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Abstract. In this paper we consider an integral operator for analytic functions
in the open unit disk and we obtain sufficient conditions for univalence of this integral
operator.
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1. Introduction

Let A be the class of functions of the form:

f(z) = z +

∞∑
n=2

anz
n

normalized by f(0) = f ′(0) − 1 = 0, which are analytic in the open unit disk
U = {z ∈ C : |z| < 1}.

We denote by S the subclass of A consisting of functions f ∈ A, which are
univalent in U .

Let H(U) be the space of holomorphic functions in U . We note

An =
{
f ∈ H(U) : f(z) = z + an+1z

n+1 + · · · , n ∈ N− {0}
}

with A1 = A.
In this paper we consider the integral operator

Gh : An → H(U), An ⊂ H(U),

Gh(f)(z) =

[
β

∫ z

0
fβ(t)h−1(t)h′(t)dt

] 1
β

, (1)

β ∈ C, β 6= 0, f, h ∈ An.
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For n = 1, β ∈ C, β 6= 0, f, h ∈ A, h(z) = z, from (1) we obtain the integral
operator Pascu-Pescar [9],

I(z) =

[
β

∫ z

0
tβ−1

(
f(t)

t

)β
dt

] 1
β

, z ∈ U. (2)

For n = 1, β = 1, f, h ∈ A, h(z) = z, from (1) we obtain the integral operator
Alexander [1],

T (z) =

∫ z

0

f(t)

t
dt, z ∈ U. (3)

Properties of certain integral operators were studied by different authors in the
following papers [2, 16, 17, 18, 19, 20].

In this paper we obtain sufficient conditions for univalence of integral operator
Gh.

2. Preliminaries

We need the following lemmas.

Lemma 1 (Pascu, [8]). Let α be a complex number, Re α > 0 and f ∈ A. If

1− |z|2Re α

Re α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, (4)

for all z ∈ U , then the function

Fα(z) =

[
α

∫ z

0
tα−1f ′(t)dt

] 1
α

(5)

is regular and univalent in U .

Lemma 2 (General Schwarz Lemma, [4]). Let f the function regular in the disk
UR = {z ∈ C : |z| < R} with |f(z)| < M , M fixed. If the function f has in z = 0
one zero with multiply ≥ m, then

|f(z)| ≤ M

Rm
|z|m, z ∈ UR, (6)

the equality (in the inequality (6) for z 6= 0) can hold only if

f(z) = eiθ
M

Rm
zm,

where θ is constant.
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Lemma 3 (Mocanu and Şerb, [6]). Let M0 = 1.5936 . . . be the positive solution of
equation

(2−M)eM = 2.

If f ∈ A and ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M0, z ∈ U, (7)

then ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1, z ∈ U. (8)

The edge M0 is sharp.

3. Main results

Theorem 4. Let β be a complex number, a = Reβ > 0, the functions f, h ∈ An,
f(z) = z + an+1z

n+1 + · · · , h(z) = z + bn+1z
n+1 + · · · , M, L, K positive real

numbers.
If

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < M, z ∈ U, (9)

∣∣∣∣zf ′(z)f(z)
− zh′(z)

h(z)

∣∣∣∣ < L, z ∈ U, (10)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ < K, z ∈ U (11)

and

|β − 1|M + L+K ≤ (2a+ n)
n+2a
2a

2n
n
2a

, n ∈ N− {0}, (12)

then the function Gh(f)(z) belongs to the class S.

Proof. From (1) we have

Gh(f)(z) =

[
β

∫ z

0
tβ−1

(
f(t)

t

)β−1 f(t)

h(t)
h′(t)dt

] 1
β

, (13)
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for all z ∈ U .
We consider the function

g(z) =

∫ z

0

(
f(t)

t

)β−1 f(t)

h(t)
h′(t)dt, z ∈ U, (14)

which is regular in U and g(0) = g′(0)− 1 = 0.
We have

zg′′(z)

g′(z)
= (β − 1)

(
zf ′(z)

f(z)
− 1

)
+
zf ′(z)

f(z)
− zh′(z)

h(z)
+
zh′′(z)

h′(z)
, (15)

for all z ∈ U .
Using (15) we obtain

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1− |z|2a

a

[
|β − 1|

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+

∣∣∣∣zf ′(z)f(z)
− zh′(z)

h(z)

∣∣∣∣+
+

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣] , (16)

for all z ∈ U .
Applying Lemma 2, from (9), (10), (11) we get

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ ≤M |z|n, z ∈ U, (17)

∣∣∣∣zf ′(z)f(z)
− zh′(z)

h(z)

∣∣∣∣ ≤ L|z|n, z ∈ U, (18)

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ K|z|n, z ∈ U. (19)

From (17), (18), (19) and (16) we obtain

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1− |z|2a

a
|z|n [|β − 1|M + L+K] , z ∈ U. (20)

We consider the function J : [0, 1] → R, J(x) = (1−x2a)xn
a where x = |z|, x ∈

[0, 1].
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We have

max
x∈[0,1]

J(x) =
2n

n
2a

(2a+ n)
n+2a
2a

, n ∈ N− {0}. (21)

By (12), (21) and (20) we obtain

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1, (22)

for all z ∈ U .
Now, from (22) and Lemma 1, it results that the function Gh(f)(z) belongs to

the class S,

Gh(f)(z) = z + c2z
2 + c3z

3 + · · · (23)

We note by K1 the class of univalent integral operator Gh(f), obtained by the
conditions of Theorem 4.

Corollary 5. Let β be a complex number, a = Reβ > 0, the function f ∈ A,
f(z) = z + a2z + · · · , M a positive real number.

If

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < M, z ∈ U, (24)

and

|β| ≤ (2a+ 1)
2a+1
2a

2M
, (25)

then the function I(z) defined by (2) is in the class S.

Proof. For n = 1, h(z) = z and using (15) from Theorem 4, we obtain Corollary
5.

Corollary 6. Let the function f ∈ A, f(z) = z + a2z
2 + · · · .

If ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 3
√

3

2
, z ∈ U, (26)

then the function T (z) defined by (3) is in the class S.
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Proof. For n = 1, β = 1, h(z) = z, from Corollary 5, we obtain Corollary 6.

Theorem 7. Let β be a complex number, a = Reβ > 0, the functions f, h ∈ A,
f(z) = z + a2z

2 + . . . , h(z) = z + b2z
2 + . . . , M0 = 1.5936 . . . , the positive solution

of equation (2−M)eM = 2.
If ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M0, z ∈ U, (27)∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤M0, z ∈ U, (28)

and
|β − 1|+ 2

a
+

2M0

(2a+ 1)
2a+1
2a

≤ 1, (29)

then the function Gh(f)(z) belongs to the class S.

Proof. We consider the function Gh(f)(z) defined by (13) and the function g(z)
defined by (14).

From (15) we obtain:∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ |β − 1|
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣+

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣+

∣∣∣∣zh′(z)h(z)
− 1

∣∣∣∣+ |z|
∣∣∣∣h′′(z)h′(z)

∣∣∣∣ (30)

for all z ∈ U .
Using (27), (28) and Lemma 3, from (30) we get

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1− |z|2a

a
[|β − 1|+ 2] +

1− |z|2a

a
|z|M0, z ∈ U (31)

We have

max
|z|≤1

1− |z|2a

a
|z| = 2

(2a+ 1)
2a+1
2a

. (32)

From (31) and (32) we obtain:

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ |β − 1|+ 2

a
+

2M0

(2a+ 1)
2a+1
2a

, (33)

for all z ∈ U .
Using (29), from (33) we have

1− |z|2a

a

∣∣∣∣zg′′(z)g′(z)

∣∣∣∣ ≤ 1, z ∈ U. (34)
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Now, from (34) and Lemma 1 we obtain that the function Gh(f)(z) belongs to
the class S,

Gh(f)(z) = z + c2z
2 + . . .

We note by K2 the class of univalent integral operator Gh(f), obtained by the
conditions of Theorem 7.

Corollary 8. Let β be a real number, β > 1, the function f ∈ A, f(z) = z+ a2z
2 +

. . . , M0 = 1.5936 . . . the positive solution of the equation (2−M)eM = 2.
If ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M0, z ∈ U, (35)

then the function I(z) defined by (2) is in the class S.

Proof. Using (30) and Theorem 7 for h(z) = z, we obtain Corollary 8.

Corollary 9. Let the function f ∈ A, f(z) = z + a2z
2 + . . . , M0 = 1.5936 . . . the

positive solution of equation (2−M)eM = 2.
If ∣∣∣∣f ′′(z)f ′(z)

∣∣∣∣ ≤M0, z ∈ U (36)

then the function T (z) defined by (3) is in the class S.

Proof. For β = 1, h(z) = z, using (30) and Theorem 7 we obtain Corollary 9.
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Braşov, Romania
email: virgilpescar@unitbv.ro

Adela Sasu
Department of Mathematics, Faculty of Mathematics and Informatics,

112



V. Pescar, A. Sasu – Classes of an univalent integral operator

Transilvania University of Braşov,
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