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Abstract. In our present investigation, we aim at introducing a new subclass
of the function class Σ of bi-univalent functions defined in the open unit disc U.
Furthermore, we establish bounds for the coefficients for this subclass and several
related classes are also considered and connections to earlier known results are made.
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1. Introduction and Definitions

Let A indicate the class of functions f which are analytic in the open unit disc
U = {z : z ∈ C and |z| < 1} , of the form

f(z) = z +

∞∑
n=2

anz
n. (1)

Let S be the subclass of A consisting of the form (1) which are univalent in U . It
is well known that every function f ∈ S has an inverse f−1, satisfying f−1 (f (z)) =
z, (z ∈ U) and f

(
f−1 (w)

)
= w,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent in
U. Let Σ denote the class of bi-univalent functions defined in the unit disc U. For a
brief history and interesting examples of functions in the class Σ, see the pioneering
work on this area by Srivastava et al. [12], which has apparently revived the study
of bi-univalent functions in recent years.

The research into Σ was started by Lewin [10]. It focused on problems connected
with coefficients and obtained the bound 1.51 for the modulus of the second coef-
ficient |a2| . Subsequently, Brannan and Clunie [6] conjectured that |a2| 5

√
2 for
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f ∈ Σ. Later on, Netanyahu [11] showed that max |a2| = 4
3 if f (z) ∈ Σ. Brannan and

Taha [5] introduced certain subclasses of the bi-univalent function class Σ similar to
the familiar subclasses S? (β) and K (β) of starlike and convex functions of order β
(0 5 β < 1) in U, respectively (see [11]). The classes S?Σ (β) and KΣ (β) of bi-starlike
functions of order β in U and bi-convex functions of order β in U, corresponding to
the function classes S? (β) and K (β) , were also introduced analogously. For each
of the function classes S?Σ (β) and KΣ (β) , they found non-sharp estimates for the
initial coefficients. Recently, motivated substantially by the aforementioned work
on this area Srivastava et al. [12], many authors investigated the coefficient bounds
for various subclasses of bi-univalent functions (see, for example, [2], [7], [13]). Not
much is known about the bounds on the general coefficient |an| for n = 4. In the liter-
ature, there are only a few works determining the general coefficient bounds for |an|
for the analytic bi-univalent functions (see, for example, [4], [8], [9]). The coefficient
estimate problem for each of the coefficients |an| (n ∈ N \ {1, 2} ; N = {1, 2, 3, · · · })
is still an open problem.

In our present investigation, we aim at introducing a new subclass of the function
class Σ of bi-univalent functions defined in the open unit disc U. Furthermore, we
find estimates on the coefficients |a2| and |a3| for functions in this new subclass of
the function class Σ employing the techniques used earlier by Altınkaya and Yalçın
[2] (see also [1]).

We note the following definition required for obtaining our results.

Definition 1. Let the functions h, p : U→ C be so constrained that

min {< (h (z)) ,< (p (z))} > 0

and
h (0) = p (0) = 1.

2. Coefficient Estimates for the Function Class Sh,pΣ (α)

We begin this section by introducing the function class Sh,pΣ (α) and finding the
estimates on the coefficients |a2| and |a3| for functions in this class.

Definition 2. A function f ∈ Σ is said to be in the class Sh,pΣ (α) , 0 < α ≤ 1, if
the following conditions are satisfied:

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
α

)
∈ h (U) (z ∈ U) (2)
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and
1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
α

)
∈ p (U) (w ∈ U) (3)

where g (w) = f−1 (w).

Remark 1. There are many choices of h, p and α which would provide interesting
subclasses of class Sh,pΣ (α) . For example,

1. For 0 < α ≤ 1 and h (z) = p (z) =
(

1+z
1−z

)λ
where (0 < λ ≤ 1) it can be directly

verified that the functions h (z) and p (z) satisfy the hypotheses of Definition
1. Now if f ∈ SΣ(λ, α) then

f ∈ Σ,

∣∣∣∣arg 1
2

(
zf ′(z)
f(z) +

(
zf ′(z)
f(z)

) 1
α

)∣∣∣∣ < λπ

2
(0 < λ ≤ 1, z ∈ U)

and ∣∣∣∣arg 1
2

(
wg′(w)
g(w) +

(
wg′(w)
g(w)

) 1
α

)∣∣∣∣ < λπ

2
(0 < λ ≤ 1, w ∈ U) .

Therefore in this case, the class Sh,pΣ (α) reduces to class SΣ(λ, α) which is
defined by Altınkaya and Yalçın [3].

2. For 0 < α ≤ 1 and h (z) = p (z) = 1+(1−2β)z
1−z where (0 ≤ β < 1) it can be

directly verified that the functions h (z) and p (z) satisfy the hypotheses of
Definition 1. Now if f ∈ SΣ(λ, β) then

f ∈ Σ, <
(

1
2

(
zf ′(z)
f(z) +

(
zf ′(z)
f(z)

) 1
α

))
> β (0 ≤ β < 1, 0 < α ≤ 1, z ∈ U)

and

<
(

1
2

(
wg′(w)
g(w) +

(
wg′(w)
g(w)

) 1
α

))
> β (0 ≤ β < 1, 0 < α ≤ 1, w ∈ U) .

Therefore in this case, the class Sh,pΣ (α) reduces to class SΣ(λ, β) which is
defined by Altınkaya and Yalçın [3].

3. For α = 1 and h (z) = p (z) =
(

1+z
1−z

)λ
where (0 < λ ≤ 1) it can be directly

verified that the functions h (z) and p (z) satisfy the hypotheses of Definition
1. Now if f ∈ SΣ(α) then

f ∈ Σ,
∣∣∣arg

(
zf ′(z)
f(z)

)∣∣∣ < λπ

2
(0 < λ ≤ 1, z ∈ U)
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and ∣∣∣arg
(
wg′(w)
g(w)

)∣∣∣ < λπ
2 (0 < λ ≤ 1, w ∈ U) .

Therefore in this case, the class Sh,pΣ (α) reduces to class SΣ(α) which is defined
by Brannan and Taha [5] (see also [14]).

4. For α = 1 and h (z) = p (z) = 1+(1−2β)z
1−z where (0 ≤ β < 1) it can be directly

verified that the functions h (z) and p (z) satisfy the hypotheses of Definition
1. Now if f ∈ SΣ(β) then

f ∈ Σ, <
(
zf ′(z)
f(z)

)
> β (0 ≤ β < 1, 0 < α ≤ 1, z ∈ U)

and
<
(
wg′(w)
g(w)

)
> β (0 ≤ β < 1, 0 < α ≤ 1, w ∈ U) .

Therefore in this case, the class Sh,pΣ (α) reduces to class SΣ(β) which is defined
by Brannan and Taha [5] (see also [14]).

Theorem 1. Let f given by (1) be in the class Sh,pΣ (α) . Then

|a2| ≤ min

{√
2(|h′(0)|2+|p′(0)|2)α2

(1+α)2
,

√
(|h′′(0)|+|p′′(0)|)α2

2α2+α+1

}
(4)

and

|a3| ≤ min


2(|h′(0)|2+|p′(0)|2)α

(1+α)2
+ (|h′′(0)|+|p′′(0)|)α

4(1+α) ,

(6α3+5α2+α)|h′′(0)|
4(1+α)(2α2+α+1)

+ (2α3+3α2−α)|p′′(0)|
4(1+α)(2α2+α+1)

. (5)

Proof. Let f ∈ Sh,pΣ (α) . It follows from (2) and (3) that

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
α

)
= h (z) (6)

and
1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
α

)
= p (w) , (7)

where h (z) and p (w) satisfy the conditions of Definition 1. Furthermore, the func-
tions h (z) and p (w) have the following Taylor-Maclaurin series expansions:

h (z) = 1 + h1z + h2z
2 + · · ·
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and
p (w) = 1 + p1w + p2w

2 + · · · ,

respectively. Thus, upon comparing the corresponding coefficients in (6) and (7),
we get

α+ 1

2α
a2 = h1, (8)

α+ 1

2α

(
2a3 − a2

2

)
+

1− α
4α2

a2
2 = h2, (9)

and

− α+ 1

2α
a2 = p1, (10)

α+ 1

2α

(
3a2

2 − 2a3

)
+

1− α
4α2

a2
2 = p2. (11)

From (8) and (10) we obtain
h1 = −p1,

and
(α+ 1)2

2α2
a2

2 = h2
1 + p2

1. (12)

Now, by adding (9) to (11), we find that

2α2 + α+ 1

2α2
a2

2 = h2 + p2, (13)

which gives us the desired estimate on |a2| as asserted in (4).
Next, in order to find the bound on |a3| , by subtracting (11) from (9), we obtain

2 (α+ 1)

α

(
a3 − a2

2

)
= h2 − p2. (14)

Therefore, in view of (12) and (13), we have

a3 =
2
(
h2

1 + p2
1

)
α

(α+ 1)2 +
(h2 − p2)α

2 (α+ 1)

and

a3 =
2 (h2 + p2)α2

2α2 + α+ 1
+

(h2 − p2)α

2 (α+ 1)
.

which completes the proof of Theorem 1.
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3. Corollaries and Consequences

Corollary 2. If we let

h (z) = p (z) =

(
1 + z

1− z

)λ
= 1 + 2λz + 2λ2z2 + ... (0 < λ ≤ 1) ,

then inequalities (4) and (5) become

|a2| ≤ min
{

4αλ
1+α , 2λα

√
2

2α2+α+1

}
= 2λα

√
2

2α2+α+1

and

|a3| ≤ min

{
16λ2α2

(1 + α)2 +
2λ2α

1 + α
,

8α2λ2

2α2 + α+ 1

}
.

Corollary 3. If we let

h (z) = p (z) =
1 + (1− 2β) z

1− z
= 1 + 2 (1− β) z + 2 (1− β) z2 + · · · (0 ≤ β < 1) ,

then inequalities (4) and (5) become

|a2| ≤ min

{
4α (1− β)

1 + α
, 2α

√
2(1− β)

2α2 + α+ 1

}
.

and

|a3| ≤ min

{
16 (1− β)2 α2

(1 + α)2 +
2 (1− β)α

1 + α
,

8α2 (1− β)

2α2 + α+ 1

}
.

Taking α = 1 in Theorem 1, we get

Corollary 4. If f ∈ Sh,pΣ then

|a2| ≤ min

{√
|h′(0)|2+|p′(0)|2

2 ,

√
|h′′(0)|+|p′′(0)|

4

}
(15)

and
|a3| ≤ min

{
|h′(0)|2+|p′(0)|2

2 + |h′′(0)|+|p′′(0)|
8 , 3|h′′(0)|

8 + |p′′(0)|
8

}
(16)

Corollary 5. If we let

h (z) = p (z) =

(
1 + z

1− z

)λ
= 1 + 2λz + 2λ2z2 + ... (0 < λ ≤ 1) ,
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then inequalities (15) and (16) become

|a2| ≤ min
{

2λ,
√

2λ
}

=
√

2λ

and
|a3| ≤ min

{
5λ2, 2λ2

}
= 2λ2.

Remark 2. Corollary 8 provides an improvement estimates obtained by Altınkaya
and Yalçın [3].

Corollary 6. (see [3]) If we let

h (z) = p (z) =
1 + (1− 2β) z

1− z
= 1 + 2 (1− β) z + 2 (1− β) z2 + · · · (0 ≤ β < 1) ,

then inequalities (15) and (16) become

|a2| ≤ min
{

2 (1− β) ,
√

2 (1− β)
}

=
√

2 (1− β)

and

|a3| ≤ min
{

4 (1− β)2 + (1− β) , 2 (1− β)
}

= 4 (1− β)2 + (1− β) .
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Şahsene Altınkaya
Department of Mathematics, Faculty of Arts and Science,
Uludag University,
Bursa, Turkey
email: sahsene@uludag.edu.tr

128


	Introduction and Definitions
	Coefficient Estimates for the Function Class Sh,p( ) 
	Corollaries and Consequences

