SOME FAMILIES OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS GIVEN BY AN INTEGRAL OPERATOR

A. AkgüL

Abstract

In the present study, the author define a new subclass of meromorphic functions with positive coefficient defined in the punctured unit disc $\mathbb{U}=$ $\{z \in \mathbb{C}: 0<|z|<1\}$ with a simple pole at the origin with residue 1 , by using the certain integral operator. Coefficient inequality, convex linear combinations, extreme points are obtained. We also investigated meromorphically radii of close-toconvexity, meromorphically convexity, meromorphically starlikeness and Hadamard product. Then, we prove a property using an integral operator for the functions f in this class.

2010 Mathematics Subject Classification: 30C45.

Keywords: Meromorphic functions; Positive coefficients; coefficient inequality; integral operator;convex linear combination.

1. Introduction

Let Σ symbolized the class of analytic functions, which are whith a simple pole at the origin with residue 1 of the form in the punctured unit disc $\mathbb{U}=\{z \in \mathbb{C}: 0<|z|<1\}$, and are in the form of the

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

For functions $f \in \Sigma$ given by (1) and $g \in \Sigma$ defined by

$$
g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n},
$$

their Hadamard product [10] is given by

$$
(f * g)(z):=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n}
$$

A. Akgül - Some families of meromorphic functions ...

Let $\sum_{s}, \sum^{*}(\alpha), \sum_{c}(\alpha)$ be the subclass of \sum consisting of univalent, meromorphically starlike of order α and meromrphically convex of order $\alpha(0 \leq \alpha<1)$ respectively.

A function given by (1) in the class $\sum^{*}(\alpha)$ if and only if

$$
R\left(-\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(z \in \mathbb{U})
$$

and $f \in \sum_{c}(\alpha)$ if and only if

$$
R\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha \quad(z \in \mathbb{U})
$$

Recent years, many authors investigated the subclass of meromorphic functions with positive coefficient (see [1], [4], [2], [3], [6], [8], [14]). Juena and Reddy (see [12]) introduced the class of \sum_{p} functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{n} \geq 0 \tag{2}
\end{equation*}
$$

which are regular and univalent in \mathbb{U}. The functions in this class are said to be meromorphic functions with positive coefficient.

Analogous to the integral operator defined by Jung at all [13] on the normalized analytic functions, Lashin [15] defined the integral operator $Q_{\beta}^{\gamma}: \Sigma \rightarrow \Sigma$, for $\beta>0, \gamma>1 ; z \in \mathbb{U}^{*}$,

$$
Q_{\beta}^{\gamma}=Q_{\beta}^{\gamma} f(z)=\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta) \Gamma(\gamma)} \frac{1}{z^{\beta+1}} \int_{0}^{z} t^{\beta}\left(1-\frac{t}{z}\right)^{\gamma-1} f(t) d t
$$

where Γ is the familiar Gamma function. Using the integral representation of the Gamma and Beta functions, it can be shown that

$$
Q_{\beta}^{\gamma} f(z)=\frac{1}{z}+\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta)} \sum_{n=1}^{\infty} \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\gamma+1)} a_{n} z^{n}=\frac{1}{z}+\sum_{n=1}^{\infty} L(n, \beta, \gamma) a_{n} z^{n}
$$

where

$$
L(n, \beta, \gamma)=\frac{\Gamma(\beta+\gamma)}{\Gamma(\beta)} \frac{\Gamma(n+\beta+1)}{\Gamma(n+\beta+\gamma+1)} .
$$

Now we introduce the following subclass of Σ_{p} associated with the integral operator $Q_{\beta}^{\gamma} f(z)$.
A. Akgül - Some families of meromorphic functions ...

Definition 1. A function $f \in \sum$ is said to be in the class $\sum Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ if and only if the following condition is satisfied:

$$
\begin{equation*}
R\left\{\frac{-z(\psi(z))^{\prime}}{\psi(z)}\right\} \geq q\left|\frac{z(\psi(z))^{\prime}}{\psi(z)}+1\right|+\zeta \tag{3}
\end{equation*}
$$

where $0 \leq \zeta<1, \beta>0, \gamma>1,0 \leq \alpha \leq \lambda<\frac{1}{2}, q \geq 0$ and

$$
\begin{equation*}
\psi(z)=\lambda \alpha z^{2}\left(Q_{\beta}^{\gamma} f(z)\right)^{\prime \prime}+(\lambda-\alpha) z\left(Q_{\beta}^{\gamma} f(z)\right)^{\prime}+(1-\lambda+\alpha) Q_{\beta}^{\gamma} f(z) \tag{4}
\end{equation*}
$$

It is noted that

$$
\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)=\sum Q(\alpha, \lambda, \beta, \gamma, \zeta, q) \cap \sum_{p}
$$

Lemma 1. [5] Let σ is a real number and $w=u+i v$ is a complex number. Then,

$$
R(w) \geq \sigma \Longleftrightarrow|w-(1+\sigma)| \leq|w+(1-\sigma)| .
$$

Lemma 2. [5] Let $w=u+i v$ and σ, γ are real numbers. Then

$$
R(-w)>\sigma|-w-1|+\gamma \Longleftrightarrow\left\{-w\left(1+\sigma e^{i \Phi}\right)-\sigma e^{i \Phi}\right\}>\gamma,(-\pi \leq \theta \leq \pi)
$$

2. Coefficient Bounds

We obtain in this section a necessary and sufficient condition for a function f to be in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. We employ the technique adopted by Aqlan at all [5] and Athsan and Kulkarni [7] to find the coefficient estimates for the functions f defined by the equation (1) in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$.

Theorem 3. A meromorphic function f defined by the equation (1) in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ if and only if

$$
\begin{align*}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) a_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) \tag{5}
\end{align*}
$$

for some $0 \leq \zeta<1, \beta>0, \gamma>1,0 \leq \alpha \leq \lambda<\frac{1}{2}$ and $q \geq 0$.
Proof. Let $f \in \sum_{p}$ and satisfies the condition (5). Then by applying lemma 2 we have to show that

$$
\begin{gathered}
R\left\{\frac{-z(\psi(z))^{\prime}}{\psi(z)}\left(1+q e^{i \theta}\right)-q e^{i \theta}\right\}>\zeta \\
(-\pi \leq \theta \leq \pi, 0 \leq \zeta<1, q \geq 0)
\end{gathered}
$$

or equavalentily

$$
\begin{equation*}
R\left\{\frac{-z(\psi(z))^{\prime}\left(1+q e^{i \theta}\right)-q e^{i \theta} \psi(z)}{\psi(z)}\right\}>\zeta . \tag{6}
\end{equation*}
$$

Let

$$
\varphi(z)=-z \psi^{\prime}(z)\left[1+q e^{i \theta}\right]-q e^{i \theta} \psi(z)
$$

Thus, the equation(6) is equivalent to

$$
\begin{equation*}
R\left(\frac{\varphi(z)}{\psi(z)}\right)>\zeta \tag{7}
\end{equation*}
$$

In view of Lemma 1 it is sufficient to prove that

$$
\begin{equation*}
|\varphi(z)+(1-\zeta) \psi(z)|-|\varphi(z)-(1+\zeta) \psi(z)|>0 . \tag{8}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& |\varphi(z)+(1-\zeta) \psi(z)| \\
= & \left\lvert\,(2-\zeta)(2 \lambda \alpha-2 \lambda+2 \alpha+1)\left(\frac{1}{z}\right)\right. \\
& +\sum_{n=1}^{\infty}\left[(1-n-\zeta)+q(-n-1) e^{\theta}\right] \\
& {[(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n} z^{n} \mid } \\
\geq & (2-\zeta)(2 \lambda \alpha-2 \lambda+2 \alpha+1)\left|\frac{1}{z}\right| \\
& -\sum_{n=1}^{\infty}[(n+\zeta-1)+q(n+1)] \\
& {[(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n}\left|z^{n}\right| . } \tag{9}
\end{align*}
$$

Also, similarly we obtain

$$
\begin{align*}
& |\varphi(z)-(1+\zeta) \psi(z)| \\
\leq & \zeta(2 \lambda \alpha-2 \lambda+2 \alpha+1)\left|\frac{1}{z}\right| \\
& +\sum_{n=1}^{\infty}[(n+\zeta+1)+q(n+1)] \\
& {[(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n}\left|z^{n}\right| . } \tag{10}
\end{align*}
$$

Thus from (9) and (10) we get

$$
\begin{aligned}
& |\varphi(z)+(1-\zeta) \psi(z)|-|\varphi(z)-(1+\zeta) \psi(z)| \\
\geq & 2(1-\zeta)(2 \lambda \alpha-2 \lambda+2 \alpha+1) \\
& -[2(n+\zeta)+2 q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n} \\
\geq & 0 .
\end{aligned}
$$

If we use the inequality (5) in last inequality, then we obtain the desired result. Conversely, let the function f defined by the equation (1) be in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. That is, the inequality (4) holds for the function f. By choosing the value of z on the positive real axis, where $0 \leq z=r<1$ the inequality (4) reduces to

$$
R\left\{\begin{array}{c}
(1+\zeta)(2 \lambda \alpha-2 \lambda+2 \alpha+1)-\sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)] \\
\frac{[(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n} r^{n+1}}{(2 \lambda \alpha-2 \lambda+2 \alpha+1)+\sum_{n=1}^{\infty}[(n-1)(n \lambda \alpha+\lambda-\alpha)+1]} \\
L(n, \beta, \gamma) a_{n} r^{n+1}
\end{array}\right\} \geq 0,
$$

where $R\left(-e^{i \theta}\right) \geq-\left|e^{i \theta}\right|=-1$. Letting $r \rightarrow 1^{-}$through positive values we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma) a_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)
\end{aligned}
$$

and this is desired result.
Corollary 4. Let the function f defined by the equation (2) be in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then

$$
a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma)}, \quad(n \geq 1)
$$

A. Akgül - Some families of meromorphic functions ...

The result is sharp for the function f of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)+1] L(n, \beta, \gamma)} z^{n} . \quad(n \geq 1) \tag{11}
\end{equation*}
$$

3. Convex Linear Combination

Theorem 5. The class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ is closed under convex combination.
Proof. Let the functions

$$
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \quad \text { and } \quad g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n}
$$

be in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then, by Theorem 3, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) a_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) b_{n} \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) . \tag{13}
\end{align*}
$$

For $0 \leq \tau \leq 1$, define the function h as

$$
h(z)=\tau f(z)+(1-\tau) g(z) .
$$

Then, we get

$$
h(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left[\tau a_{n}+(1-\tau) b_{n}\right] z^{n} .
$$

Now, we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)\left[\tau a_{n}+(1-\tau) b_{n}\right] \\
= & \tau[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) a_{n} \\
& +(1-\tau)[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) b_{n} \\
\leq & \tau(1-\alpha)+(1-\tau)(1-\alpha) \\
= & (1-\alpha) .
\end{aligned}
$$

So, $h(z) \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$.

4. Extreme Point

Theorem 6. Let

$$
f_{0}(z)=\frac{1}{z}
$$

and
$f_{n}(z)=\frac{1}{z}+\frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} z^{n} \quad(n=1,2, \ldots)$.
Then $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ if and only if it can be represented in the form

$$
f(z)=\sum_{n=0}^{\infty} \mu_{n} f_{n}(z)
$$

where $\mu_{n} \geq 0$ and $\sum_{n=0}^{\infty} \mu_{n}=1$.
Proof. Assume that $f(z)=\sum_{n=0}^{\infty} \mu_{n} f_{n}(z),\left(\mu_{n} \geq 0, n=0,1,2, \ldots ; \sum_{n=0}^{\infty} \mu_{n}=1\right)$. Then, we have

$$
\begin{aligned}
f(z) & =\sum_{n=0}^{\infty} \mu_{n} f_{n}(z) \\
& =\mu_{0} f_{0}(z)+\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \mu_{n} \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} z^{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sum_{n=1}^{\infty}[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma) \mu_{n} \\
& \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} \\
= & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) \sum_{n=1}^{\infty} \mu_{n} \\
= & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)\left(1-\mu_{0}\right) \\
\leq & (1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1) .
\end{aligned}
$$

Hence, by Theorem3, $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$.
Conversely, suppose that $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Since by Corollary 4,

$$
a_{n} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}, \quad(n \geq 1)
$$

If we set

$$
\mu_{n}=\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n}, \quad(n \geq 1)
$$

and $\mu_{0}=1-\sum_{n=1}^{\infty} \mu_{n}$, then we obtain

$$
f(z)=\mu_{0} f_{0}(z)+\sum_{n=1}^{\infty} \mu_{n} f_{n}(z) .
$$

This completes the proof of the theorem.

5. Radii of Starlikeness and Convexity

We now find the radii of meromorphically close-to-convexity, starlikeness and convexity for functions f in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$.
Theorem 7. Let $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then f is meromorphically close-toconvex of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=\inf _{n}\left[\frac{(1-\delta)}{n} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\delta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right]^{\frac{1}{n+1}} \tag{14}
\end{equation*}
$$

($n \geq 1$) and the result is sharp.
Proof. Let $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. It is sufficient to prove that

$$
\left|z^{2} f^{\prime}(z)+1\right| \leq 1-\delta, \quad 0 \leq \delta<1, \quad|z|<r_{1}
$$

By Theorem 3, we have

$$
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} \leq 1
$$

So the inequality

$$
\left|z^{2} f^{\prime}(z)+1\right|=\left|\sum_{n=1}^{\infty} n a_{n} z^{n+1}\right| \leq \sum_{n=1}^{\infty} n a_{n}|z|^{n+1} \leq 1-\delta
$$

> A. Akgül - Some families of meromorphic functions ...
holds true if

$$
\frac{n|z|^{n+1}}{1-\delta} \leq \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

Then, inequality (14) holds true if

$$
|z|^{n+1} \leq \frac{(1-\delta)}{n} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}, \quad(n \geq 1)
$$

which yields the close-to-convexity of the family and completes the proof and the result is sharp for the function given by (11).

Theorem 8. Let $f \in \sum_{p}$. Then f is meromorphically starlike of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{2}$, where

$$
r_{2}=\inf _{n}\left[\frac{(1-\delta)}{(n+2-\delta)} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right]^{\frac{1}{n+1}} \quad(n \geq 1) .
$$

The result is sharp.
Proof. Let $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. It is sufficient to prove that

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq 1-\delta, \quad 0 \leq \delta<1,|z|<r_{2} \tag{15}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| & =\left|\frac{\sum_{n=1}^{\infty}(n+1) a_{n} z^{n+1}}{\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n}}\right| \\
& \leq \frac{\sum_{n=1}^{\infty}(n+1) a_{n}|z|^{n+1}}{1-\sum_{n=1}^{\infty} a_{n}|z|^{n+1}} \\
& \leq 1-\delta .
\end{aligned}
$$

By Theorem 3 we have

$$
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} \leq 1 .
$$

Then inequality (15) holds true if

$$
\frac{(n+2-\delta)}{(1-\delta)}|z|^{n+1} \leq \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

A. Akgül - Some families of meromorphic functions ...
which is equivalent to

$$
|z|^{n+1} \leq \frac{(1-\delta)[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(n+2-\delta)(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

or

$$
|z| \leq\left[\frac{(1-\delta)}{(n+2-\delta)} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right]^{\frac{1}{n+1}}
$$

which yields the starlikeness of the family and completes the proof. Also, the result is sharp for the function given by the equation (11).

Theorem 9. Let $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then f is meromorphically convex of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{3}$, where
$r_{3}=\inf _{n}\left[\frac{(1-\delta)}{n(n+2-\delta)} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right]^{\frac{1}{n+1}},(n \geq 1)$.
The result is sharp for the extremal function f given by
$f_{n}(z)=\frac{1}{z}+\frac{n(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} z^{n}, \quad(n \geq 1)$.

Proof. By using the technique employed in the proof of Theorem 8 and 9 , we can show that

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+2\right|<1-\mu,
$$

for $|z|<r_{3}$, and prove that the assertion of the theorem is true.
Theorem 10. For functions $f, g \in \Sigma_{p}$ defined by (1) let $f, g \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then the Hadamard product $f * g \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \rho, q)$, where
$\rho \leq \frac{[[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)]]^{2} L(n, \beta, \gamma)-n(1-\alpha)^{2}}{[[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)]]^{2} L(n, \beta, \gamma)+(1-\alpha)^{2}[1-\delta(n+1)]}$.
Proof. From Theorem 3, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} \leq 1 \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} b_{n} \leq 1 \tag{19}
\end{equation*}
$$

From (18) and (19) we find, by means of the Cauchy-Schwarz inequality, that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} \sqrt{a_{n} b_{n}} \leq 1 \tag{20}
\end{equation*}
$$

We need to find the largest ρ such that

$$
\sum_{n=1}^{\infty} \frac{[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} b_{n} \leq 1
$$

Thus it is enough to show that

$$
\begin{aligned}
& \frac{[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} b_{n} \\
\leq & \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} \sqrt{a_{n} b_{n}},
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{(1-\rho)[(n+\zeta)+q(n+1)]}{(1-\zeta)[(n+\rho)+q(n+1)]} \tag{21}
\end{equation*}
$$

On the other hand, from 20 we have

$$
\begin{equation*}
\sqrt{a_{n} b_{n}} \leq \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} . \tag{22}
\end{equation*}
$$

Therefore in view of 21 and 22 it is enough to show that

$$
\begin{aligned}
& \frac{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)} \\
\leq & \frac{(1-\rho)[(n+\zeta)+q(n+1)]}{(1-\zeta)[(n+\rho)+q(n+1)]}
\end{aligned}
$$

which simplifies to

$$
\begin{gathered}
\rho \leq 1 \\
-\frac{2(1-\zeta)^{2}(2 \alpha \lambda-2 \lambda+2 \alpha+1) L(n, \beta, \gamma)}{[(n+\zeta)+q(n+1)]^{2}[(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)+2(1-\zeta)^{2}(2 \alpha \lambda-2 \lambda+2 \alpha+1)} .
\end{gathered}
$$

Let

$$
=\frac{\psi(n)}{[(n+\zeta)+q(n+1)]^{2}[(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)+2(1-\zeta)^{2}(2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

Clearly $\psi(n)$ is an increasing function of $n(n \geq 1)$. Letting $n=1$, we prove the assertion.

> A. Akgül - Some families of meromorphic functions ...

Theorem 11. For functions $f, g \in \Sigma_{p}$ defined by the equation 1 let $f, g \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then the function $k(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) z^{n}$ is in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \rho, q)$ and

$$
\rho \leq 1-\frac{4(1-\zeta)^{2}(2 \alpha \lambda-2 \lambda+2 \alpha+1) L(n, \beta, \gamma)}{\{[(n+\zeta)+q(n+1)]\}^{2}[(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)-2(1-\zeta)^{2}[n+q(n+1)](2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

Proof. Since $f, g \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ we have

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left\{\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n}\right\}^{2} \leq 1 \tag{23}\\
& \sum_{n=1}^{\infty}\left\{\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} b_{n}\right\}^{2} \leq 1 \tag{24}
\end{align*}
$$

combining the inequalities (23) and (24), we get

$$
\sum_{n=1}^{\infty} \frac{1}{2}\left\{\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right\}^{2}\left(a_{n}^{2}+b_{n}^{2}\right) \leq 1
$$

But, we need to find the largest ρ such that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\left(a_{n}^{2}+b_{n}^{2}\right) \leq 1 \tag{25}
\end{equation*}
$$

The inequality (25) would hold if

$$
\begin{aligned}
& \frac{[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} \\
\leq & \frac{1}{2}\left\{\frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}\right\}^{2} .
\end{aligned}
$$

Then we have

$$
\begin{gathered}
\rho \leq 1 \\
-\frac{4(1-\zeta)^{2}(2 \alpha \lambda-2 \lambda+2 \alpha+1) L(n, \beta, \gamma)}{\{[(n+\zeta)+q(n+1)]\}^{2}[(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)-2(1-\zeta)^{2}[n+q(n+1)](2 \alpha \lambda-2 \lambda+2 \alpha+1)}
\end{gathered}
$$

Let

$$
=\frac{\phi(n)}{\{[(n+\zeta)+q(n+1)]\}^{2}[(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)-2(1-\zeta)^{2}[n+q(n+1)](2 \alpha \lambda-2 \lambda+2 \alpha+1)}
$$

A simple computation shows that $\phi(n+1)-\phi(n)>0$ for all n. This means that $\phi(n)$ is increasing and $\phi(n) \geq \phi(1)$. Letting $n=1$, we prove the assertion.

6. Integral Operators

In this section, we consider integral transforms of functions in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$ of the type considered by Goel and Sohi [11].

Theorem 12. . Let the function $f \in \Sigma_{p}$ given by (1) is in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then the integral operator

$$
\begin{equation*}
F(z)=c \int_{0}^{z} u^{c} f(u z) d u, \quad 0<u \leq 1,0<c<\infty \tag{26}
\end{equation*}
$$

is in $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \rho, q)$, where

$$
\rho \leq 1-\frac{2 c(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}{c(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)+(c+2)(2 k+\zeta+1)}
$$

and the result is sharp.
Proof. Let the function $f \in \Sigma_{p}$ given by (1) is in the class $\sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$. Then by a simple computation we have

$$
\begin{align*}
F(z) & =c \int_{0}^{1} u^{c} f(u z) d u \\
& =\frac{1}{z}+\sum_{n=1}^{\infty} \frac{c}{c+n+1} a_{n} z^{n} \tag{27}
\end{align*}
$$

We have to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{c[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(c+n+1)(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} \leq 1 \tag{28}
\end{equation*}
$$

Since $f \in \sum_{p} Q(\alpha, \lambda, \beta, \gamma, \zeta, q)$, we have

$$
\sum_{n=1}^{\infty} \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} a_{n} \leq 1
$$

We note that the inequality (28) is satisfied if

$$
\begin{aligned}
& \frac{c[(n+\rho)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(c+n+1)(1-\rho)(2 \alpha \lambda-2 \lambda+2 \alpha+1)} \\
\leq & \frac{[(n+\zeta)+q(n+1)][(n-1)(n \lambda \alpha+\lambda-\alpha)] L(n, \beta, \gamma)}{(1-\zeta)(2 \alpha \lambda-2 \lambda+2 \alpha+1)}
\end{aligned}
$$

Then we get

$$
\rho \leq 1-\frac{2 c(1-\zeta)[n+k(n+1)]}{[n+\xi-\xi \beta(n+1)](n+c+1)+(1-\xi)[1-\beta(n+1)]}
$$

By a simple computation, we can show that the function

$$
\phi(n)=1-\frac{(1-\xi)[1+\beta(n+1)]+c n}{(c+n+1)[n+\beta+k(n+1)]-c(1-\beta)[n+k(n+1)]}
$$

is an increasing function of $n(n \geq 1)$ and $\phi(n) \geq \phi(1)$. Using this, we obtain the desired result.

References

[1] A. Akgül, A new subclass of meromorphic functions defined by Hilbert space operator, Honam Mathematical J., 38, 3 (2016) ,495-506.
[2] A. Akgül, A subclass of meromorphic functions defined by a certain integral operator on Hilbert space, Creative Mathematics and Informatcs, 2, 2017
[3] A. Akgül, A new subclass of meromorphic functions with positive and fixed second coefficients defined by the Rafid-operator, Commun .Fac. Sci. Univ. Ank. Series A1, 66, 2 Pages 1-13 (2017)
[4] A. Akgül and S. Bulut, On a certain subclass of meromorphic functions defined by Hilbert space operator L, Acta Universitatis Apulensis 45,(2016), 1-9.
[5] E. Aqlan, J.M.Jhangiri and S.R.Kulkarni, Class of K-uniformly convex and starlike functions, Tamkang J. Math., 35 (2004), 1-7.
[6] M. K. Aouf, R.M.El-Ashwah and H.M.Zayed, Subclass of meromorphic functions with positive coefficients defined by convolution, Stud.Univ.Babes-Bolyai Math . 59, 3 (2014), 289-301.

> A. Akgül - Some families of meromorphic functions ...
[7] W. G. Athsan and S. R. Kulkarni, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivate I, J. Rajasthan Acad. Phy.Sci. 6, 2 (2007),129-140.
[8] W. G. Athsan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivate, Surveys in Matematcs and its Applications, 3, (2008), 67-77.
[9] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev.Roumanie Math. Pure Appl., 22 (1977), 295-297.
[10] P. L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983.
[11] R. M. Goel and N. S. Sohi, On a class of meromorphic functions, Glasnik Mathematicci, 17, (1981).
[12] O. P. Junea and T. R. Reddy, Meromorphic starlike univalent functions with positive coefficients, Ann.Univ. Mariae Curie Sklodowska, Sect.A, 39 (1985), 65-76.
[13] I. B. Jung, Y. C. Kim, H. M. Srivastava, The Hardy spaces of analytic functions associated with certain one parameter families of integral operators, J. Math.Anal.Appl. 176, 1 (1993), 138-147.
[14] S.Kavitha, S. Sivasburamanian and K. Muthunagaia, A new subclass of meromorphic function with positive coefficients, Bulletin of Mathematical Analysis and Applications, 3, 3 (2010), 109-121.
[15] A. Y. Lashin, On certain subclasses of meromorphic functions associated with certain integral operators , Comput. Math. Appl., 59, 1, (2010), 524-531.

Arzu Akgül
Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Umuttepe Campus, 41380, Izmit-Kocaeli, TURKEY,
email: akgul@kocaeli.edu.tr

