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Abstract. Carlson’s inequality is one of the most important inequalities in
probability, measure theory and analysis. The problem of finding a sharp inequality
of Carlson type inequality for Choquet-like integral based on the multiplication
operator has led to a challenging and an interesting subject for researchers. In this
paper, we give a Carlson type inequality based on pseudo-analysis for two classes of
Choquet-like integrals as generalizations of Choquet integral and Sugeno integral.
In the first class, pseudo-operations are defined by a continuous strictly increasing
function g. Another class concerns the Choquet-like integrals based on the operator
sup and the pseudo-multiplication �.
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1. Introduction

Integral inequalities are an important aspect of the classical mathematical analysis.
Some well-known inequalities such as the Jensen’s inequality [15] and the Corlson’s
inequality [2, 7] play important roles not only in the theoretical area but also in
application. The Sugeno integral was introduced by Sugeno [22] and then exploited
by many authors [5, 6, 8, 14, 16, 17]. Recently, Romn-Flores et al. and others
proved some inequalities for the Sugeno integral, see [9, 13, 18, 19]. Notice that the
Sugeno integral is not an extension of the Lebesgue integral. On the other hand,
some other integrals such as the Choquet integral [4, 10] and the Sugeno-Murofushi
integral [23] are extensions of the Lebesgue integral but not of the Sugeno integral.
Thus it would be an interesting topic to generalize an inequality from the frame of
Lebesgue integral (or Sugeno integral) to that of some integrals which contain the
Lebesgue integral and Sugeno integral as special cases [12].
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The aim of this paper is to generalize Carlson’s inequality to the frame of the
Choquet-like integral [12].

The Carlson’s inequality for the Lebesgue integral is of the form∫ ∞
0

f(x)dx 6
√
π

(∫ ∞
0

f2(x)dx

) 1
4
(∫ ∞

0
x2f2(x)dx

) 1
4

(1)

Michal Boczek and Marek Kaluszka [3] proved Carlson type inequality for the Cha-
quet integral.

Theorem 1. Let p, q > 1 and r, s > 0. Suppose f, g : X → [0,∞) and f, h : X →
[0,∞) are pairs of comonotone functions. If f is integralable on A, then∫

fdµ 6 K(µ(A))d
(∫

fpgpdµ

) r
p(r+s)

(∫
f qhqdµ

) s
q(r+s)

, (2)

where K =
(∫
gdµ

)− r
(r+s)

(∫
hdµ

)− s
(r+s) and d = 2− 1

r+s

(
r
p + s

q

)
.

The paper is organized as follows: Section 2 recalls the concepts of the pseudo-
additive measure, integral and recalls some basic aspects of the Choquet-like integral.
In Section 3, we prove the Carlson type inequality for the Choquet-like integral.
Finally, some conclusions are given.

2. Preliminaries

In this section, we recall some basic definitions and previous results which will be
used in the sequel. For details, we refer to [12]. For the convenience of the reader,
we provide in this section a summary of the mathematical notations and definitions
used in this paper (see [1]).

Definition 1. Let [a, b] be a closed (in some cases can be considered semiclosed)
subinterval of [−∞,∞]. The full order on [a, b] will be denoted by �. The operation
⊕ (pseudo-addition) is a function ⊕ : [a, b]× [a, b]→ [a, b] which is for x, y, z,0 (zero
element) ∈ [a, b] if it satisfies the following requirements:
(i) x⊕ y = y ⊕ x;
(ii) (x⊕ y)⊕ z = x⊕ (y ⊕ z);
(iii) x � y ⇒ x⊕ z � y ⊕ z;
(iv) 0⊕ x = x;
Let [a, b]+ = {x|x ∈ [a, b],0 � x}.
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Definition 2. A binary operation function � : [a, b] × [a, b] → [a, b] is called a
pseudo-multipication, for x, y, z,1 (unit element) ∈ [a, b] if it satisfies the following
requirements:
(i) x� y = y � x;
(ii) (x� y)� z = x� (y � z);
(iii) x � y ⇒ x� z � y � z for all z ∈ [a, b]+;
(iv) (x⊕ y)� z = (x� z)⊕ (x� y);
(v) if the 1⊕ x = x;
(vi) if the limn→∞ xn and limn→∞ yn exist and finite, then limn→∞(xn � yn) =
limn→∞ xn � limn→∞ yn;
(vii) a� x = 0⇐⇒ a = 0 or x = 0.

Remark 1. Mesiar [12] showed that, if � is a pseudo-multiplication corresponding
to a given pseudo-addition ⊕ fulling axioms (i)-(vii) and if its identity element e is
not an idempotent of ⊕, then there is a unique continuous strictly increasing function
g : [0,∞]→ [0,∞] with g(0) = 0 and g(∞) =∞, such that g(e) = 1 and

a⊕ b = g−1(g(a) + g(b)) ⊕ is called a g-addition,

a� b = g−1(g(a).g(b)) ⊕ is called a g-multipication.

Mesiar [12] also proved that if the identity element e of the pseudo-multiplication is
also an idempotent of ⊕ (i.e., e⊕e = e), then ⊕ = ∨(sup, i.e. the logical addition ).
In this case, the logical multiplication ∧ and the g-multiplication are the candidates
of �, among others. For x ∈ [0,∞] and p ∈ (0,∞) we introduce the pseudo-power

x
(p)
� as follows: If p = n is a natural number, then x

(p)
� = x� x� ...� x︸ ︷︷ ︸

n−times

. If p is not

a natural number, then the corresponding power is defined by

x
(p)
� = sup

{
y
(m)
� |y(n)� 6 x,wherem,n are natural number such that

m

n
6 p
}
.

Evidently, if x� y = g−1(g(x).g(y)), then x
(p)
� = g−1(gp(x)).

Remark 2. Restricting to the interval [0, 1] a pseudo-multiplication and a pseudo-
addition with additional properties of associativity and commutativity can be consid-
ered as the t-norm T and the t-conorms S (see[11]), respectively.

Definition 3. A monotone measure µ on a measurable space (Ω, F ) is a set function
µ : F → [0,∞] satisfying
(i)µ(∅) = 0;
(ii)µ(Ω) > 0;
(iii)µ(A) 6 µ(B) wheneverA ⊆ B.
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Moreover, µ is called real if ‖µ‖ = µ(X ) < ∞ and µ is said to be an additive
measure if µ(A ∪ B) = µ(A) + µ(B), whenever A ∩ B = ∅. The triple (X ,F , µ) is
also called a monotone measure space if µ is a monotone measure on F . We call µ
a monotone probability, if ‖µ‖ = 1. When µ is a monotone probability, the triple
(Ω,F , µ) is called a monotone probability space.

Definition 4. For a fixed measurable space (X ,F), i.e., a non-empty set X equipped
with a σ−algebra F , a function f : X → [0,∞] is called F− measurable if for each
b ∈ B([0,∞]). The σ−algebra of Borel subsets of [0,∞], the preimage f−1(b) is an
element of F .

Definition 5. Let (X ,F , µ) be a monotone measure space and f : X → [0,∞] be
a F−measurable function. The Choquet expectation (integral) of f with respect to
(w.r.t.) real monotone measure µ is defined by

Eµc =

∫ ∞
0

µ(X ∩ f > y)dy,

where the integral on the right-hand side is the (improper) Riemann integral.

Mesiar [12] developed a type of integral, the so-called Choquet-like integral,
which generalizes the concepts of some well- known integrals, including the Sugeno
integral and the Choquet integral.

There are two classes of Choquet-like integral: the Choquet-like integral (de-
noted by EµCl,g ) based on a g-addition and a g-multiplication and the Choquet-like
integral based on ∨ and a corresponding pseudo-multiplication �. Observe that for a
⊕−measure, Choquet-like integrals coincide with the corresponding pseudo-additive
integrals.

Theorem 2. Let � and ⊕ be generated by a generator g. Then the Choquet-like
expectation of a measurable function f : X → [0,∞] w.r.t. a real monotone measure
µ can be represented as

EµCl,g[f ] = g−1
(
Eg(µ)C [g(f)]

)
= g−1

(∫ ∞
0

g(µ(X ∩ {g(f) > y}))dy
)
.

Notice that sometimes we call this kind of Choquet-like integral a g−Choquet integral
(g−C−integral for short). It is plain that the g−C−integral is the original Choquet
integral (expectation) whenever g = i (the identity mapping).

Theorem 3. [22] Let � be a pseudo-multiplication corresponding to ∨ and fullling
(i)-(vii). Then the Choquet-like integral (so-called �− Sµ−integral) of a measurable
function f : X → [0,∞] w.r.t. a real monotone measure l can be represented as

�− Sµ[f ] = sup
a∈[0,∞]

a� µ(X ∩ {f > a}).
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It is plain that the �− Sµ integral is the original Sugeno integral whenever � = ∧.

Restricting now to the unit interval [0, 1] we shall consider the measurable func-
tion f : X → [0, 1] with ‖µ‖ = 1. Observe that, in this case, we have the restriction
of the pseudo-multiplication � to [0, 1]2 called a semicopula or a conjunctor, i.e., a
binary operation ~ : [0, 1]2 → [0, 1] which is non-decreasing in both components, has
1 as neutral element and satisfies a~b 6 min(a, b) for all (a, b) ∈ [0, 1]2, (see [21, 24]).
In a special case, for a fixed strict t−norm T , the corresponding � − Sµ−integral
is the so-called Sugeno-Weber integral [24]. If � is the standard product, then the
Shilkret integral [21] can be recognized.

The �− Sµ− integral on the [0, 1] scale related to the semicopula ~ is given by

~− Sµ[f ] = sup
a∈[0,∞]

a~ µ(X ∩ {f > a}).

This type of integral was called seminormed integral.
Recently, Girotto and Holzer [10] proved the following Chebyshev type inequality

for Choquet integral (expectation).

Theorem 4. Let (X ,F) be a measurable space and Y and Z be F−Borel measur-
able functions. If Y are Z are comonotone and two real-valued functions, then the
following version of Chebyshev inequality:

‖µ‖EµC [Y Z] > EµC [Y ]EµC [Z],

holds for any real monotone set function µ on F , when Y,Z > 0, and for any real
(finitely) additive measure µ on F , when Y and Z are Choquet integrable.

Before stating our main result, we need a definition and a theorem from [1].

Definition 6. Let A,B : [0,∞)2 → [0,∞) be two binary operations. Then A
dominates B (or B is dominated by A), denoted by A� B, if

A(B(a, b), B(c, d)) > B(A(a, c), A(b, d))

holds for any a, b, c, d ∈ [0,∞).

Theorem 5. Let u, v : X → [0,∞) be two comonotone functions. Then the inequal-
ity

‖µ‖ � (EµCl,g[u� v]) > (EµCl,g[u])� (EµCl,g[v])

holds for the g-Choquet integral if the generator g is a real-valued function.
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Theorem 6. Let u, v : X → [0,∞] be two comonotone functions and ? : [0,∞)2 →
[0,∞) be continuous and non-decreasing in both arguments. If � is a pseudo-
multipicatin (with neutral element e) corresponding to ∨ satisfying

(a ? b)� c) > [(a� c) ? b] ∨ [a ? (b� c)],

then the inequality

�− Sµ[
u

‖µ‖
? v] ≥ (�− Sµ[

u

‖u‖
) ? (�− Sµ[v]) (3)

holds for the �−Sµ integral and any real monotone set function µ such that a�‖µ‖ 5
a for all a and �− Sµ[ u

‖µ‖ ],�− Sµ[v] are finite.

3. Main results

In this section, we state some results of Choquet-like integrals

Theorem 7. Let u1, u2, ..., un be functions. If each both of them are comonotone,
then the inequality

‖µ‖ � (EµCl,g[u1 � u2...� un]) > (EµCl,g[u1])� (EµCl,g[u2])...� (EµCl,g[un])

holds for the g-Choquet integral if the generator g is a real-valued function.

Proof. Since u1, u2 are comonotone, then by Theorem 2.11 we have

‖µ‖ � (EµCl,g[u� v]) > (EµCl,g[u])� (EµCl,g[v]).

Moreover, the comonotonicity of u1 � u2 and u3 imply that

‖µ‖ � (EµCl,g[u1 � u2 � u3]) > (EµCl,g[u1 � u2])� (EµCl,g[u3])

> (EµCl,g[u1])� (EµCl,g[u2])� (EµCl,g[u3])

The proof follows by induction.

In fact, with this corollary we prove a version of Jensen’s inequality for the
Choquet-like integral. Assuming ‖µ‖ = 1 and u1, u2, ...un are the same functions,
we obtain this sequel.

Corollary 8. Let u : X → [0,∞] be a increasing function, then the inequality

(EµCl,g[u
n
�]) > (EµCl,g[u])n�

holds for the g-Choquet integral ( If the generator g is a real-valued function).
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Using Corollary 3.2, if µ = 1 , then by the same method of proof Theorem 3.1,
an extension of Jensen type inequality for Choquet-like integral is recognizable.

Corollary 9. Let u : X → [0,∞] be an integrable function and ? : [0,∞)2 → [0,∞)
be continuous and non-decreasing in both arguments. If � is a pseudo-multiplication
(with neutral element e) corresponding to ∨ satisfying

(a ? b)� c) > [(a� c) ? b] ∨ [a ? (b� c)],

then the inequality

�− Sµ[un? ] ≥ (�− Sµ[u])n? (4)

holds for the �−Sµ integral and any real monotone set function µ such that a�‖µ‖ 5
a for all a and �− Sµ[v] is finite.

The following result is a general version of the Carlson type inequality for the
Choquet-like integral.

Theorem 10. Let X,Y and Z be three non-negative measurable functions and let
the pseudo-operations be generated by generator g. Suppose X,Y : X → [0,∞) and
X,Z : X → [0,∞) are pairs of comonotone functions and p, q ≥ 1 and r, s ≥ 0. If f
is integrable on A, then

EµCl−g[X]� ≤ K � g−1
(
µ(A)d

)
�

[
EµCl−g[X

p � Y p]�
] r
p(r+s) �

[
EµCl−g[X

q � Zq]�
] s
q(r+s) , (5)

where

K =
[
EµCl−g[Y ]�

] −r
r+s �

[
EµCl−g[Z]�

] −s
r+s

and d = 2− 1
r+s(

r
p + s

q ).

Proof. We have

EµCl−g[X]� = g−1
(
Eg(µ)C [g(X)]

)
= g−1

(
Eg(µ)C [g ◦X]

)
.
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By Theorem 1.1

g−1
(
Eg(µ)C [g(X)]

)
= g−1

(
Eg(µ)C [g ◦X]

)
≤ g−1

(
K.µ(A)d

(
E
g(µ)
C [g ◦X]p[g ◦ Y ]p

) r
p(r+s)

(
E
g(µ)
C [g ◦X]q[g ◦ Z]q

) s
q(r+s)

)
= g−1

(
g(g−1(K)).g(g−1(µ(A)d))

g

(
g−1

((
E
g(µ)
C [g ◦X]p[g ◦ Y ]p

) r
p(r+s)

))
g

(
g−1

((
E
g(µ)
C [g ◦X]q[g ◦ Z]q

) s
q(r+s)

)))
. (6)

Using inequality (3.3) and Remark 2.3, we have

g−1
(
Eg(µ)C [g(X)]

)
≤ g−1

(
g(g−1(

[
EµC [g ◦ Y ]

] −r
r+s
[
EµC [g ◦ Z]

] −s
r+s )).g(g−1(µ(A)d))

g

(
g−1

((
E
g(µ)
C [g ◦X]p[g ◦ Y ]p

) r
p(r+s)

))
g

(
g−1

((
E
g(µ)
C [g ◦X]q[g ◦ Z]q

) s
q(r+s)

)))
= g−1(

[
Eg(µ)C [g ◦ Y ]

] −r
r+s �

[
EµC [g ◦ Z]

] −s
r+s ))� g−1(µ(A)d))

� g−1
((

E
g(µ)
C [g ◦X]p[g ◦ Y ]p

) r
p(r+s)

)
� g−1

((
E
g(µ)
C [g ◦X]q[g ◦ Z]q

) s
q(r+s)

)
.
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Thus

g−1
(
Eg(µ)C [g(X)]

)
≤ g−1(

[
Eg(µ)C g(g−1([g ◦ Y ]

] −r
r+s

))�
[
Eg(µ)C g(g−1([g ◦ Z]

] −s
r+s

))

� g−1(µ(A)d))

� g−1
((

E
g(µ)
C g(g−1([g ◦X]p))g(g−1([g ◦ Y ]p))

) r
p(r+s)

)
� g−1

((
E
g(µ)
C g(g−1([g ◦X]q))g(g−1([g ◦ Z]q))

) s
q(r+s)

)
= g−1(

[
Eg(µ)C g[Y ]�

] −r
r+s

)�
[
Eg(µ)C g[Z]�

] −s
r+s

))� g−1(µ(A)d))

� g−1
((

E
g(µ)
C g[X]p�)g[Y ]p�))

) r
p(r+s)

)
� g−1

((
E
g(µ)
C g[X]q�))g[Z]q�))

) s
q(r+s)

)
= K � g−1(µ(A)d))

� g−1
((

E
g(µ)
C g

(
g−1

(
g[X]p�)g[Y ]p�

))) r
p(r+s)

)
� g−1

((
E
g(µ)
C g

(
g−1

(
g[X]q�))g[Z]q�

))) s
q(r+s)

)
.

It follows that

EµCl−g[X]� ≤K � g−1(µ(A)d))

� g−1
((

E
g(µ)
C g([X]p� � [Y ]p�

) r
p(r+s)

)
� g−1

((
E
g(µ)
C g([X]q� � [Z]q�

) s
q(r+s)

)
.

Therefore, we have

EµCl−g[X]� ≤ K � g−1
(
µ(A)d

)
�
[
EµCl−g[X

p � Y p]�
] r
p(r+s) �

[
EµCl−g[X

q � Zq]�
] s
q(r+s)

which completes the proof.

Example 1. Let g(x) = xα, α > 0. The corresponding pseudo-operations are x⊕y =
α
√
xα + yα and x � y = xy. Then the inequality (3.1) reduces on the following

inequality

α

√
Eµ

α

C [Xα] ≤ α

√
(µ(A)d)

α
r+s

√[
Eµ

α

C [Y α]
]−r [EµαC [Zα]

]−s
[EµαC [(XY )αp]]

r
p [EµαC [(XZ)αq]]

s
q
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where d = 2− 1
r+s(

r
p + s

q ).

Example 2. Let g(x) = ex. The corresponding pseudo-operations are x ⊕ y =
ln(ex + ey) and x � y = x + y. Then the inequality (3.1) reduces on the following
inequalities

ln
(
Ee

µ

C [ex]
)
≤ d lnµ(A) +

−r
r + s

(
lnEe

µ

C [ey]
)

+
−s
r + s

(
lnEe

µ

C [ez]
)

+
r

p(r + s)

(
lnEe

µ

C [ex
p+yp ]

)
+

s

q(r + s)

(
lnEe

µ

C [ex
q+zq ]

)
.

I.e., we have

Ee
µ

C [ex] ≤ µ(A)d.
(
Ee

µ

C [ey]
) −r
r+s .

(
Ee

µ

C [ez]
) −s
r+s

+
(
Ee

µ

C [ex
p+yp ]

) r
p(r+s) +

(
Ee

µ

C [ex
q+zq ]

) s
q(r+s) .

Theorem 11. Fix a real monotone measure µ. Let X,Y and Z be three non-negative
measurable functions and ? : [0,∞)2 → [0,∞) be continuous and non-decreasing in
both arguments. If � is a pseudo-multipicatin (with neutral element e) corresponding
to ∨ satisfying

(a ? b)� c) > [(a� c) ? b] ∨ [a ? (b� c)],

then the inequality

�− Sµ[X] ≤ (�− Sµ(Y ))
−r
r+s (�− Sµ(Z))

−s
r+s

(�− Sµ(Xp ? Y p))
r

p(r+s) (�− Sµ(Xq ? Zq))
r

q(r+s) .

holds for the �−Sµ integral and any real monotone set function µ such that a�‖µ‖ 5
a for all a and �− Sµ[ u

‖µ‖ ],�− Sµ[v] are finite.

Proof. For a given c ≥ 0, the following Jensen type inequality

(�− Sµ[X])c ≤ �− Sµ[Xc]

holds. Then From the inequality (3.1) we have

(�− Sµ[X ? Y ])r(�− Sµ[X ? Z])s ≤ (�− Sµ[Xp ? Y p])
r
p (�− Sµ[Xq ? Y q])

s
q .

Since X and Y are comonotone functions, the following Chebyshev type inequality
for Choquet-like expectation

�− Sµ[X ? Y ] ≥ (�− Sµ[X]) ? (�− Sµ[Y ])
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holds. The functions Xand Z are also comonotone functions, so from the inequality
(3.2) we get

(�− Sµ[X])r+s ? (�− Sµ[Y ])r ? (�− Sµ[Z])s ≤ (�− Sµ[Xp ? Y p])
r
p (�− Sµ[Xq ? Y q])

s
q ,

this completes the proof.

Let � be the standard product (i.e., Shilkret integral[21]) in Theorem 3.2. Then
the following result holds.

Corollary 12. Let X,Y and Z be three non-negative measurable function and ? :
[0,∞)2 → [0,∞) be continuous and non-decreasing in both arguments. Then the
inequality

Shµ[X] ≤ (Shµ(Y ))
−r
r+s (Shµ(Z))

−s
r+s

(Shµ(Xp ? Y p))
r

p(r+s) (Shµ(Xq ? Zq))
r

q(r+s) . (-14)

holds for the Shµ integral and any real monotone set function µ such that a.‖µ‖ 5 a
for all a and Shµ[ u

‖µ‖ ], Shµ[v] are finite.

Notice that if � is minimum (i.e., for Sugeno integral) in Theorem 3.2, then (3.1)
holds readily. Then the following result holds.

Corollary 13. Let X,Y and Z be three non-negative measurable functions and
? : [0,∞)2 → [0,∞) be continuous and non-decreasing in both arguments. then the
inequality

Suµ[X] ≤ (Suµ(Y ))
−r
r+s (Suµ(Z))

−s
r+s

(Suµ(Xp ? Y p))
r

p(r+s) (Suµ(Xq ? Zq))
r

q(r+s)

holds for the Suµ integral and any real monotone set function µ such that a.‖µ‖ 5 a
for all a and Suµ[ u

‖µ‖ ], Suµ[v] are finite.

Notice that by working on [0, 1] in Theorem 3.2 and � = ~ is semicopula (t-
seminorm) and the following result holds [24].

Corollary 14. Fix a real monotone measure µ. Let X,Y and Z be three non-
negative measurable functions and ? : [0,∞)2 → [0,∞) be continuous and non-
decreasing in both arguments. If � is a pseudo-multiplication (with neutral element
e) corresponding to ∨ satisfying

(a~ b) ~ c) > [(a~ c) ~ b] ∨ [a~ (b~ c)],
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then the inequality

S~µ [X] ≤ (S~µ (Y ))
−r
r+s (S~µ (Z))

−s
r+s

(S~µ (Xp ~ Y p))
r

p(r+s) (S~µ (Xq ~ Zq))
r

q(r+s)

holds for the S~µ integral and any real monotone set function µ such that a~‖µ‖ 5 a
for all a and S~µ [ u

‖µ‖ ], S
~
µ [v] are finite.

Example 3. Putting X = 1 and r = s in Corollary 3.9. If 1 ? x = x, then we have

Suµ[X] ≤ (Suµ(Y ))
−r
2r (Suµ(Z))

−r
2r (Suµ(1 ? Y p))

r
p(2r) (Suµ(1 ? Zq))

r
q(2r) .

It follows that

(Suµ[X])2 ≤ 1

(Suµ(Y ))((Suµ(Z))
(Suµ(Y p))

1
p (Suµ(Zq))

1
q .

This result is a version of Holder inequality for Sugeno integral.

Conclusion: We have shown a version of Carlson’s inequality for two classes
of Choquet-like integrals. At first, two classes of Choquet-like integrals were in-
troduced. Then, we prepared extensions of these inequalities from the Choquet
expectation and the Sugeno integral to the two classes of Choquet-like integrals. We
have proposed new versions of Carlson’s inequality for different kinds of Choquet-
like integrals, that generalize some results already known from the literature for the
Choquet and for the Sugeno integrals. Note that the area of integral inequalities is
a living area important for applications, especially when approximations have to be
considered, with several fresh generalizations either in the classical Lebesgue integral
setting, see for example [20], or the setting of Sugeno integrals[6, 7].
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