 < b < 3
2 , then {xn}∞n=−2 is unbounded.

(b) If b > 3
2 , then {xn}∞n=−2 converges to zero.

2. If a = −1 + b, then we have the following:

(a) If 1 ≤ b < 3
2 , then {xn}∞n=−2 converges to the 1

c3
.

(b) If b > 3
2 , then {xn}∞n=−2 converges to zero.
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3. If a < −1 + b, then {xn}∞n=−2 converges to zero.

Proof. Let f(λ) = λ3−bλ2 +a. It is clear that f(λ) is increasing on ]−∞[, 0∪]2b
3 ,∞[

and decreasing on ]0, 2b
3 [. The solution of equation (1) when a < 4

27b
3 is

xn =
1

c1λn0 + c2λn− + c3λn+
.

We have also

0 < |λ0| < λ− <
2b

3
< λ+.

The condition (x0, x−1, x−2) /∈ F ∪D3 ensures that c3 6= 0.

1. When a > −1 + b, we have two cases:

(a) If 0 < b < 3
2 , then 2b

3 < λ+ < 1 (otherwise a < −1 + b, which is a

contradiction). Then 0 < |λ0| < λ− < 2b
3 < λ+ < 1, from which the

result follows.

(b) If b > 3
2 , then 1 < λ− < 2b

3 < λ+ and the result follows.

2. If a = −1 + b, then either λ− = 1 or λ+ = 1.

(a) If 1 ≤ b < 3
2 , then λ+ = 1. That is 0 < |λ0| < λ− < 2b

3 < λ+ = 1. Then

xn =
1

c1λn0 + c2λn− + c3
→ 1

c3
as n→∞.

(b) If b > 3
2 , then we have 0 < |λ0| < λ− = 1 < 2b

3 < λ+, from which the
result follows.

3. If a < −1 + b, then λ− < 1 < λ+. That is λn+ →∞ and the result follows.

In the following results, we show that when a > 4
27b

3, under certain conditions
there exist solutions, either periodic or converge to periodic solutions for equation
(1).
Suppose that ϕ = p

qπ, where p and q are positive relatively prime integers such that

0 < p < q
2 .

Theorem 7. Assume that a > 4
27b

3, a < b + 1. Let {xn}∞n=−2 be a solution of
equation (1) such that (x0, x−1, x−2) /∈ D ∪ F . If a2 + ba − 1 = 0, then {xn}∞n=−2

converges to a periodic solution with prime period 2q.
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Proof. Assume that {xn}∞n=−2 is a solution of equation (1) such that (x0, x−1, x−2) /∈
D ∪ F and let the angle ϕ = p

qπ ∈]0, π2 [.

When a > 4
27b

3 and a2 + ba− 1 = 0 (λ0 = −a > −1), the solution of equation (1) is

xn =
1

c1λn0 + c2 cosnϕ+ c3 sinnϕ
.

Then we can write

x2qm+l =
1

c1λ
2qm+l
0 + c2 cos(2qm+ l)ϕ+ c3 sin(2qm+ l)ϕ

=
1

c1λ
2qm+l
0 + c2 cos lϕ+ c3 sin lϕ

, l = 1, 2, ..., 2q.

As m→∞, we get

x2qm+l → µl =
1

c2 cos lϕ+ c3 sin lϕ
, l = 1, 2, ..., 2q.

Therefore, the solution {xn}∞n=−2 converges to

{..., µ1, µ2, ..., µ2q−1, µ2q, µ1, µ2, ..., µ2q−1, µ2q, ...}. (21)

Simple calculations show that the solution (21) is a period-2q solution for equation
(1) and will be omitted.
This completes the proof.

Theorem 8. Assume that a > 4
27b

3, a < b+1 and a2 + ba−1 = 0. Let {xn}∞n=−2 be
a solution of equation (1) such that (x0, x−1, x−2) /∈ F . If (x0, x−1, x−2) ∈ D, then
{xn}∞n=−2 is a periodic solution with prime period 2q.

Proof. Assume that {xn}∞n=−2 is a solution of equation (1) such that (x0, x−1, x−2) /∈
F and let the angle ϕ = p

qπ ∈]0, π2 [.
When (x0, x−1, x−2) ∈ D, we have that c1 = 0 and the solution of equation (1) is

xn =
1

c2 cosnϕ+ c3 sinnϕ
.

Then we have

xn+2q =
1

c2 cos(n+ 2q)ϕ+ c3 sin(n+ 2q)ϕ

=
1

c2 cos(nϕ+ 2pπ) + c3 sin(nϕ+ 2pπ)

=
1

c2 cos(nϕ) + c3 sin(nϕ)

= xn.
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This completes the proof.

Example (1) Figure 1. shows that if a = b = 1√
2
, (a > 4

27b
3, a < b+1, a2+ab−1 = 0

and ϕ = 1
4π), then a solution {xn}∞n=−2 of equation (1) with initial conditions

x−2 = 2, x−1 = 0.1 and x0 = 1 converges to a period-8 solution.
Example (2) Figure 2. shows that if a = 1√

3
, b = 2√

3
(a > 4

27b
3, a < b + 1,

a2 + ab− 1 = 0 and ϕ = 1
6π), then a solution {xn}∞n=−2 of equation (1) with initial

conditions x−2 = −1
3 , x−1 = −

√
3

2 and x0 = 1 ((x−2, x−1, x0) ∈ D) is periodic with
prime period-12 solution.
Example (3) Figure 3. shows that if a = b = 1, (a > 4

27b
3, a < b+1, a2 +ab−1 > 0,

then a solution {xn}∞n=−2 of equation (1) with initial conditions x−2 = −0.2, x−1 =
2.1 and x0 = 2.82 converges to zero.
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Figure 1: xn+1 = xnxn−2
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Figure 2: xn+1 = xnxn−2
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Figure 3: xn+1 = xnxn−2
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