ON SUBCLASSES OF BI-UNIVALENT FUNCTIONS ASSOCIATED WITH THE RĂDUCANU-ORHAN DIFFERENTIAL OPERATOR

A. Patil, U. Naik

Abstract. In this paper, we obtain estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions of certain new subclasses of the bi-univalent function class Σ defined on the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, which are associated with the RăducanuOrhan differential operator. Moreover, connections to the earlier known results are indicated.

2010 Mathematics Subject Classification: 30C45.
Keywords: univalent function, bi-univalent function, bi-starlike function, differential operator, coefficient estimate.

1. Introduction

Let $\mathcal{A}=\left\{f: \mathbb{U} \rightarrow \mathbb{C}: f\right.$ is analytic in the unit disk $\left.\mathbb{U}, f(0)=0, f^{\prime}(0)=1\right\}$ be the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

and the subclass of \mathcal{A} consisting the univalent functions in \mathbb{U} is denoted by \mathcal{S}. It is clear from the Koebe one quarter theorem (see [4]) that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z,(z \in \mathbb{U}) \text { and } f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq 1 / 4\right) .
$$

In fact, we have:

$$
\begin{equation*}
f^{-1}(w)=g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots, \tag{2}
\end{equation*}
$$

where g be an extension of f^{-1} to \mathbb{U}. A function $f \in \mathcal{S}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1).

For more details about the bi-univalent function class Σ, see Lewin [6], Netanyahu [7], Brannan and Clunie [2], Srivastava et al. [14] etc. Also Brannan and Taha [3], (see also [15]) introduced $\mathcal{S}_{\Sigma}^{*}[\alpha]$, the class of strongly bi-starlike functions of order α where $0<\alpha \leq 1$ and $\mathcal{S}_{\Sigma}^{*}(\beta)$, the class of bi-starlike functions of order β where $0 \leq \beta<1$ and found the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions in these subclasses. In recent investigations many researchers (viz. [5, 10, 13] etc.) introduced various subclasses of the function class Σ and obtained the non-sharp estimates on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions in these subclasses.

For $f(z)$ given by (1) and $j(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, the Hadamard product or convolution is given by

$$
(f * j)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}, \quad z \in \mathbb{U} .
$$

For $f \in \mathcal{A}$ and $0 \leq \mu \leq \delta, n \in \mathbb{N}:=\{1,2,3, \cdots\} ;$ Răducanu and Orhan [11] introduced the following differential operator:

$$
\begin{gathered}
D_{\delta \mu}^{0} f(z)=f(z) \\
D_{\delta \mu}^{1} f(z)=D_{\delta \mu} f(z)=\delta \mu z^{2} f^{\prime \prime}(z)+(\delta-\mu) z f^{\prime}(z)+(1-\delta+\mu) f(z), \\
D_{\delta \mu}^{n} f(z)=D_{\delta \mu}\left(D_{\delta \mu}^{n-1} f(z)\right)
\end{gathered}
$$

See that, for the function f given by (1), this becomes:

$$
D_{\delta \mu}^{n} f(z)=z+\sum_{k=2}^{\infty} F_{k}(\delta, \mu, n) a_{k} z^{k}
$$

or

$$
D_{\delta \mu}^{n} f(z)=(f * j)(z),
$$

where

$$
j(z)=z+\sum_{k=2}^{\infty} F_{k}(\delta, \mu, n) z^{k}
$$

and

$$
F_{k}(\delta, \mu, n)=[1+(\delta \mu k+\delta-\mu)(k-1)]^{n} .
$$

Observe that for $\mu=0$ we get the Al-Oboudi differential operator (see [1]) and for $\mu=0, \delta=1$ we get the Sălăgean differential operator (see [12]).

The object of the present paper is to introduce the subclasses $\mathcal{B}_{\Sigma}^{\delta \mu}(n, \alpha, \lambda)$ and $\mathcal{H}_{\Sigma}^{\delta \mu}(n, \beta, \lambda)$ of the function class Σ, which are associated with the Răducanu-Orhan differential operator and to obtain estimates on $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the functions in these new subclasses using similar techniques used by Srivastava et al.[14].

We need the following lemma (see [9]) to prove our main results.

Lemma 1. If $p(z) \in \mathcal{P}$, the Carathéodory class of analytic functions with positive real part in \mathbb{U}, then $\left|p_{n}\right| \leq 2$ for each $n \in \mathbb{N}$, where

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots, \quad(z \in \mathbb{U}) .
$$

2. Main Results

Definition 1. A function $f(z)$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}^{\delta \mu}(n, \alpha, \lambda)$ if the following conditions are satisfied:

$$
\begin{gathered}
f \in \Sigma, \quad\left|\arg \left\{\frac{(1-\lambda) D_{\delta \mu}^{n} f(z)+\lambda D_{\delta \mu}^{n+1} f(z)}{z}\right\}\right|<\frac{\alpha \pi}{2} \\
\left(0<\alpha \leq 1,0 \leq \mu \leq \delta, \lambda \geq 1, n \in \mathbb{N}_{0}, z \in \mathbb{U}\right)
\end{gathered}
$$

and

$$
\begin{aligned}
& \left|\arg \left\{\frac{(1-\lambda) D_{\delta \mu}^{n} g(w)+\lambda D_{\delta \mu}^{n+1} g(w)}{w}\right\}\right|<\frac{\alpha \pi}{2} \\
& \left(0<\alpha \leq 1,0 \leq \mu \leq \delta, \lambda \geq 1, n \in \mathbb{N}_{0}, w \in \mathbb{U}\right)
\end{aligned}
$$

where the function g is given by (2).
Theorem 2. If the function $f(z)$ given by (1) be in the class $\mathcal{B}_{\Sigma}^{\delta \mu}(n, \alpha, \lambda)$, then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{\begin{array}{c}
2 \alpha[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]- \tag{3}\\
(\alpha-1)[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}
\end{array}}}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{4 \alpha^{2}}{[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \tag{4}\\
& \frac{2 \alpha}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
\end{align*}
$$

Proof. Definition 1 implies that we can write:

$$
\begin{equation*}
\frac{(1-\lambda) D_{\delta \mu}^{n} f(z)+\lambda D_{\delta \mu}^{n+1} f(z)}{z}=[s(z)]^{\alpha} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D_{\delta \mu}^{n} g(w)+\lambda D_{\delta \mu}^{n+1} g(w)}{w}=[t(w)]^{\alpha} \tag{6}
\end{equation*}
$$

where $s(z), t(w) \in \mathcal{P}$ such that:

$$
\begin{equation*}
s(z)=1+s_{1} z+s_{2} z^{2}+s_{3} z^{3}+\cdots,(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
t(w)=1+t_{1} w+t_{2} w^{2}+t_{3} w^{3}+\cdots,(w \in \mathbb{U}) . \tag{8}
\end{equation*}
$$

Clearly, we have:

$$
[s(z)]^{\alpha}=1+\alpha s_{1} z+\left[\alpha s_{2}+\frac{\alpha(\alpha-1)}{2} s_{1}^{2}\right] z^{2}+\cdots
$$

and

$$
[t(w)]^{\alpha}=1+\alpha t_{1} w+\left[\alpha t_{2}+\frac{\alpha(\alpha-1)}{2} t_{1}^{2}\right] w^{2}+\cdots .
$$

Also, using (1) and (2), we get:

$$
\begin{array}{r}
\frac{(1-\lambda) D_{\delta \mu}^{n} f(z)+\lambda D_{\delta \mu}^{n+1} f(z)}{z}=1+[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2} z+ \\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)] a_{3} z^{2}+\cdots} \tag{9}
\end{array}
$$

and

$$
\begin{array}{r}
\frac{(1-\lambda) D_{\delta \mu}^{n} g(w)+\lambda D_{\delta \mu}^{n+1} g(w)}{w}=1-[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2} w+ \\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]\left(2 a_{2}^{2}-a_{3}\right) w^{2}+\cdots .} \tag{10}
\end{array}
$$

Now, equating the coefficients in (5) and (6), we obtain:

$$
\begin{gather*}
{[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2}=\alpha s_{1},} \tag{11}\\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)] a_{3}=\alpha s_{2}+\frac{\alpha(\alpha-1)}{2} s_{1}^{2},} \tag{12}\\
-[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2}=\alpha t_{1}, \tag{13}\\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]\left(2 a_{2}^{2}-a_{3}\right)=\alpha t_{2}+\frac{\alpha(\alpha-1)}{2} t_{1}^{2} .} \tag{14}
\end{gather*}
$$

Using (11) and (13), we get:

$$
\begin{equation*}
s_{1}=-t_{1} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
2[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2} a_{2}^{2}=\alpha^{2}\left(s_{1}^{2}+t_{1}^{2}\right) . \tag{16}
\end{equation*}
$$

Adding (12) in (14) and then using (16), we obtain:

$$
\begin{aligned}
a_{2}^{2}= & \frac{\alpha^{2}\left(s_{2}+t_{2}\right)}{\left\{2 \alpha[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]-\right.} . \\
& \left.(\alpha-1)[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}\right\}
\end{aligned}
$$

Now, by using Lemma 1, this gives:

$$
\begin{aligned}
\left|a_{2}^{2}\right| \leq & \frac{4 \alpha^{2}}{\left\{2 \alpha[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]-\right.} \\
& \left.(\alpha-1)[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}\right\}
\end{aligned}
$$

which proves the result (3). Next, for the estimate on $\left|a_{3}\right|$, subtracting (14) from (12) in light of (15), we get:

$$
a_{3}-a_{2}^{2}=\frac{\alpha\left(s_{2}-t_{2}\right)}{2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
$$

This by using (16), becomes:

$$
\begin{aligned}
a_{3}= & \frac{\alpha^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{2[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \\
& \frac{\alpha\left(s_{2}-t_{2}\right)}{2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
\end{aligned}
$$

Finally, by using Lemma 1, we get:

$$
\begin{aligned}
\left|a_{3}\right| \leq & \frac{4 \alpha^{2}}{[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \\
& \frac{2 \alpha}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]}
\end{aligned}
$$

which is the desired result (4). This completes the proof of Theorem 2.
Definition 2. A function $f(z)$ given by (1) is said to be in the class $\mathcal{H}_{\Sigma}^{\delta \mu}(n, \beta, \lambda)$ if the following conditions are satisfied:

$$
f \in \Sigma, \quad \Re\left\{\frac{(1-\lambda) D_{\delta \mu}^{n} f(z)+\lambda D_{\delta \mu}^{n+1} f(z)}{z}\right\}>\beta
$$

$$
\left(0 \leq \beta<1,0 \leq \mu \leq \delta, \lambda \geq 1, n \in \mathbb{N}_{0}, z \in \mathbb{U}\right)
$$

and

$$
\begin{gathered}
\Re\left\{\frac{(1-\lambda) D_{\delta \mu}^{n} g(w)+\lambda D_{\delta \mu}^{n+1} g(w)}{w}\right\}>\beta \\
\left(0 \leq \beta<1,0 \leq \mu \leq \delta, \lambda \geq 1, n \in \mathbb{N}_{0}, w \in \mathbb{U}\right)
\end{gathered}
$$

where the function g is given by (2).
Note that in Definition 1 and Definition 2, by putting $\mu=0$ we obtain the classes $\mathcal{B}_{\Sigma}(\delta, n, \alpha, \lambda)$ and $\mathcal{H}_{\Sigma}(\delta, n, \beta, \lambda)$ introduced by Patil and Naik [8]; by putting $\mu=0, \delta=1$ we obtain the classes $\mathcal{B}_{\Sigma}(n, \alpha, \lambda)$ and $\mathcal{H}_{\Sigma}(n, \beta, \lambda)$ introduced by Porwal and Darus [10]; by putting $\mu=0, \delta=1, n=0$ we obtain the classes $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ and $\mathcal{H}_{\Sigma}(\beta, \lambda)$ introduced by Frasin and Aouf [5] and by putting $\mu=0, \delta=1, n=0, \lambda=1$ we obtain the classes $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$ introduced by Srivastava et al. [14].

Theorem 3. If the function $f(z)$ given by (1) be in the class $\mathcal{H}_{\Sigma}^{\delta \mu}(n, \beta, \lambda)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]}} \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
\left|a_{3}\right| \leq & \frac{4(1-\beta)^{2}}{[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \\
& \frac{2(1-\beta)}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} \tag{18}
\end{align*}
$$

Proof. Definition 2 implies that there exists $s(z), t(w) \in \mathcal{P}$ such that:

$$
\begin{equation*}
\frac{(1-\lambda) D_{\delta \mu}^{n} f(z)+\lambda D_{\delta \mu}^{n+1} f(z)}{z}=\beta+(1-\beta) s(z) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D_{\delta \mu}^{n} g(w)+\lambda D_{\delta \mu}^{n+1} g(w)}{w}=\beta+(1-\beta) t(w), \tag{20}
\end{equation*}
$$

where $s(z)$ and $t(w)$ are given by (7) and (8) respectively.
See that we have equations (9), (10) and also:

$$
\beta+(1-\beta) s(z)=1+(1-\beta) s_{1} z+(1-\beta) s_{2} z^{2}+\cdots
$$

and

$$
\beta+(1-\beta) t(w)=1+(1-\beta) t_{1} w+(1-\beta) t_{2} w^{2}+\cdots .
$$

Now, equating the coefficients in (19) and (20), we obtain:

$$
\begin{gather*}
{[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2}=(1-\beta) s_{1},} \tag{21}\\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)] a_{3}=(1-\beta) s_{2},} \tag{22}\\
-[1+(2 \delta \mu+\delta-\mu)]^{n}[1+\lambda(2 \delta \mu+\delta-\mu)] a_{2}=(1-\beta) t_{1}, \tag{23}\\
{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]\left(2 a_{2}^{2}-a_{3}\right)=(1-\beta) t_{2} .} \tag{24}
\end{gather*}
$$

Using (21) and (23), we obtain:

$$
s_{1}=-t_{1}
$$

and

$$
\begin{equation*}
2[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2} a_{2}^{2}=(1-\beta)^{2}\left(s_{1}^{2}+t_{1}^{2}\right) . \tag{25}
\end{equation*}
$$

Adding (22) in (24), we obtain:

$$
2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)] a_{2}^{2}=(1-\beta)\left(s_{2}+t_{2}\right)
$$

or

$$
a_{2}^{2}=\frac{(1-\beta)\left(s_{2}+t_{2}\right)}{2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
$$

This by using Lemma 1 , gives:

$$
\left|a_{2}^{2}\right| \leq \frac{2(1-\beta)}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]},
$$

which gives the desired result (17). Next, subtracting (24) from (22), we obtain:

$$
2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]\left(a_{3}-a_{2}^{2}\right)=(1-\beta)\left(s_{2}-t_{2}\right)
$$

or

$$
a_{3}=a_{2}^{2}+\frac{(1-\beta)\left(s_{2}-t_{2}\right)}{2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
$$

Using (25), this becomes:

$$
\begin{aligned}
a_{3}= & \frac{(1-\beta)^{2}\left(s_{1}^{2}+t_{1}^{2}\right)}{2[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \\
& \frac{(1-\beta)\left(s_{2}-t_{2}\right)}{2[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]} .
\end{aligned}
$$

This by using Lemma 1, yields:

$$
\begin{aligned}
\left|a_{3}\right| \leq & \frac{4(1-\beta)^{2}}{[1+(2 \delta \mu+\delta-\mu)]^{2 n}[1+\lambda(2 \delta \mu+\delta-\mu)]^{2}}+ \\
& \frac{2(1-\beta)}{[1+2(3 \delta \mu+\delta-\mu)]^{n}[1+2 \lambda(3 \delta \mu+\delta-\mu)]},
\end{aligned}
$$

which is the desired result (18). This completes the proof of Theorem 3.

3. Conclusions

- If we put $\mu=0$ in Theorem 2 and Theorem 3; we obtain Theorem 5 and Theorem 7 given by Patil and Naik [8].
- If we put $\mu=0$ and $\delta=1$ in Theorem 2 and Theorem 3 ; we obtain Theorem 2.1 and Theorem 3.1 given by Porwal and Darus [10].
- If we put $\mu=0, \delta=1$ and $n=0$ in Theorem 2 and Theorem 3 ; we obtain Theorem 2.2 and Theorem 3.2 given by Frasin and Aouf [5].
- If we put $\mu=0, \delta=1, n=0$ and $\lambda=1$ in Theorem 2 and Theorem 3 ; we obtain Theorem 1 and Theorem 2 given by Srivastava et al.[14].

References

[1] F. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. and Math. sci. 27 (2004), 1429-1436.
[2] D. Brannan, J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, New York, London, (1980).
[3] D. Brannan, T. Taha, On some classes of bi-univalent functions, in: S. Mazhar, A. Hamoui, N. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53-60; see also Studia Univ. Babes-Bolyai Math., 31, 2 (1986), 70-77.
[4] P. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York (1983).
[5] B. Frasin, M. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969), 100-112.
[8] A. Patil, U. Naik, On new subclasses of bi-univalent functions associated with Al-Oboudi differential operator, Int. J. Pure and Appl. Math. 110, 1 (2016), 143-151.
[9] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Göttingen (1975).
A. Patil, U. Naik - On Subclasses of Bi-univalent Functions ...
[10] S. Porwal, M. Darus, On a new subclass of bi-univalent functions, J. Egypt. Math. Soc. 21, 3 (2013), 190-193.
[11] D. Răducanu, H. Orhan, Subclasses of analytic functions defined by a generalized differential operator, Int. J. Math. Anal. 4, 1-2 (2010), 1-15.
[12] G. Sălăgean, Subclasses of univalent functions, in: Complex Analysis- Fifth Romanian Finish Seminar, Bucharest, 1 (1983), 362-372.
[13] H. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc. 23, 2 (2015), 242-246.
[14] H. Srivastava, A. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[15] T. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, London (1981).

Amol B Patil
Department of First Year Engineering, AISSMS's, College of Engineering, Pune-411001, India
email: amol223patil@yahoo.co.in
Uday H Naik
Department of Mathematics, Willingdon College,
Sangli-416415, India
email: naikpawan@yahoo.com

