# COEFFICIENT ESTIMATES FOR NEW SUBCLASSES OF MEROMORPHICALLY BI-UNIVALENT FUNCTIONS 

S.B. Joshi, P.P. Yadav

Abstract. In this paper, we have introduced and investigated three interesting subclasses $\Sigma_{B, \lambda}^{*}(\alpha, \beta), \Sigma_{B}^{*}(\lambda, \beta, \gamma)$ and $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$ of meromorphically bi-univalent functions defined on $\Delta=\{z \in \mathbb{C}:|z|>1\}$ and established their initial coefficient estimates.

2010 Mathematics Subject Classification: 30C45, 30C50.
Keywords: analytic functions, univalent functions, starlike functions, spirallike functions, bi-univalent functions, meromorphic functions, meromorphically biunivalent functions, coefficient estimate.

## 1. Introduction

Let $A$ be the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z \in \mathbb{C}:|z|<1\}$. Let $S$ denote the subclass of $A$, which consists of functions of the form (1.1) which are univalent and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$ in $U$.
A function $f \in S$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ in $U$ if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha
$$

and is convex of order $\alpha(0 \leq \alpha<1)$ in $U$ if and only if

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha .
$$

S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...

We denote these subclasses respectively by $S^{*}(\alpha)$ and $K(\alpha)$.
Also, a function $f \in S$ is said to be $\delta$-spirallike of order $\gamma(0 \leq \gamma<1)$ in $U$ if

$$
\Re\left(e^{i \delta} z \frac{f^{\prime}(z)}{f(z)}\right)>\gamma \cos \delta,
$$

for some real $\delta$ such that $|\delta|<\frac{\pi}{2}$. The class of such functions is denoted by $S_{p}^{\gamma}(\delta)$.
It is well known that every function $f \in S$ has an inverse $f^{-1}$, satisfying $f^{-1}(f(z))=$ $z, \quad(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$.

A function $f \in A$ is said to be bi-univalent in $U$ if both $f(z)$ and $f^{-1}(z)$ are univalent in $U$. Let $\Sigma$ denote the class of bi-univalent functions in $U$ given by (1.1).

A systematic study of the class $\Sigma$ was introduced in 1967 by Lewin [8], was revived in recent years by Srivastava et al.[10]. Ever since then, several authors investigated various subclasses of the class $\Sigma$ and obtain estimates on the initial Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses. ( see, for example, [[3], [12], [13]] ).

In our present investigation, the concept of bi-univalency is extended to the class of meromorphic functions defined on $\Delta=\{z \in \mathbb{C}:|z|>1\}$.

The class of functions

$$
\begin{equation*}
g(z)=z+b_{0}+\sum_{n=1}^{\infty} \frac{b_{n}}{z^{n}} \tag{1.2}
\end{equation*}
$$

which are meromorphic and univalent in $\Delta$ and is denoted by $\Sigma^{*}$.
Since $g \in \Sigma^{*}$ is univalent, it has an inverse $g^{-1}=h$ that satisfies the following conditions:
$g^{-1}(g(z))=z, \quad(z \in \Delta)$ and $g\left(g^{-1}(w)\right)=w, \quad(0<M<|w|<\infty)$, where

$$
\begin{equation*}
g^{-1}(w)=h(w)=w+B_{0}+\sum_{n=1}^{\infty} \frac{B_{n}}{w^{n}} \quad(0<M<|w|<\infty) . \tag{1.3}
\end{equation*}
$$

A simple computation shows that
$w=g(h(w))=\left(b_{0}+B_{0}\right)+w+\frac{b_{1}+B_{1}}{w}+\frac{B_{2}-b_{1} B_{0}+b_{2}}{w^{2}}+\frac{B_{3}-b_{1} B_{1}+b_{1} B_{0}^{2}-2 b_{2} B_{0}+b_{3}}{w^{3}}+\ldots$.
Comparing with initial coefficients in (1.4), we find that

$$
\begin{align*}
& b_{0}+B_{0}=0 \Longrightarrow B_{0}=-b_{0}  \tag{1.4}\\
& b_{1}+B_{1}=0 \Longrightarrow B_{1}=-b_{1} \\
& B_{2}-b_{1} B_{0}+b_{2}=0 \Longrightarrow B_{2}=-\left(b_{2}+b_{0} b_{1}\right)
\end{align*}
$$

S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...

$$
B_{3}-b_{1} B_{1}+b_{1} B_{0}^{2}-2 b_{2} B_{0}+b_{3}=0 \Longrightarrow B_{3}=-\left(b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}\right)
$$

Equation (1.3) becomes,

$$
\begin{equation*}
g^{-1}(w)=h(w)=w-b_{0}-\frac{b_{1}}{w}-\frac{b_{2}+b_{0} b_{1}}{w^{2}}-\frac{b_{3}+2 b_{0} b_{2}+b_{0}^{2} b_{1}+b_{1}^{2}}{w^{3}}-\ldots \tag{1.5}
\end{equation*}
$$

Analogues to the bi-univalent analytic functions, a function $g \in \Sigma^{*}$ is said to be meromorphic bi-univalent function if $g^{-1} \in \Sigma^{*}$. The class of all meromorphic bi-univalent functions is denoted by $\Sigma_{B}^{*}$.

Estimates on the coefficients of meromorphically bi-univalent functions were widely investigated in the literature of Geometric function theory. Recently several researchers such as Halim et al.[5], Hamidi et al.[[6], [7]], Srivastavaet al.[9] and Xiao et al.[11], introduced new subclasses of meromorphic bi-univalent functions and obtained estimates on the initial coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$. Also in [1], Babalola defined and studied the class $\ell_{\lambda}(\beta)$ of $\lambda$-pseudo starlike functions of order $\beta$.

Motivated by the aforementioned work, in our present investigation, we introduce three new subclasses of the class $\Sigma_{B}^{*}$ and obtained the estimates on the initial coefficients.

In order to derive our main results, we recall here the following Lemma.
Lemma 1. ([4], see also ([2], p.41)). Let $p \in P$, where $P$ is the family of all functions $p$, analytic in $\Delta$ for which $\Re\{p(z)\}>0$ and have the form $p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\ldots,(z \in \Delta)$. Then $\left|p_{n}\right| \leq 2 \quad$ for each $n \in \mathbb{N}$.

## 2. CoEfficient bounds for the function class $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$

We define the class $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$ as follows:
Definition 1. A function $g \in \Sigma_{B}^{*}$ given by (1.2) is said to be in the class $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$ if the following conditions are satisfied :

$$
\begin{equation*}
\left|\arg \left(\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \Delta) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \Delta) \tag{2.2}
\end{equation*}
$$

where $0<\alpha \leq 1,0 \leq \beta<1, \lambda \geq 1$ and the function $h$ is the inverse of $g$ given by (1.5).
S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...

We denote by $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$, the class of functions which are meromorphic strongly $\lambda$-pseudo starlike bi-univalent of order $\alpha$ in $\Delta$.

The estimates on the coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for the class $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$ are given as below.

Theorem 1. Let g given by (1.2) be in the class $\Sigma_{B, \lambda}^{*}(\alpha, \beta)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leq \frac{2 \alpha}{1-\beta} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{1}\right| \leq \frac{2 \sqrt{5} \alpha^{2}}{1-2 \beta+\lambda} . \tag{2.4}
\end{equation*}
$$

Proof. Let $g \in \Sigma_{B, \lambda}^{*}(\alpha, \beta)$. Then by Definition 1, the conditions (2.1) and (2.2) can be rewritten as

$$
\begin{equation*}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

respectively. Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\ldots \quad(z \in \Delta)
$$

and

$$
q(w)=1+\frac{q_{1}}{w}+\frac{q_{2}}{w^{2}}+\frac{q_{3}}{w^{3}}+\ldots \quad(w \in \Delta) .
$$

Clearly,
$[p(z)]^{\alpha}=1+\frac{\alpha p_{1}}{z}+\frac{\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}}{z^{2}}+\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) p_{1}^{3}+\alpha(\alpha-1) p_{1} p_{2}+\alpha p_{3}}{z^{3}}+\ldots$
and
$[q(w)]^{\alpha}=1+\frac{\alpha q_{1}}{w}+\frac{\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}}{w^{2}}+\frac{\frac{1}{6} \alpha(\alpha-1)(\alpha-2) q_{1}^{3}+\alpha(\alpha-1) q_{1} q_{2}+\alpha q_{3}}{w^{3}}+\ldots$.

Also,

$$
\begin{aligned}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=1-\frac{(1-\beta) b_{0}}{z}+\frac{\left[(1-\beta)^{2} b_{0}^{2}-(1-2 \beta+\lambda) b_{1}\right]}{z^{2}} \\
-\frac{\left[(1-\beta)^{3} b_{0}^{3}-(1-\beta)(2-4 \beta+\lambda) b_{0} b_{1}+(1-3 \beta+2 \lambda) b_{2}\right]}{z^{3}}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}=1+\frac{(1-\beta) b_{0}}{w}+\frac{\left[(1-\beta)^{2} b_{0}^{2}+(1-2 \beta+\lambda) b_{1}\right]}{w^{2}} \\
& +\frac{\left[(1-\beta)^{3} b_{0}^{3}+(1+2 \lambda+(1-\beta)(2-4 \beta+\lambda)) b_{0} b_{1}+(1+3 \beta+2 \lambda) b_{2}\right]}{w^{3}}+\ldots .
\end{aligned}
$$

Now, equating the coefficients in (2.5) and (2.6), we get

$$
\begin{gather*}
-(1-\beta) b_{0}=\alpha p_{1},  \tag{2.7}\\
(1-\beta)^{2} b_{0}^{2}-(1-2 \beta+\lambda) b_{1}=\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2},  \tag{2.8}\\
(1-\beta) b_{0}=\alpha q_{1}  \tag{2.9}\\
(1-\beta)^{2} b_{0}^{2}+(1-2 \beta+\lambda) b_{1}=\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} . \tag{2.10}
\end{gather*}
$$

From equations (2.7) and (2.9), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{2.11}
\end{equation*}
$$

and

$$
2(1-\beta)^{2} b_{0}^{2}=\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)
$$

Using (2.11), we have

$$
\begin{equation*}
b_{0}^{2}=\frac{\alpha^{2} p_{1}^{2}}{(1-\beta)^{2}} . \tag{2.12}
\end{equation*}
$$

Applying Lemma 1 , for the coefficient $p_{1}$ we have

$$
\left|b_{0}\right|^{2} \leq \frac{4 \alpha^{2}}{(1-\beta)^{2}} \quad \Rightarrow\left|b_{0}\right| \leq \frac{2 \alpha}{1-\beta} .
$$

Which gives the bound on $\left|b_{0}\right|$ as given in (2.3).
Next, in order to find the bound on $\left|b_{1}\right|$, by using the equations (2.8) and (2.10), we
get
$(1-\beta)^{4} b_{0}^{4}-(1-2 \beta+\lambda)^{2} b_{1}^{2}=\frac{1}{4} \alpha^{2}(\alpha-1)^{2} p_{1}^{2} q_{1}^{2}+\frac{1}{2} \alpha^{2}(\alpha-1)\left(p_{1}^{2} q_{2}+p_{2} q_{1}^{2}\right)-\alpha^{2} p_{2} q_{2}$.
By simplifying and using (2.12), we have

$$
(1-2 \beta+\lambda)^{2} b_{1}^{2}=\alpha^{4} p_{1}^{4}-\frac{1}{4} \alpha^{2}(\alpha-1)^{2} p_{1}^{2} q_{1}^{2}-\frac{1}{2} \alpha^{2}(\alpha-1)\left(p_{1}^{2} q_{2}+p_{2} q_{1}^{2}\right)-\alpha^{2} p_{2} q_{2} .
$$

Applying Lemma 1 , for the coefficients $p_{1}, q_{1}, p_{2}$ and $q_{2}$ we get

$$
\begin{gathered}
(1-2 \beta+\lambda)^{2}\left|b_{1}\right|^{2} \leq 16 \alpha^{4}+4 \alpha^{2}(\alpha-1)^{2}+8 \alpha^{2}(\alpha-1)+4 \alpha^{2} . \\
\left|b_{1}\right|^{2} \leq \frac{20 \alpha^{4}}{(1-2 \beta+\lambda)^{2}}, \\
\\
\Rightarrow\left|b_{1}\right| \leq \frac{2 \sqrt{5} \alpha^{2}}{1-2 \beta+\lambda} .
\end{gathered}
$$

Which gives the bound on $\left|b_{1}\right|$ as given in (2.4).
This completes the proof of Theorem 1.

## 3. Coefficient bounds for the function class $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$

The definition of the class $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$ is as follows:

Definition 2. A function $g \in \Sigma_{B}^{*}$ given by (1.2) is said to be in the class $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}\right)>\gamma \quad(z \in \Delta) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}\right)>\gamma \quad(w \in \Delta) \tag{3.2}
\end{equation*}
$$

where $0 \leq \beta, \gamma<1, \lambda \geq 1$ and the function $h$ is the inverse of $g$ given by (1.5).

We denote $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$ the class of meromorphically $\lambda$-pseudo starlike biunivalent function of order $\gamma$.

We now derive the estimates on the coefficients $\left|b_{0}\right|$ and $\left|b_{1}\right|$ for the meromorphically bi-univalent function class $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$.

Theorem 2. Let $g$ given by (1.2) be in the class $\Sigma_{B}^{*}(\lambda, \beta, \gamma)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leq \frac{2(1-\gamma)}{1-\beta} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|b_{1}\right| \leq \frac{2(1-\gamma) \sqrt{4 \gamma^{2}-8 \gamma+5}}{1-2 \beta+\lambda} \tag{3.4}
\end{equation*}
$$

Proof. Let $g \in \Sigma_{B}^{*}(\lambda, \beta, \gamma)$. Then by Definition 2, the conditions (3.1) and (3.2) can be rewritten as follows:

$$
\begin{equation*}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=\gamma+(1-\gamma) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}=\gamma+(1-\gamma) q(w) \tag{3.6}
\end{equation*}
$$

respectively. Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\ldots \quad(z \in \Delta)
$$

and

$$
q(w)=1+\frac{q_{1}}{w}+\frac{q_{2}}{w^{2}}+\frac{q_{3}}{w^{3}}+\ldots \quad(w \in \Delta)
$$

Clearly,

$$
\gamma+(1-\gamma) p(z)=1+\frac{(1-\gamma) p_{1}}{z}+\frac{(1-\gamma) p_{2}}{z^{2}}+\frac{(1-\gamma) p_{3}}{z^{3}}+\ldots
$$

and

$$
\gamma+(1-\gamma) q(w)=1+\frac{(1-\gamma) q_{1}}{w}+\frac{(1-\gamma) q_{2}}{w^{2}}+\frac{(1-\gamma) q_{3}}{w^{3}}+\ldots
$$

Also,

$$
\begin{aligned}
\frac{z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=1-\frac{(1-\beta) b_{0}}{z}+\frac{\left[(1-\beta)^{2} b_{0}^{2}-(1-2 \beta+\lambda) b_{1}\right]}{z^{2}} \\
-\frac{\left[(1-\beta)^{3} b_{0}^{3}-(1-\beta)(2-4 \beta+\lambda) b_{0} b_{1}+(1-3 \beta+2 \lambda) b_{2}\right]}{z^{3}}+\ldots
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}=1+\frac{(1-\beta) b_{0}}{w}+\frac{\left[(1-\beta)^{2} b_{0}^{2}+(1-2 \beta+\lambda) b_{1}\right]}{w^{2}} \\
& +\frac{\left[(1-\beta)^{3} b_{0}^{3}+(1+2 \lambda+(1-\beta)(2-4 \beta+\lambda)) b_{0} b_{1}+(1+3 \beta+2 \lambda) b_{2}\right]}{w^{3}}+\ldots .
\end{aligned}
$$

Now, equating the coefficients in (3.5) and (3.6), we get

$$
\begin{gather*}
-(1-\beta) b_{0}=(1-\gamma) p_{1}  \tag{3.7}\\
(1-\beta)^{2} b_{0}^{2}-(1-2 \beta+\lambda) b_{1}=(1-\gamma) p_{2}  \tag{3.8}\\
(1-\beta) b_{0}=(1-\gamma) q_{1}  \tag{3.9}\\
(1-\beta)^{2} b_{0}^{2}+(1-2 \beta+\lambda) b_{1}=(1-\gamma) q_{2} \tag{3.10}
\end{gather*}
$$

From equations (3.7) and (3.9), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{3.11}
\end{equation*}
$$

and

$$
2(1-\beta)^{2} b_{0}^{2}=(1-\gamma)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)
$$

Using (3.11), we have

$$
\begin{equation*}
b_{0}^{2}=\frac{(1-\gamma)^{2} p_{1}^{2}}{(1-\beta)^{2}} \tag{3.12}
\end{equation*}
$$

Applying Lemma 1 for the coefficient $p_{1}$, we have

$$
\left|b_{0}\right|^{2} \leq \frac{4(1-\gamma)^{2}}{(1-\beta)^{2}} \quad \Rightarrow\left|b_{0}\right| \leq \frac{2(1-\gamma)}{1-\beta}
$$

Which is the bound on $\left|b_{0}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|b_{1}\right|$, by using the equations (3.8) and (3.10), we get

$$
(1-\beta)^{4} b_{0}^{4}-(1-2 \beta+\lambda)^{2} b_{1}^{2}=(1-\gamma)^{2} p_{2} q_{2}
$$

By simplifying and using (3.12), we have

$$
(1-2 \beta+\lambda)^{2} b_{1}^{2}=(1-\gamma)^{4} p_{1}^{4}-(1-\gamma)^{2} p_{2} q_{2} .
$$

S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...

Applying Lemma 1 for the coefficients $p_{1}, p_{2}$ and $q_{2}$ we get

$$
\begin{gathered}
(1-2 \beta+\lambda)^{2}\left|b_{1}\right|^{2} \leq 16(1-\gamma)^{4}+4(1-\gamma)^{2} . \\
\left|b_{1}\right|^{2} \leq \frac{4(1-\gamma)^{2}\left[4 \gamma^{2}-8 \gamma+5\right]}{(1-2 \beta+\lambda)^{2}} \\
\Rightarrow\left|b_{1}\right| \leq \frac{2(1-\gamma) \sqrt{4 \gamma^{2}-8 \gamma+5}}{1-2 \beta+\lambda}
\end{gathered}
$$

Which gives the bound on $\left|b_{1}\right|$ as given in (3.4). This completes the proof of Theorem 2.

## 4. Coefficient bounds for the function class $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$

For the function $g$ given by (1.2) with $b_{1}=b_{2}=\ldots=b_{k-1}=0$, some estimates on the initial coefficients can be obtained. We define the class $\Sigma_{B, \lambda}^{*}(\beta, \gamma, \delta)$ as follows:

## Definition 3. A function

$$
\begin{equation*}
g(z)=z+b_{0}+\sum_{n=k}^{\infty} \frac{b_{n}}{z^{n}} \tag{4.1}
\end{equation*}
$$

is said to be in the class $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$ where $0 \leq \beta, \gamma<1, \lambda \geq 1$ and $|\delta|<\frac{\pi}{2}$, if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(\frac{e^{i \delta} z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}\right)>\gamma \cos \delta \quad(z \in \Delta) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(\frac{e^{i \delta} w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}\right)>\gamma \cos \delta \quad(w \in \Delta) \tag{4.3}
\end{equation*}
$$

where the function $h$ is the inverse of $g$ given by

$$
\begin{equation*}
h(w)=w-b_{0}-\frac{b_{k}}{w^{k}}-\frac{k b_{0} b_{k}+b_{k+1}}{w^{k+1}}-\ldots . \tag{4.4}
\end{equation*}
$$

We call $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$ the class of weakerly meromorphic $\lambda$-pseudo $\delta$-spiralike biunivalent functions of order $\gamma$.

We now derive the estimates on the coefficients for the function class $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$, we find the following result.
S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of . . .

Theorem 3. Let $g$ given by (4.1) be in the class $\widetilde{\Sigma}_{B, \lambda}^{*}(\beta, \gamma, \delta)$. Then

$$
\begin{equation*}
\left|b_{0}\right| \leq \frac{\left[4\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right)\right] \frac{1}{2 k}}{1-\beta} \tag{4.5}
\end{equation*}
$$

and
(a) for each positive odd integer $k$,

$$
\begin{equation*}
\left|b_{k}\right| \leq \frac{2 \sqrt{\left[1+\gamma(\gamma-2) \cos ^{2} \delta\right]\left[1+4 \frac{1}{k}\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right) \frac{1}{k}\right]}}{1+\lambda k-\beta(1+k)} \tag{4.6}
\end{equation*}
$$

(b) for each positive even integer $k$,

$$
\begin{equation*}
\left|b_{k}\right| \leq \frac{2 \sqrt{1+\gamma(\gamma-2) \cos ^{2} \delta}\left[1+2 \frac{1}{k}\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right) \frac{1}{2 k}\right]}{1+\lambda k-\beta(1+k)} \tag{4.7}
\end{equation*}
$$

Proof. Let $g(z)=z+b_{0}+\sum_{n=k}^{\infty} \frac{b_{n}}{z^{n}}$. Then by Definition 3, the conditions (4.2) and (4.3) can be rewritten as follows:

$$
\begin{equation*}
\frac{e^{i \delta} z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=\gamma \cos \delta+\left(e^{i \delta}-\gamma \cos \delta\right) p(z) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{e^{i \delta} w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)}=\gamma \cos \delta+\left(e^{i \delta}-\gamma \cos \delta\right) q(w) \tag{4.9}
\end{equation*}
$$

respectively. Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+\frac{p_{1}}{z}+\frac{p_{2}}{z^{2}}+\frac{p_{3}}{z^{3}}+\ldots \quad(z \in \Delta)
$$

and

$$
q(w)=1+\frac{q_{1}}{w}+\frac{q_{2}}{w^{2}}+\frac{q_{3}}{w^{3}}+\ldots \quad(w \in \Delta)
$$

Clearly,
$\gamma \cos \delta+\left(e^{i \delta}-\gamma \cos \delta\right) p(z)=e^{i \delta}+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) p_{1}}{z}+\ldots+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) p_{k}}{z^{k}}+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) p_{k+1}}{z^{k+1}}+\ldots$
and
$\gamma \cos \delta+\left(e^{i \delta}-\gamma \cos \delta\right) q(w)=e^{i \delta}+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) q_{1}}{w}+\ldots+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) q_{k}}{w^{k}}+\frac{\left(e^{i \delta}-\gamma \cos \delta\right) q_{k+1}}{w^{k+1}}+\ldots$.
Also,

$$
\begin{array}{r}
\frac{e^{i \delta} z\left[g^{\prime}(z)\right]^{\lambda}}{(1-\beta) g(z)+\beta z g^{\prime}(z)}=e^{i \delta}-e^{i \delta} \frac{(1-\beta) b_{0}}{z}+\ldots+\frac{e^{i \delta}(-1)^{k}(1-\beta)^{k} b_{0}^{k}}{z^{k}} \\
+\frac{e^{i \delta}\left[(-1)^{k+1}(1-\beta)^{k+1} b_{0}^{k+1}-(1+\lambda k-\beta(1+k)) b_{k}\right]}{z^{k+1}}+\ldots
\end{array}
$$

and using equation (4.4), we get

$$
\begin{aligned}
\frac{e^{i \delta} w\left[h^{\prime}(w)\right]^{\lambda}}{(1-\beta) h(w)+\beta w h^{\prime}(w)} & =e^{i \delta}+e^{i \delta} \frac{(1-\beta) b_{0}}{w}+\ldots+\frac{e^{i \delta}(1-\beta)^{k} b_{0}^{k}}{w^{k}} \\
& +\frac{e^{i \delta}\left[(1-\beta)^{k+1} b_{0}^{k+1}+(1+\lambda k-\beta(1+k)) b_{k}\right]}{w^{k+1}}+\ldots .
\end{aligned}
$$

Now, equating the coefficients in (4.8) and (4.9), we get

$$
\begin{gather*}
e^{i \delta}(-1)^{k}(1-\beta)^{k} b_{0}^{k}=\left(e^{i \delta}-\gamma \cos \delta\right) p_{k},  \tag{4.10}\\
e^{i \delta}\left[(-1)^{k+1}(1-\beta)^{k+1} b_{0}^{k+1}-(1+\lambda k-\beta(1+k)) b_{k}\right]=\left(e^{i \delta}-\gamma \cos \delta\right) p_{k+1},  \tag{4.11}\\
e^{i \delta}(1-\beta)^{k} b_{0}^{k}=\left(e^{i \delta}-\gamma \cos \delta\right) q_{k}, \\
e^{i \delta}\left[(1-\beta)^{k+1} b_{0}^{k+1}+(1+\lambda k-\beta(1+k)) b_{k}\right]=\left(e^{i \delta}-\gamma \cos \delta\right) q_{k+1} . \tag{4.12}
\end{gather*}
$$

From equations (4.10), we get

$$
b_{0}^{k}=\frac{\left(e^{i \delta}-\gamma \cos \delta\right) p_{k}}{e^{i \delta}(-1)^{k}(1-\beta)^{k}}
$$

Using Lemma 1, we get

$$
\begin{gathered}
\left|b_{0}\right|^{k} \leq \frac{2\left|\left(e^{i \delta}-\gamma \cos \delta\right)\right|}{(1-\beta)^{k}}, \\
\left|b_{0}\right| \leq \frac{\left[4\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right)\right] \frac{1}{2 k}}{1-\beta} .
\end{gathered}
$$

S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...

Which is the bound on $\left|b_{0}\right|$, as asserted in (4.5).
Next, in order to find the bound on $\left|b_{k}\right|$, for each positive odd integer $k$, multiplying both sides of (4.11) by both sides of (4.12), respectively we get

$$
\begin{gathered}
e^{2 i \delta}\left[(1-\beta)^{2 k+2} b_{0}^{2 k+2}-(1+\lambda k-\beta(1+k))^{2} b_{k}^{2}\right]=\left(e^{i \delta}-\gamma \cos \delta\right)^{2} p_{k+1} q_{k+1}, \\
{[1+\lambda k-\beta(1+k)]^{2} b_{k}^{2}=-\frac{\left(e^{i \delta}-\gamma \cos \delta\right)^{2} p_{k+1} q_{k+1}}{e^{2 i \delta}}+(1-\beta)^{2 k+2} b_{0}^{2 k+2} .}
\end{gathered}
$$

By using Lemma 1 and considering the bound on $\left|b_{0}\right|$, we conclude that

$$
\begin{equation*}
\left|b_{k}\right| \leq \frac{2 \sqrt{\left[1+\gamma(\gamma-2) \cos ^{2} \delta\right]\left[1+4^{\frac{1}{k}}\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right) \frac{1}{k}\right]}}{1+\lambda k-\beta(1+k)} . \tag{4.13}
\end{equation*}
$$

On the other hand, for every positive even integer $k$, from (4.12) and using the Lemma 1 and also considering the bound on $\left|b_{0}\right|$, we conclude that

$$
\begin{equation*}
\left|b_{k}\right| \leq \frac{2 \sqrt{1+\gamma(\gamma-2) \cos ^{2} \delta}\left[1+2^{\frac{1}{k}}\left(1+\gamma(\gamma-2) \cos ^{2} \delta\right) \frac{1}{2 k}\right]}{1+\lambda k-\beta(1+k)} . \tag{4.14}
\end{equation*}
$$

Equations (4.13) and (4.14) gives the bound on $\left|b_{k}\right|$ as asserted in (4.6) and (4.7) respectively. Hence, complete the proof of Theorem 3.

Remark 1. By suitably specializing the various parameters involved in the assertion of Theorem 1, Theorem 2 and Theorem 3, we can deduce the corresponding coefficient estimates for several simpler meromorphically bi-univalent function classes.

## References

[1] K.O.Babalola, On $\lambda$-pseudo-starlike functions, J. Class. Anal. 3, 2 (2013), 137147.
[2] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 259(1983).
[3] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24, 9 (2011), 1569-1573.
S.B. Joshi, P.P. Yadav - Coefficient estimates for new subclasses of ...
[4] A. W. Goodman, Univalent Functions, Vol.I, Polygonal Publishing House, Washington, New Jersey, (1983).
[5] S. A. Halim, S. G. Hamidi and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, arXiv:1108.4089 v1 (2011), 1-9.
[6] Samaneh G. Hamidi, T. Janani, G. Murugusundaramoorty and Jay M. Jahangiri, Coefficient estimates for certain classes of meromorphic functions, C. R. Acad. Sci. Paris, Ser. I, 352(2014), 277-282.
[7] S. G. Hamidi, S. A. Halim and J. M. Jahangiri, Coefficient estimates for a class of meromorphic bi-univalent functions, C. R. Acad. Sci. Paris, Ser. I, 351(2013), 349-352.
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18(1967), 63-68.
[9] H. M. Srivastava, Santosh B. Joshi, Sayali S. Joshi and Haridas Pawar, Coefficient Estimates for Certain Subclasses of Meromorphically Bi-Univalent Functions, Palest. J. Math., Vol. 5 (Special Issue:1) (2016), 250-258.
[10] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23(2010), 1188-1192.
[11] Hai-Gen Xiao, Qing-Hua Xu, Coefficient Estimates for Three Generalised Classes of Meromorphic and Bi-Univalent Functions, Filomat 29:7(2015), 1601-1612.
[12] Q.-H. Xu, Y. C. Gui and H. M. Srivastava Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(2012), 990-994.
[13] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(2012), 11461-11465.

S.B. Joshi<br>Department of Mathematics, Walchand College of Engineering. Sangli 416415, India.<br>email: joshisb@hotmail.com, santosh.joshi@walchandsangli.ac.in<br>P.P. Yadav<br>Department of Mathematics,<br>Walchand College of Engineering.<br>Sangli 416415, India.<br>email: ypradnya@rediffmail.com

