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Abstract. In this paper, we study fixed point theory for a continuous mul-
tifunction with compact and convex values. The basic aim is to show some spe-
cial characteristics of the fixed points in a finite dimensional Euclidean space. We
also discover these special fixed points using continuous selections. We give more
information about the location of the continuous selections and the fixed points,
respectively.
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1. Introduction

Let ‖.‖ be the Euclidean norm on Rn for n ≥ 1, d(x, y) = ‖x− y‖ be the Euclidean
distance between x, y ∈ Rn and τ be the Euclidean topology induced by d. Members
of τ are called open sets, their complements are called closed sets. It is not hard to
see that the Euclidean norm is strictly convex.

The existences of fixed points for single- and multi-valued mappings are obtained
from Luitzen Brouwer in 1912 and Shizuo Kakutani in 1941, respectively. Brouwer’s
and Kakutani’s Fixed Point Theorems are two celebrated results in mathematics.

Brouwer’s Fixed Point Theorem [5] is well known in the following more general
version: ”Let h : S → S be a continuous function from a nonempty compact and
convex set S ⊂ Rn into itself, then h has a fixed point, i.e. there exists a point x ∈ S
such that x = h(x)”.

We also know Kakutani’s Fixed Point Theorem [9] in its classical variant: ”Let
S ⊂ Rn be a nonempty compact and convex set, and ϕ : S ⇒ S be an upper semi-
continuous multifunction with compact and convex values, then ϕ has a fixed point,
i.e. there exists a point x ∈ S such that x ∈ ϕ(x)”. Here we note that every value
of a multifunction is a nonempty set, i.e. ϕ(x) is nonempty for all x ∈ S.
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These two theorems show the existence of fixed points, but they give no infor-
mation about the uniqueness, determination or location of the solutions.

Additionally, recall some definitions regarding the fixed point property.

Definition 1. The set S is said to have the fixed point property if and only if
every continuous function h : S → S from this set into itself has a fixed point, i.e.
there is a point x ∈ S such that x = h(x).

Definition 2. The set S is said to have the Kakutani fixed point property if and
only if every upper semi-continuous multifunction with compact and convex values
ϕ : S ⇒ S has a fixed point, i.e. there is a point x ∈ S such that x ∈ ϕ(x).

The study of fixed points for a multifunction in a finite dimensional Euclidean
space was initiated by Kakutani in 1941. In [3 - Theorem 8], it is proven that if
S ⊂ Rn is a nonempty and compact set, and ϕ : S ⇒ S is an upper semi-continuous
multifunction with compact values, then ϕ has a fixed compact set, i.e. there exists
a nonempty and compact subset K ⊂ S such that K = ϕ(K). In [10] and [11],
the authors discuss the fixed point properties related to multi-valued mappings on
a paracompact convex subset of a locally convex linear topological space. In [10],
the authors consider the existence of interior fixed points in Euclidean maps.

Fixed point theory has become one of the most useful and powerful tools in
optimization theory, see [6] for more details. Many questions in optimization can be
reduced to the analysis of a fixed point problem. We can see some applications of
fixed point theory in multi-criteria optimization in [15] and [16].

Now, we will focus our attention on a nonempty compact and convex set S ⊂
Rn, and a continuous multifunction ϕ : S ⇒ S with compact and convex values.
According to Kakutani’s theorem ϕ has a fixed point. But, we will add an extra
condition, that is, ϕ is lower semi-continuous on S. It follows that this condition
may give some special characteristics of the fixed points and we will discuss this
problem.

The aim of this paper is to show some special characteristics of the fixed points
in a finite dimensional Euclidean space. We wish to discover these special fixed
points using continuous selections. We will also give more information and some
new facts on the location of the continuous selections and the special fixed points,
respectively.

The paper is organized as follows. Section 2 describes some definitions, concepts
and notions which we use in our study. Section 3 presents our three new theorems
for continuous selections and fixed points.
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2. Definitions, Concepts and Notions

When we talk about a multifunction in this paper it can be upper semi-continuous,
lower semi-continuous or continuous. So, we recall some topological definitions and
their equivalent statements for a multifunction.

Remark 1. Consider a multifunction ϕ : S ⇒ Rn.
(a) ϕ is called upper semi-continuous (briefly usc) at a point x ∈ S if and only if

for each open set V ⊂ Rn such that ϕ(x) ⊂ V , these exists a set U of τ containing
x such that y ∈ U ∩ S implies ϕ(y) ⊂ V . ϕ is usc on S if and only if ϕ is usc at
each x ∈ S. This is equivalent to ”The multifunction ϕ : S ⇒ Rn is upper semi-
continuous at a point x ∈ S if and only if {xk}∞k=1 ⊂ S and {yk}∞k=1 ⊂ ϕ(S) are a
pair of sequences such that limk→∞ xk = x and yk ∈ ϕ(xk) for all k ∈ N , then there
exists a convergent subsequence of {yk}∞k=1 whose limit belongs to ϕ(x)”.

(b) ϕ is called lower semi-continuous (briefly lsc) at a point x ∈ S if and only
if for each open set V ⊂ Rn such that ϕ(x) ∩ V 6= ∅, there exists a set U of τ
containing x such that y ∈ U ∩ S implies ϕ(y) ∩ V 6= ∅. ϕ is lsc on S if and only
if ϕ is lsc at each x ∈ S. This is equivalent to ”The multifunction ϕ : S ⇒ Rn is
lower semi-continuous at a point x ∈ S if and only if {xk}∞k=1 ⊂ S is a sequence
convergent to x and y ∈ ϕ(x), then there exists a sequence {yk}∞k=1 ⊂ ϕ(S) such
that yk ∈ ϕ(xk) for all k ∈ N and limk→∞ yk = y”.

(c) ϕ is called continuous at a point x ∈ S if and only if ϕ is both usc and lsc at
x ∈ S. ϕ is continuous on S if and only if ϕ is continuous at each x ∈ S.

As was mentioned before, every nonempty compact and convex set has the fixed
point property and the Kakutani fixed point property. The Fixed point property
and the Kakutani fixed point property are topological properties. These properties
of sets are preserved under homeomorphism and retraction [8] [16].

From a mathematical point of view, a natural extension of the continuity of a
function is the concept to the upper semi-continuity of a multifunction. So, we under-
stand that a natural generalization of Brouwer’s Fixed Point Theorem is Kakutani’s
Fixed Point Theorem. We can also see that Kakutani’s theorem is a multifunction
analog of Brouwer’s theorem.

Remark 2. The Kakutani fixed point property is very closely related to the
fixed point property. The key idea is very simple. Observe that every point-to-point
multifunction is a function. If S ⊂ Rn has the Kakutani fixed point property, then
since any continuous function from S into itself can be viewed as an upper semi-
continuous multifunction with compact and convex values it follows that set S will
also have the fixed point property.

Remark 3. Let S ⊂ Rn be compact. It is proven that set S having the Kakutani
fixed point property is equivalent to S having the fixed point property [4] [16].
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Let S ⊂ Rn be nonempty. A point x ∈ Rn is called a boundary point of S if and
only if every neighborhood N(x) ∈ τ contains a point in S and a point in Rn\S,
i.e. N(x) ∩ S 6= ∅ and N(x) ∩ (Rn\S) 6= ∅. The set of all boundary points of S is
denoted by bdS. The set clS = S ∪ bdS is called the topological closure of S and
clS is closed. In other words, clS is the intersection of all closed sets contains S. A
point x ∈ S is called an interior point of S if and only if there is a neighborhood
N(x) ∈ τ such that N(x) ⊂ S. The set of all interior points of S is denoted by intS,
i.e. intS is the union of all sets U ∈ τ such that U ⊂ S and intS is open. It should
be noted that bdS = clS\intS and intS = clS\bdS.

The convex hull of S ⊂ Rn is the convex set which is the intersection of all
convex sets which contain S and it is denoted by convS.

Remark 4. Let S ⊂ Rn be a nonempty and bounded set. A point z(z1, z2, ..., zn) ∈
Rn is called a peak point for S if and only if for each i ∈ {1, 2, ..., n} either
zi = sup{xi|x(x1, x2, ..., xn) ∈ S} or zi = inf{xi|x(x1, x2, ..., xn) ∈ S}. Point
z(z1, z2, ..., zn) ∈ Rn is called the first peak point for S if and only if for each
i ∈ {1, 2, ..., n}, zi = sup{xi|x(x1, x2, ..., xn) ∈ S}. Here the interest is the set of all
peak points and its convex hull. Denote the set of all peak points for S by P (S),
convP (S) is called a proper hypercuboid which contains S. It is easy to show that
z ∈ P (S) and N = |P (S)| = 2n. Clearly, it is possible to have coincidence of two or
more peak points.

Note that if S ⊂ Rn is closed, then P (S) ∩ S 6= ∅ is possible, but if S is open,
then P (S) ∩ S = ∅.

Remark 5. Let S ⊂ Rn be a nonempty and bounded set. A point c ∈ Rn is
called a central point for S if and only if d(c, z1) = d(c, z2) for all z1, z2 ∈ P (S). It is
easy to conclude from convP (S) =

∏n
i=1[ai, bi] where ai = inf{xi|x(x1, x2, ..., xn) ∈

S}, bi = sup{xi|x(x1, x2, ..., xn) ∈ S} and [ai, bi] = {x ∈ Rn|x = (1− t).ai + t.bi, t ∈
[0, 1]} is a closed linear segment with ends ai and bi that the proper hypercuboid
convP (S) is the smallest hypercuboid which contains S and the set S has a unique
central point c ∈ convP (S). In this work every hypercuboid has edges parallel to
the axes and its adjacent faces are orthogonal.

Remark 6. It is important to note the relationship between the fixed point
theory and selection theory, for details see [12], [13] and [14]. The research in
selection theory was started by Ernest Michael in 1956 with the proof of several
continuous selection theorems [14]. Consider a multifunction ϕ : S ⇒ Rm, S ⊂ Rn

and m ≥ 1.
(1) By a continuous selection f for ϕ, we mean a continuous function f : S →

ϕ(S) such that f(x) ∈ ϕ(x) for all x ∈ S.
(2) Let ϕ(x) have a central point for all x ∈ S. By a central selection f for ϕ, we
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mean a function f : S → ϕ(S) such that f(x) ∈ ϕ(x) and f(x) is the central point
for ϕ(x) for all x ∈ S.

(3) Let ϕ have compact values. By a boundary selection f for ϕ, we mean a
function f : S → ϕ(S) such that f(x) ∈ bdϕ(x) for all x ∈ S.

(4) Let intϕ(x) be nonempty for all x ∈ S. By an interior selection f for ϕ, we
mean a function f : S → ϕ(S) such that f(x) ∈ intϕ(x) for all x ∈ S.

Observe that if
⋂

x∈S ϕ(x) is nonempty and y ∈
⋂

x∈S ϕ(x), then f(x) = y for
all x ∈ S is a continuous selection for ϕ.

Example 1. Consider a multifunction ϕ : [−1,+1]⇒ [−1,+1] such that

ϕ(x) =


{−1}, x ∈ [−1, 0)
[−1,+1], x = 0
{+1}, x ∈ (0,+1]

.

It is easy to show that ϕ is an upper semi-continuous multifunction on [−1,+1]
with compact and convex values, but it is not lower semi-continuous on [−1,+1].
This example shows that ϕ has a Kakutani fixed point and no continuous selection.

Example 2. Consider a multifunction ϕ : [0,+1]⇒ [0,+1] such that

ϕ(x) =

{
{0}, x = 0
[0,+1], x ∈ (0,+1]

.

In this case ϕ is a lower semi-continuous multifunction on [0,+1] with compact
and convex values, but it is not upper semi-continuous on [0,+1]. One can easily
see that ϕ has a continuous selection and a fixed point, for more information see the
so-called Michael’s theorem in [2].

It is known that there exists a continuous multifunction from a unit ball in R2

into its compact subset that has neither a continuous selection nor fixed points [1].

3. Main results

In this section, we establish our three theorems which show the existences of three
different types of continuous selections and three different types of fixed points,
respectively.

Theorem 1. Let S ⊂ Rn be a nonempty compact and convex set, and ϕ : S ⇒
S be a continuous multifunction with compact and convex values. The following
statements are true.

(a) There exists a central continuous selection fc for ϕ and it is unique.
(b) ϕ has a central fixed point, i.e. there exists a point x ∈ S such that x ∈ ϕ(x)

and x is the central point for ϕ(x).

Remark 7. We often use the Berge’s Maximum Theorem as a mathematical tool
in optimization and nonlinear analysis. In order to give the proof of Theorem 1 we
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will use this theorem in its classical variant: ”Let S ⊂ Rn and Θ ⊂ Rm, g : S×Θ→ R
be a continuous function, and D : Θ ⇒ S be a compact-valued and continuous
multifunction. Then, the function g∗ : Θ → R defined by g∗(θ) = max{g(x, θ)|x ∈
D(θ)} is continuous on Θ, and the multifunction D∗ : Θ ⇒ S defined by D∗(θ) =
{x ∈ D(θ)|g(x, θ) = g∗(θ)} is compact-valued and upper semi-continuous on Θ” [3]
[17]. Let us assume that S = Θ. In this case we obtain the following statement:
”If S ⊂ Rn, g : S × S → R is continuous and D : S ⇒ S is continuous and
compact-valued, then g∗ : S → R defined by g∗(x) = max{g(y, x)|y ∈ D(x)} is
continuous, and D∗ : S ⇒ S defined by D∗(x) = {y ∈ D(x)|g(y, x) = g∗(x)} is
upper semi-continuous and compact-valued”.

Remark 8. Let S ⊂ Rn be a nonempty closed and convex set, and x ∈ Rn.
A point y ∈ S is called a metric projection of x onto S if and only if d(x, y) =
d(x, S) = inf{d(x, s)|s ∈ S}. The projection of x onto S is denoted by y = πS(x).
It is known that the function πS : Rn → S is continuous and nonexpansive, that is,
‖πS(x1)− πS(x2)‖ ≤ ‖x1 − x2‖ for all x1, x2 ∈ Rn [7].

Remark 9. Let S ⊆ Rn be a nonempty and bounded set, ϕ : S ⇒ S be a
continuous multifunction with compact and convex values, Q = ϕ(S) and P (Q) =
{z1, z2, ..., zN}. So, for each zk ∈ P (Q) and for each x ∈ S there is a peak point
zkx ∈ P (ϕ(x)) such that zk corresponds to zkx, i.e. d(zk, zkx) = d(zk, P (ϕ(x))). It is
easy to show that for every i ∈ {1, 2, ..., n}, (zk)i is a result of supremum is equivalent
to (zkx)i is a result of maximum, and (zk)i is a result of infimum is equivalent to (zkx)i
is a result of minimum. Thus, for each zk ∈ P (Q) we get a collection {zkx}x∈ϕ(x)
such that zk corresponds to zkx for all x ∈ S. If z ∈ P (Q) is the first peak point for
S, then for each x ∈ S, zx ∈ P (ϕ(x)) is the first peak point for ϕ(x). When we say
k-peak point or zk-peak point, then we will understand that we have zk or zkx for
some x ∈ S, or the whole lot.

Remark 10. A hyperplane H in Rn is an (n − 1)-dimensional affine subset
of Rn for n ≥ 2, that is, H = {x ∈ Rn|L(x) = α} is the level set of a nontrivial
linear function L : Rn → R. If L is given by L(x) = 〈λ, x〉 for some λ ∈ Rn, then
H(λ, α) = {x ∈ Rn|〈λ, x〉 = α}. We also consider two open half-spaces H+(λ, α) =
{x ∈ Rn|〈λ, x〉 > α} and H−(λ, α) = {x ∈ Rn|〈λ, x〉 < α}, and two closed half-
spaces H+0(λ, α) = {x ∈ Rn|〈λ, x〉 ≥ α} and H−0(λ, α) = {x ∈ Rn|〈λ, x〉 ≤ α}
[7].

Remark 11. Let S ⊂ Rn be a nonempty and compact set, c ∈ convP (S) be the
central point for S, and H be a hyperplane in Rn such that either S ∩H is empty
or ∅ = S ∩H ⊂ H. One can easily see that: S ⊂ H+0 is equivalent to c ∈ H+0, and
S ⊂ H−0 is equivalent to c ∈ H−0, i.e. S and c lie in the same closed half-space of
H, otherwise we get that convP (S) is not the smallest hypercuboid which constants
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S.
The above remarks allow us to prove the first theorem.
Proof of Theorem 1. (a) Without loss of generally let us choose the first peak

point z ∈ P (Q) as one peak point for Q = ϕ(S). So, for each i ∈ {1, 2, ..., n} we
define a function mz,i : S → R by mz,i(x) = max{yi|y(y1, y2, ..., yn) ∈ ϕ(x)} for
all x ∈ S. It is easy to see that these functions {mz,i}ni=1 are continuous on S, see
Berge’s Maximum Theorem in Remark 7. As a result we get a continuous function
mz : S → convP (Q) such that mz(x) = (mz,1,mz,2, ...,mz,n) for all x ∈ S. Observe
that for each x ∈ S, mz(x) is a first peak point for ϕ(x).

More generally, for each z ∈ P (Q) we construct a continuous function mz :
S → convP (Q) such that if zi = sup{xi|x(x1, x2, ..., xn) ∈ P (Q)}, then mz,i(x) =
max{y(y1, y2, ..., yn) ∈ ϕ(x)} and if zi = inf{xi|x(x1, x2, ..., xn) ∈ P (Q)}, then
mz,i(x) = min{y(y1, y2, ..., yn) ∈ ϕ(x)}. On the one hand, it is easy to show that
mz(x) is continuous on S. On the other hand, for each x ∈ S, mz(x) is a peak point
for φ(x) which corresponds to z.

In summary, we get a collection of peak continuous functions {mk}Nk=1 such that
mk : S → convP (Q) and for each x ∈ S, mk(x) is a peak point for ϕ(x).

Now let us define a function fc : S → convP (Q) such that fc(x) = 1
N

∑N
k=1mk(x)

for all x ∈ S, see also Remark 9. In view of the above results, we have that fc is
continuous on S and for each x ∈ S, fc(x) is the unique central point for ϕ(x).

We will prove that fc(x) ∈ ϕ(x) for all x ∈ S.
There are two cases.
Case 1. Let n = 1.
In this case we have that S = [a0, b0], Q = [a, b], ϕ(x) = [ax, bx], a0 ≤ a ≤

ax ≤ bx ≤ b ≤ b0 and fc(x) = 1
2(ax + bx) for all x ∈ S. As a result we derive that

fc(x) ∈ ϕ(x) for all x ∈ S.
Case 2. Let n ≥ 2.
Let us fix x ∈ S and assume that fc(x)∈ϕ(x). In this case, let p(x) = πϕ(x)(fc(x)) ∈

ϕ(x), i.e. p(x) be a projection to fc(x) onto ϕ(x). It is easy to show that p(x) 6=
fc(x). Now consider a separating hyperplane

H = {y ∈ Rn|〈p(x)− fc(x), 12(p(x) + fc(x))− y〉 = 0}.
An easy computation shows that ϕ(x)∩H is empty, and ϕ(x) and fc(x) are not

in the same closed half-space of H. This leads to a contradiction, see Remarks 10
and 11. As a result we also derive that fc(x) ∈ ϕ(x).

Finally, fc(x) is the central point for ϕ(x) and fc(x) ∈ ϕ(x), i.e. fc is a central
continuous selection for ϕ and it is unique.

(b) Let fc be the central continuous selection for ϕ, see item (a). According to
Brouwer’s Fixed Point Theorem it follows that there exists a fixed point x ∈ S such
that x = fc(x). Thus, we obtain x = fc(x) ∈ ϕ(x), i.e. there exists a point x ∈ S
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such that x ∈ ϕ(x) and x is the central point for ϕ(x).
The theorem is proven.

Remark 12. From Remark 9 and Theorem 1 it follows that when we think
about k-peak point in general, we can understand that we also think about the
k-peak continuous function mk : S → convP (Q), k ∈ {1, 2, ..., N}, i.e. they are
equivalent.

Remark 13. Let S ⊂ Rn be a nonempty and bounded set. A point z′ ∈ P (S)
is called an antipodal point of z ∈ P (S) if and only if for each i ∈ {1, 2, ..., n}, z′i =
sup{xi|x(x1, x2, ..., xn) ∈ S} is equivalent to zi = inf{xi|x(x1, x2, ..., xn) ∈ S} and
z′i = inf{xi|x(x1, x2, ..., xn) ∈ S} is equivalent to zi = sup{xi|x(x1, x2, ..., xn) ∈ S}.
It is easy to show that z′′ = z and for the central point c for S we have c = 1

2(z+z′) for
all z ∈ P (S). We note first that, for each x ∈ S we obtain c(x) = 1

2(mz(x)+mz′(x))
and second, if z′x = zx, then |ϕ(x)| = 1.

Continuing with our analysis we introduce the following theorem.

Theorem 2. Let S ⊂ Rn be a nonempty compact and convex set, and ϕ : S ⇒
S be a continuous multifunction with compact and convex values. The following
statements are true.

(a) For each z ∈ P (S) there exists a boundary continuous selection fz for ϕ.
(b) ϕ has a boundary fixed point, i.e. there exists a point x ∈ S such that

x ∈ bdϕ(x).

Proof. (a) In the proof of Theorem 1 for each z ∈ P (Q) we construct a contin-
uous function mz : S → convP (Q) such that mz(x) is a peak point for ϕ(x) which
corresponds to z for all x ∈ S.

Let us fix z ∈ P (Q) and define a function g : [0, 1] × S → R by g(t, x) =
mz′ + t.(mz(x) − mz′(x)) for all t ∈ [0, 1] and for all x ∈ S. Observe that g is
continuous on [0, 1]× S.

According to Theorem 1 there exists the unique central continuous selection fc
and fc(x) ∈ ϕ(x) for all x ∈ S. Thus, we find that fc(x) ∈ g([0, 1], x) ∩ ϕ(x) for all
x ∈ S, see Remark 12.

It is easy to conclude from ϕ(x) is nonempty compact and convex for all x ∈ S
that there exists a point ts ∈ [0, 1] such that g(ts, x) = max{g(t, x)|t ∈ [0, 1]}. By
using Berge’s Maximum Theorem, we obtain that the function g∗(t) is continuous
on [0, 1] and the multifunction ϕ∗(x) = {y ∈ ϕ(x)|g(t, x) = g∗(t)} is compact-valued
and upper semi-continuous on S. But, the construction of function g implies that
ϕ∗(x) ∈ bdϕ(x) and |ϕ∗(x)| = 1 for all x ∈ S. As a result we deduce that fz = ϕ∗ is
a boundary continuous selection for ϕ.

(b) Let z ∈ P (S) and fz be a boundary continuous selection for ϕ, see item (a).
According to Brouwer’s Fixed Point Theorem we get that there exists a fixed point
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x ∈ S such that x = fz(x). Thus, we obtain x = fz(x) ∈ bdϕ(x), i.e. there exists a
point x ∈ S such that x ∈ bdϕ(x).

The theorem is proven.

Example 3. Consider a multifunction ϕ : [0, 2]⇒ [0, 2] such that

ϕ(x) =

{
[0, 1], x ∈ [0, 2]\{1}
[0, 2], x = 1

.

It is easy to show that ϕ is an upper semi-continuous multifunction on [0, 2] with
compact and convex values, but it is not lower semi-continuous. This example also
shows that ϕ has a Kakutani fixed point and a central fixed point, but it has no
central continuous selection. If we choose point 2 as a peak point for [0, 2], then ϕ
has no boundary fixed point. Hence, the fact that ϕ is lower semi-continuous on S
is very important for existence of central and boundary continuous selections and
special fixed points.

Remark 14. Let S ⊂ Rn be a nonempty and bounded set. Clearly, if convP (S)
has no interior point, then there exists a hyperplane H such that convP (S) ⊂ H
and if convP (S) has a interior point, then there is no hyperplane H such that
convP (S) ⊂ H.

In the end we will prove the third theorem in this paper. It has an extra condition
for interior point.

Theorem 3. Let S ⊂ Rn be a nonempty compact and convex set, ϕ : S ⇒ S
be a continuous multifunction with compact and convex values, and intϕ(x) be
nonempty for all x ∈ S. The following statements are true.

(a) There exists an interior continuous selection f for ϕ.
(b) ϕ has an interior fixed point, i.e. there exists a point x ∈ S such that

x ∈ intϕ(x) and x ∈ intS.

Proof. (a) In Theorem 2 we proved that for each z ∈ P (Q) there exists a
boundary continuous selection fz for ϕ. Now, in this new theorem, we conclude
that the peak points for Q are different and from the construction of their boundary
selections it follows that they are different too. As a result we get a collection {fi}Ni=1

of the different boundary continuous selections for ϕ.
Define a function f : S → Q such that f(x) = 1

N

∑N
i=1 fi(x) for all x ∈ S. From

ϕ(x) is convex it follows that f(x) ∈ ϕ(x) for all x ∈ S.
In summary, we obtain f is a continuous selection for ϕ.
We will prove that f is an interior continuous selection for ϕ, i.e. f(x) ∈ intϕ(x)

for all x ∈ S.
There are two cases.
Case 1. Let n = 1.
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In this case we have that S = [a0, b0], Q = [a, b], ϕ(x) = [ax, bx], a0 ≤ a ≤ ax <
bx ≤ b ≤ b0 and f(x) = 1

2(ax+bx) for all x ∈ S. As a result we obtain f(x) ∈ intϕ(x)
for all x ∈ S.

Case 2. Let n ≥ 2.
Let us fix x ∈ S and assume that f(x)∈intϕ(x). In this case, since f(x) ∈ ϕ(x),

intϕ(x) is nonempty and ϕ(x) is a compact and convex set, we conclude that f(x) ∈
bdϕ(x) and there exists a supporting hyperplane H(λ, α) = {x ∈ Rn|〈λ, x〉 = α〉} of
ϕ(x) at f(x) such that f(x) ∈ H ∩ bdϕ(x) and either ϕ(x) ⊂ H+0 or ϕ(x) ⊂ H−0.

Without loss of generally let us assume that ϕ(x) ⊂ H+0. So, we have that
fk(x) ∈ H+0 ∩ bdϕ(x) for all zk ∈ P (Q); therefore, 〈λ, fk(x)〉 ≥ α for all zk ∈ P (Q).
But, we know that 〈λ, f(x)〉 = α; therefore, we obtain 〈λ, fk(x)〉 = α for all zk ∈
P (Q); i.e. fk(x) ∈ H.

In Theorem 1 we proved that fc(x) ∈ ϕ(x); therefore, fc(x) ∈ H+0. Observe
fc(x) ∈ [fz(x), fz′(x)] ⊂ [z, z′] along the linear segment [z, z′] = {y ∈ Rn|y =
(1− t).z+ t.z′, t ∈ [0, 1]}. As a result we obtain fc(x) ∈ H; therefore, P (ϕ(x)) ⊂ H.
This means that convP (ϕ(x)) ⊂ H; therefore, we have a contradiction, see also
Remark 14.

Finally, we get f(x) ∈ intϕ(x) for all x ∈ S, i.e. f is an interior continuous
selection for ϕ.

(b) Let f be an interior continuous selection for ϕ, see item (a). According to
Brouwer’s Fixed Point Theorem we have that there exists a fixed point x ∈ S such
that x = f(x). Thus, we obtain x = f(x) ∈ ϕ(x), i.e. there exists an interior fixed
point x ∈ S.

From ϕ(x) ⊂ S for all x ∈ S and for fixed point x ∈ intϕ(x) it follows that
x ∈ intS.

The theorem is proven.
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