THE NOOR INTEGRAL OPERATOR AND β UNIFORMLY α-SPIRALLIKE FUNCTIONS

E. Amini, Sh. Najafzadeh and A. Ebadian

Abstract. In [10, 12] Noor introduced an integral operator by using convolution. In this paper, we apply this operator on a class of analytic functions. We also apply the proposed operator on β uniformly α-spirallik functions to find some inclusion relations, coefficient bounds and test example.

2010 Mathematics Subject Classification: Primary 30C45, 30C50.
Keywords: Noor operator; uniformly spirallike functions; subordination.

1. Introduction

A.W.Goodman investigated about some univalent functions geometrically [3]. For starlik functions, Let Γ_{w} be the image of an arc $\Gamma_{z}: z=z(t) ; a<t<b$, where $w=f(z)$ and let w_{0} be a point not on, Γ_{w} is starlike with respect to w_{0} if $\arg \left(w-w_{0}\right)$ is nondecreasing function of t. This condition is equivalent to:

$$
\operatorname{Im}\left\{\frac{z^{\prime}(t) f^{\prime}(z)}{f(z)-w_{0}}\right\} \geq 0
$$

Similarly Γ_{w} is α-spiral $(|\alpha|<\pi / 2)$ with respect to w_{0} if

$$
\alpha<\arg \left\{\frac{z^{\prime}(t) f^{\prime}(z)}{f(z)-w_{0}}\right\}<\alpha+\pi .
$$

Let A denot the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk $\Delta=\{z:|z|<1\}$.
The class of starlike functions $f \in A$ with respect to origin denote by S^{*}. If $f \in A$ and f be starlike with respect for every $z \in \Delta$, then f is convex in Δ. The
set of all convex functions $f \in A$ denote by $C V$. (see $[1,3])$ Similarly the class of α-spirallike functions $f \in A$ with respect to origin denote by $S P(\alpha)$. If $f \in A$ and $z f^{\prime}(z) \in S P(\alpha)$ then f is convex α-spirallike in Δ. The set of all convex α-spirallike functions $f \in A$ denote by $\operatorname{CVSP}(\alpha)$.

For $|\alpha|<\pi / 2$, the function $f(z)$ is uniformly α-spirallike if the image of every circular Γ_{z} with center at ξ lying Δ is α-spirallike with respect to $f(\xi)$. (see [13])

The function $f(z) \in A$ is uniformly α-spirallike in Δ if and only if for every $|\alpha|<\pi / 2$, we have

$$
\operatorname{Re}\left\{e^{-i \alpha} \frac{(z-\xi) f^{\prime}(z)}{f(z)-f(\xi)}\right\}>0 . \quad(\text { see }[13])
$$

For $|\alpha|<\pi / 2$ and $0<\beta<1$, a function $f(z) \in A$ is said to be β uniformly α-spiral in Δ if for every circular arc Γ_{z} contained in Δ with center at $\xi(|\xi|<\beta)$ the image of arc $f\left(\Gamma_{z}\right)$ is α-spirallike. (see [17])

The class of all β uniformly α-spirallike function in Δ is denote by $\operatorname{USP}(\alpha, \beta)$. (see [17])

Theorem 1. [17] Let $f \in A$, then $f(z)$ is in $\operatorname{USP}(\alpha, \beta)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad z \in \Delta . \tag{2}
\end{equation*}
$$

A function $f(z) \in A$ for all $z \in \Delta$, is said to be in the class of β uniformly convex α-spirallike, written $\operatorname{UCSP}(\alpha, \beta)$ if and only if $g(z)=z f^{\prime}(z)$ and $g(z) \in U S P(\alpha, \beta)$. (see [17])

Theorem 2. [17] Let $f \in A . f \in \operatorname{UCSP}(\alpha, \beta)$ if and only if,

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\beta\left|\frac{\mid z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, \quad z \in \Delta . \tag{3}
\end{equation*}
$$

Let $f(z)$ and $g(z)$ be analytic in Δ. Then $f(z)$ is said to be subordinate to $g(z)$, written $f(z) \prec g(z)$, if there exists an analytic function $w(z)$ with $w(0)=0$ and $|w(z)|<1(z \in \Delta)$ such that $f(z)=g(w(z))$ for $z \in \Delta$.
$g(z)$ is univalent in $\Delta, f(z) \prec g(z)$ if and only if $f(0)=g(0)$ and $f(\Delta) \subset g(\Delta)$. (see [7])

Theorem 3. [17] Let $f \in A, 0<\beta<1$, then the function $f(z)$ is in $\operatorname{USP}(\alpha, \beta)$ if and only if,

$$
e^{-i \alpha} \frac{z f^{\prime}(z)}{f(z)} \prec h_{\beta}(z) \cos \alpha-i \sin \alpha,
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...
where

$$
\begin{equation*}
h_{\beta}(z)=1+\frac{1}{2 \sin ^{2}(\sigma)}\left\{\left(\frac{1+\sqrt{x}}{1-\sqrt{z}}\right)^{\frac{2 \sigma}{\pi}}+\left(\frac{1-\sqrt{z}}{1+\sqrt{z}}\right)^{\frac{2 \sigma}{\pi}}-2\right\} . \tag{4}
\end{equation*}
$$

and $\sigma=\arccos \beta$.
Note that $h_{\beta}(0)=1$ and h_{β} maps Δ conformally onto the hyperbolic regain

$$
D_{\beta}=\left\{w=u+i v: u>\beta \sqrt{(u-1)^{2}+v^{2}}\right\} .
$$

Since D_{β} is a convex regoin, h_{β} is convex (and univalent) in Δ. (see $[4,17]$)
K.I. Noor and M.A. Noor defined an integral operator $I_{n}: A \longrightarrow A$ as follows.

$$
\begin{equation*}
I_{n} f(z)=f_{n}^{\dagger}(z) * f(z) \tag{5}
\end{equation*}
$$

where f_{n}^{\dagger} is defined by the relation

$$
\begin{equation*}
\frac{z}{(1-z)^{n+1}} * f_{n}^{\dagger}(z)=\frac{z}{(1-z)^{2}} . \quad(\operatorname{see}[10,12]) \tag{6}
\end{equation*}
$$

It is obvious that $I_{0}(z)=z f^{\prime}(z)$ and $I_{1}(z)=f(z)$. The operator $I_{n} f$ defined by (5) is called the Noor integral operator of nth order of f.
J.L. Liu prove that the Noor integral operator satisfying the equation

$$
\begin{equation*}
z\left(I_{n+1} f(z)\right)^{\prime}=(n+1) I_{n} f(z)-n I_{n+1} f(z) . \quad(\text { see }[5]) \tag{7}
\end{equation*}
$$

Liu and Noor [6] investigated some interesting properties of the Noor integral operator and applications of the Noor integral operator. (for more details see [9, 11])

It is well known that for $\alpha>0$

$$
\frac{z}{(1-z)^{\alpha}}=\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{m!} z^{m+1}, \quad(z \in \Delta) .
$$

where $(\alpha)_{m}$ is the Pochhammer symbol

$$
(\alpha)_{m}=\frac{\Gamma(\alpha+m)}{\Gamma(\alpha)}= \begin{cases}1, & n=0, \alpha \neq 0 \\ \alpha(\alpha+1) \ldots(\alpha+m-1), & n \in \mathbb{N} .\end{cases}
$$

By (6) we obtain,

$$
\begin{equation*}
\sum_{m=0}^{\infty} \frac{(n+1)_{m}}{m!} z^{m+1} * f_{n}^{\dagger}(z)=\sum_{m=0}^{\infty} \frac{(2)_{m}}{m!} z^{m+1} \tag{8}
\end{equation*}
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...

Then (8) implies that

$$
f_{n}^{\dagger}(z)=\sum_{m=0}^{\infty} \frac{(2)_{m}}{(n+1)_{m}} z^{m+1}, \quad(z \in \Delta)
$$

Therefor, if f is of the form (1), then

$$
I_{n} f(z)=z+\sum_{m=2}^{\infty} \frac{(2)_{m-1}}{(n+1)_{m-1}} a_{m} z^{m}=z+\sum_{m=2}^{\infty} \frac{m!}{(n+1)_{m-1}} a_{m} z^{m}, \quad(z \in \Delta)
$$

In the present paper we give some argument properties of β uniformly α-spirallike functions and investigate some properties of the Noor integral operator.

2. Preliminary lemmas

We need the following Lemmas for our investigation.
Lemma 4. [15] Let $0<\alpha<\beta$. If $\beta \geq 2$ or $\alpha+\beta \geq 3$, then the function

$$
h(z)=\sum_{m=0}^{\infty} \frac{(\alpha)_{m}}{(\beta)_{m}} z^{m+1}, \quad(z \in \Delta) .
$$

belongs to the class of convex functions.
Lemma 5. [15, 16] If $f \in C V$ and $g \in S P(\alpha)$, then for each analytic function h in Δ with $h(0)=1$,

$$
\frac{(\tilde{f} * h g)(\Delta)}{(\tilde{f} * g)(\Delta)} \subseteq \overline{c o h}(\Delta),
$$

where $\tilde{f}(z)=f\left(\frac{z}{2}\right)$ and $\overline{c o h}(\Delta)$ denotes the closed convex hull of $h(\Delta)$.
Lemma 6. [2, 8] Let f be convex univalent in Δ with $f(0)=1$ and $\operatorname{Re}(\lambda f(z)+\mu)>$ $0(\lambda, \mu \in \mathbb{C})$. If p is analytic in Δ with $p(0)=1$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\lambda p(z)+\mu} \prec f(z) .
$$

implies,

$$
p(z) \prec f(z), \quad(z \in \Delta) .
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...

Remark 1. Let $|\alpha|<\pi / 2$ and f be a convex univalent function in Δ with $g(0)=$ $e^{-i \alpha}$ and $\operatorname{Re}(\lambda g(z)+\mu)>0(\lambda, \mu \in \mathbb{C})$. If p is analytic in Δ with $p(0)=e^{-i \alpha}$ then

$$
p(z)+\frac{z p^{\prime}(z)}{\lambda p(z)+\mu} \prec g(z) .
$$

implies,

$$
p(z) \prec g(z), \quad(z \in \Delta) .
$$

Lemma 7. [14] Let

$$
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n} \prec 1+\sum_{n=1}^{\infty} C_{n} z^{n}=H(z), \quad(z \in \Delta) .
$$

If the function H be univalent in Δ and $H(\Delta)$ be a convex set, then

$$
\left|c_{n}\right| \leq\left|C_{1}\right| .
$$

Lemma 8. [17] If $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \in S P(\alpha, \beta)$ and $0<\beta<1$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq 8 \cos \alpha\left(\frac{\sigma}{\pi \sin \sigma}\right)^{2}, \quad \sigma=\arccos \beta . \tag{9}
\end{equation*}
$$

This result is sharp. Also it is clear that

$$
\frac{z f^{\prime}(z)}{f(z)}=1+a_{2} z+\ldots, \quad(z \in \Delta)
$$

3. Main results

Theorem 9. Let $f \in A$. If $f \in S P(\alpha, \beta)$ satisfying the condition

$$
\begin{equation*}
\frac{e^{-i \alpha} z\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)} \prec h_{\beta}(z) \cos \alpha-i \sin \alpha, \quad(z \in \Delta), \tag{10}
\end{equation*}
$$

then,

$$
\begin{equation*}
\frac{e^{-i \alpha} z\left(I_{n+1} f(z)\right)^{\prime}}{I_{n+1} f(z)} \prec h_{\beta}(z) \cos \alpha-i \sin \alpha, \quad(z \in \Delta) . \tag{11}
\end{equation*}
$$

Proof. Let

$$
p(z)=\frac{e^{-i \alpha} z\left(I_{n+1} f(z)\right)^{\prime}}{I_{n+1} f(z)},
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...
where p is an analytic function with $p(0)=e^{-i \alpha}$. By using the equation (7), we have

$$
\begin{equation*}
p(z)+e^{-i \alpha} n=e^{-i \alpha}(n+1) \frac{I_{n} f(z)}{I_{n+1} f(z)} . \tag{12}
\end{equation*}
$$

Taking logarithmic derivative in both side of (12) and multiplying by $e^{-i \alpha} z$, we have

$$
p(z)+\frac{z p^{\prime}(z)}{e^{i \alpha} p(z)+n}=\frac{e^{-i \alpha}\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)} .
$$

By applying relation (10) and Remark 1 it follows that $p(z) \prec h_{\beta}(z) \cos \alpha-i \sin \alpha$ that is the relation (11).

Theorem 10. If a function $f \in A$ satisfies the condition

$$
\begin{equation*}
\frac{e^{-i \alpha} z\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)} \prec h_{\beta}(z) \cos \alpha-i \sin \alpha, \quad(z \in \Delta) \tag{13}
\end{equation*}
$$

then,

$$
\begin{equation*}
\frac{e^{-i \alpha} z\left(I_{n} F_{c}(f)(z)\right)^{\prime}}{I_{n} F_{c}(f)(z)} \prec h_{\beta}(z) \cos \alpha-i \sin \alpha, \quad(z \in \Delta), \tag{14}
\end{equation*}
$$

where F_{c} be the integral operator defined by

$$
\begin{equation*}
F_{c}(f)(z)=\frac{c+1}{c} \int_{0}^{z} t^{c-1} f(t) d t, \quad(c \geq 0) \tag{15}
\end{equation*}
$$

Proof. Let

$$
p(z)=\frac{e^{-i \alpha} z\left(I_{n} F_{c}(f)(z)\right)^{\prime}}{I_{n} F_{c}(f)(z)}
$$

where p is analytic function with $p(0)=e^{-i \alpha}$. From (15) we have

$$
\begin{equation*}
z\left(I_{n} F_{c}(f)\right)^{\prime}(z)=(c+1) I_{n} f(z)-c I_{n} F_{c}(f)(z) . \tag{16}
\end{equation*}
$$

Then by using (16), we get

$$
\begin{equation*}
c+p(z)=(c+1) \frac{e^{-i \alpha} I_{n} f(z)}{I_{n} F_{c}(f)(z)} . \tag{17}
\end{equation*}
$$

Taking logaritmic derivatives in both side of (17) and multiplying by $e^{-i \alpha} z$, we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{e^{i \alpha} c+e^{i \alpha} p(z)}=\frac{e^{-i \alpha} z\left(I_{n} f(z)\right)^{\prime}}{I_{n} f(z)} . \tag{18}
\end{equation*}
$$

Therefor by relations (13) and (18) and Remark 1 we obtain (14) for all $z \in \Delta$ and the proof is complete.
E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike . . .

Definition 1. A function $f \in A$ is said to be in the class $M_{\alpha}(n, \beta)(|\alpha|<\pi / 2,0 \leq$ $\beta \leq 1$) if and only if, $I_{n}(f) \in U S P(\alpha, \beta)$ or equivalently

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{e^{-i \alpha} z\left(I_{n} f\right)^{\prime}(z)}{\left(I_{n} f\right)(z)}\right\}>\beta\left|\frac{z\left(I_{n} f\right)^{\prime}(z)}{\left(I_{n} f\right)(z)}-1\right|, \quad(z \in \Delta) \tag{19}
\end{equation*}
$$

Note that the class $M_{\alpha}(n, \beta)$ unifies many subclasses of A. In particular, $M_{\alpha}(1,0)=$ $C V S P(\alpha)$, the class of convex α-spirallike functions; $M_{\alpha}(0,0)=S P(\alpha)$, the class of α-spirallike functions; $M_{\alpha}(1,1)=U S P(\alpha)$, the class of uniformly α-spirallike functions; $M_{\alpha}(0,1)=U C S P(\alpha)$, the class of uniformly convex α-spirallike functions; $M_{\alpha}(0, \beta)=U C S P(\alpha, \beta)$ and $M_{\alpha}(1, \beta)=U S P(\alpha, \beta)$.

Also, by a simple computation, if $0<\beta_{1}<\beta_{2}<1$ then $M_{\alpha}\left(n, \beta_{2}\right) \subset M_{\alpha}\left(n, \beta_{1}\right)$.
Theorem 11. The function $k(z)=\frac{z}{(1-A z)^{1+i}}$ is in $M_{\alpha}(1, \beta)$ if and only if

$$
\begin{equation*}
|A| \leq \frac{\cos \alpha}{\beta \sqrt{2}+\sin \alpha} \tag{20}
\end{equation*}
$$

Proof. By using (2) $k(z) \in U S P(\alpha, \beta)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha} \frac{1+A i z}{1-A z}\right\} \geq \beta\left|\frac{A z(i+1)}{1-A z}\right| \tag{21}
\end{equation*}
$$

It is suffices to consider $|z|=1$ in the above relation, by setting $|A|=r$ and $A z=r e^{i \theta}$ we have $A i z=r e^{i\left(\theta+\frac{\pi}{2}\right)}$. It follows from (21),

$$
\begin{equation*}
R e\left\{e^{-i \alpha} \frac{1+r e^{i\left(\theta+\frac{\pi}{2}\right)}}{1-r e^{i \theta}}\right\} \geq \frac{\beta r \sqrt{2}}{\left|1-r e^{i \theta}\right|} \tag{22}
\end{equation*}
$$

After simplification, we see that

$$
\begin{equation*}
R e\left\{e^{-i \alpha} \frac{1+r e^{i\left(\theta+\frac{\pi}{2}\right)}}{1-r e^{i \theta}}\right\}=\frac{\cos \alpha(1-r \cos \theta-r \sin \theta)+r \sin \alpha(\sin \theta+\cos \theta-r)}{\left|1-r e^{i \theta}\right|^{2}} \tag{23}
\end{equation*}
$$

By using (22), (23), it is equivalent to

$$
\begin{equation*}
\frac{\cos \alpha(1-r \cos \theta-r \sin \theta)+r \sin \alpha(\sin \theta+\cos \theta-r)}{\left(1-2 r \cos \theta+r^{2}\right)^{\frac{1}{2}}} \geq \beta r \sqrt{2} \tag{24}
\end{equation*}
$$

The minimum value of the expression in the left hand side of the equation (24) occur at $\theta=\pi$ and this minimum value is $\cos \alpha-r \sin \alpha$, so we have

$$
\begin{equation*}
r \leq \frac{\cos \alpha}{\beta \sqrt{2}+\sin \alpha} \tag{25}
\end{equation*}
$$

Hence, a necessary and sufficient condition for (20) is (25).

Example 1. The function $\varphi(z)=z+a_{m} z^{m} \in \operatorname{UCSP}(\alpha, \beta)$ if and only if it satisfies (3). It is suffices to consider $|z|=1$ in the above relation, by setting $\left|m a_{m}\right|=r$ and $m a_{m} z^{m-1}=r e^{i \theta}$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \alpha} \frac{1+m r e^{i \theta}}{1+r e^{i \theta}}\right\} \geq \frac{\beta(m-1) r}{\left|1+r e^{i \theta}\right|} . \tag{26}
\end{equation*}
$$

After simplifying and separating the real part of the expression of (26), we get

$$
\frac{\cos \alpha\left(1+m r^{2}+m r \cos \theta+r \cos \theta\right)-r \sin \alpha \sin \theta(m-1)}{\left\{1+r^{2}+2 r \cos \theta\right\}^{\frac{1}{2}}} \geq \beta(m-1) r .
$$

The minimum of the expression in the left hand side of the above equation occurs at $\theta=\pi$ and this minimum value is $\cos \alpha(1-m r)$, hence

$$
r \leq \frac{\cos \alpha}{(m-1) \beta+m \cos \alpha} .
$$

After by solving this equation for $r=\left|m a_{m}\right|$, we have

$$
\left|a_{m}\right| \leq \frac{\cos \alpha}{m(m-1) \beta+m^{2} \cos \alpha} .
$$

Since the function $f(z) \in A$ is β uniformly convex α-spirallike in Δ if and only if $z f^{\prime}(z)$ is β uniformly α-spirallike in Δ, yields; if $f \in U S P(\alpha, \beta)$ then,

$$
\left|a_{m}\right| \leq \frac{\cos \alpha}{(m-1) \beta+m \cos \alpha} .
$$

If $\varphi \in U S P(\alpha, \beta)$, then

$$
I_{n} \varphi(z)=z+\frac{m!}{(n+1)_{m-1}} a_{m} z^{m}
$$

is in $\operatorname{UCSP}(\alpha, \beta)$ for $n \in\{3,4, \ldots\}$. Moreover $I_{n} \varphi \notin \operatorname{UCSP}(\alpha, \beta)$ for $n \in\{1,2\}$. It would be interesting to check this property of the Noor integral operator for other functions in $\operatorname{USP}(\alpha, \beta)$.

Theorem 12. The function $f(z)=z+a_{m} z^{m}$ is in $M_{\alpha}(n, \beta)$ if and only if

$$
\left|a_{m}\right| \leq \frac{(n+1)_{m-1} \cos \alpha}{m!((m-1) \beta+m \cos \alpha)}, \quad(m \geq 2) .
$$

Proof. Let $I_{n} f(z)=z+b_{m} z^{m}=z+\frac{m!}{(n+1)_{m-1}} a_{m} z^{m}$. It is suffices to consider $|z|=1$ in the above relation, by setting $\left|b_{m}\right|=r$ and $b_{m} z^{m-1}=r e^{i \theta}$, then (19) for this f will be

$$
\operatorname{Re}\left\{e^{-i \alpha} \frac{1+m r e^{i \theta}}{1+r e^{i \theta}}\right\} \geq \frac{\beta r(m-1)}{\left|1+r e^{i \theta}\right|} .
$$

By the same steps of theorem 11, we get the desired result.
Remark 2. For particular value of m, n, β, Theorem 12 provides functions belonging to the class $M_{\alpha}(n, \beta)$. For example for $m=2, n=0, \beta=1$, we have

$$
\left|a_{2}\right| \leq \frac{\cos \alpha}{2+4 \cos \alpha}
$$

so the function $f(z)=z+\frac{\cos \alpha}{2+4 \cos \alpha} z^{2}$ is in $\operatorname{UCSP}(\alpha)$.
Theorem 13. Let f with the form (1), be in the class $M_{\alpha}(n, \beta)$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{n+1}{2} \cos \alpha\left(\frac{\sigma}{\pi \sin \sigma}\right)^{2}, \quad(\sigma=\arccos \beta), \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{m}\right| \leq \frac{(n+1)_{m-1}}{(m-1)(2)_{m-1}} \cos \alpha\left(\frac{\sigma}{\pi \sin \sigma}\right)^{2} \prod_{t=3}^{m}\left(1+\frac{\cos \alpha}{t-2}\left(\frac{\sigma}{\pi \sin \sigma}\right)^{2}\right),(\sigma=\arccos \beta) \tag{28}
\end{equation*}
$$

Proof. Let f is given by (1), belongs to $M_{\alpha}(n, \beta)$, also $I_{n} f(z)=z+\sum_{m=2}^{\infty} b_{m} z^{m}=$ $F(z)$, where

$$
\begin{equation*}
b_{m}=\frac{(2)_{m-1}}{(n+1)_{m-1}} a_{m} . \tag{29}
\end{equation*}
$$

We define

$$
\varphi(z)=e^{-i \alpha} \frac{z F^{\prime}(z)}{F(z)}=e^{-i \alpha}+\sum_{m=1}^{\infty} c_{m} z^{m}
$$

Then by using theorem 3 , we have $e^{i \alpha} \varphi(z) \prec e^{i \alpha}\left(\operatorname{cossh}_{\beta} z-i \sin \alpha\right)$, where h_{β} is given by (4) depending on β and the function h_{β} is univalent in Δ and $h_{\beta}(\Delta)=D_{\beta}$.

Using Rogosinski lemma 7 and relation (9) of lemma 8 for function $e^{-i \alpha} \varphi(z)$, we have $\left|e^{-i \alpha} c_{m}\right| \leq\left|a_{2}\right|$. Now, writing $e^{-i \alpha} \varphi(z) F(z)=z F^{\prime}(z)$ and comparing the coefficients of z^{n} on both sides, we get

$$
(m-1) b_{m}=\sum_{k=1}^{m-1} e^{i \alpha} c_{m-k} b_{k} .
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...

Form the above equality, we get $\left|b_{2}\right|=\left|c_{1}\right| \leq\left|a_{2}\right|$. By using the equation (29) we obtain (28).

Further

$$
\left|b_{3}\right|=\frac{1}{2}\left|e^{i \alpha} c_{2}+e^{i \alpha} c_{1} b_{2}\right| \leq \frac{1}{2}\left(\left|c_{1}\right|+\left|c_{2}\right|\right) b \leq \frac{1}{2} a_{2}\left(1+a_{2}\right) .
$$

By using the induction, we have

$$
\left|b_{k}\right| \leq \frac{a_{2}}{k-1}\left(1+a_{2}\right)\left(1+\frac{a_{2}}{2}\right) \ldots\left(1+\frac{a_{2}}{k-2}\right), \quad k=3,4, \ldots, m-1 .
$$

Then,

$$
\begin{aligned}
(m-1)\left|b_{m}\right| & \leq \sum_{k=1}^{m-1}\left|c_{m-k}\right|\left|b_{k}\right| \leq a_{2} \sum_{k=1}^{m-1}\left|b_{k}\right| \\
& \leq a_{2}\left(1+a_{2}+\frac{a_{2}}{2}\left(1+a_{2}\right)+\frac{a_{2}}{3}\left(1+a_{2}\right)\left(1+\frac{a_{2}}{2}\right)+\ldots\right. \\
& \left.+\frac{a_{2}}{m-2}\left(1+a_{2}\right)\left(1+\frac{a_{2}}{2}\right) \ldots\left(1+\frac{a_{2}}{m-3}\right)\right) \\
& =a_{2}\left(1+a_{2}\right)\left(1+\frac{a_{2}}{2}\right) \ldots\left(1+\frac{a_{2}}{m-2}\right)
\end{aligned}
$$

and hence

$$
\left|b_{m}\right| \leq \frac{a_{2}}{m-1} \prod_{t=3}^{m}\left(1+\frac{a_{2}}{t-2}\right), \quad(m \geq 3)
$$

By using (29) and (9) we obtain (27).
Theorem 14. Assume that $n_{1} \leq n_{2}, n_{1}, n_{2} \in \mathbb{N} \bigcup\{0\}$, then

$$
M_{\alpha}\left(n_{1}, k\right) \subseteq M_{\alpha}\left(n_{2}, k\right),
$$

for all $k \in(0, \infty)$ and $|z|<1 / 2$.
Proof. Let $f \in M_{\alpha}(n, k)$. By definition 1 and theorem 3 we have

$$
\begin{equation*}
\frac{z\left(I_{n_{1} f(z)}\right)^{\prime}}{I_{n_{1}} f(z)}=h_{\beta}(w(z)) \cos \alpha-i \sin \alpha \tag{30}
\end{equation*}
$$

where $h_{\beta}(\Delta)=D_{\beta}$ and $|w(z)|<1$ in Δ with $w(0)=0$.
Let us denote

$$
\begin{equation*}
f_{n_{1}, n_{2}}=\sum_{m=0}^{\infty} \frac{\left(n_{1}+1\right)}{\left(n_{2}+1\right)} z^{m+1}, \quad(z \in \Delta) \tag{31}
\end{equation*}
$$

E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...

Then by (31), we have

$$
f_{n_{2}}^{\dagger}(z)=f_{n_{1}}^{\dagger}(z) * f_{n_{1}, n_{2}}^{\dagger}(z) .
$$

Applying (5), (30), (31) and the properties of convolution, we get

$$
\begin{align*}
e^{-i \alpha} z \frac{\left(I_{n_{2}} f\right)^{\prime}\left(\frac{z}{2}\right)}{I_{n_{2}} f\left(\frac{z}{2}\right)} & =e^{-i \alpha} z \frac{\left(f_{n_{2}}^{\dagger} * f\right)^{\prime}\left(\frac{z}{2}\right)}{\left(f_{n_{2}}^{\dagger} * f\right)\left(\frac{z}{2}\right)} \\
& =e^{-i \alpha} z \frac{\left(f_{n_{1}}^{\dagger} * f_{n_{1}, n_{2}} * f\right)^{\prime}\left(\frac{z}{2}\right)}{\left(f_{n_{1}}^{\dagger} * f_{n_{1}, n_{2}} * f\right)\left(\frac{z}{2}\right)} \\
& =e^{-i \alpha} \frac{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) * z\left(I_{n_{1}} f(z)\right)^{\prime}}{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) * I_{n_{1}} f(z)} \\
& =\frac{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) *\left(h_{\beta}(w(z)) \cos \alpha-i \sin \alpha\right) I_{n_{1}} f(z)}{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) * I_{n_{1}} f(z)} . \tag{32}
\end{align*}
$$

Moreover, it follows from (30) that $I_{n_{1}} f \in U S P(\alpha) \subseteq S P(\alpha) \subseteq S^{*}$ and obtain from lemma $4, f_{n_{1}, n_{2}} \in C V$. Then by using lemma 5 to (32), we obtain

$$
\frac{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) *\left(h_{\beta}(w(z)) \cos \alpha-i \sin \alpha\right) I_{n_{1}} f(z)}{f_{n_{1}, n_{2}}\left(\frac{z}{2}\right) * I_{n_{1}} f(z)} \subseteq \overline{c o}\left(h_{\beta}(w(z)) \cos \alpha-i \sin \alpha\right), \quad(z \in \Delta) .
$$

Hence the function (32) is subordinated to $h_{\beta}(z) \cos \alpha-i \sin \alpha$, so $f \in M_{\alpha}\left(n_{2}, \beta\right)$ for $|z|<1 / 2$.

Corollary 15. The Theorem 14 are satisfied

$$
U S P(\alpha, \beta)=M_{\alpha}(1, \beta) \subset M_{\alpha}(n, \beta),
$$

for all $|z|<1 / 2, \beta \in(0,1)$ and all $n \in \mathbb{N}$.

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, Berlin, 1983.
[2] P. Enigenberg, S. S. Miller, P.T. Mocanu, M. O. Reade, in: On a BriotBouquet differential subordination, in General Inequalities, Vol. 3, Birkhuser, Basel, 1983, pp. 339-348.
[3] A. W. Goodman, Univalent Functions, Volume I and Volume II, Mariner Publishing Comp. Inc., Tampa, Florida, 1983.
[4] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327-336.
[5] J. L. Liu, The Noor integral and strongly starlike functions, J. Math. Anal. Appl. 261(2001) 441-447.
[6] J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom. 21(2002) 81-90.
[7] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math., 57(1992), 165-175.
[8] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28(1981) 157-171.
[9] K. I. Noor, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci. 10(1987) 241-258.
[10] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl. 238(1999) 341-352.
[11] K. I. Noor, On certain classes of close-to-convex functions, Internat. J. Math. Math. Sci. 16(1993) 329-336.
[12] K. I. Noor, On new class of integral operator, J. Natur. Geom., 16(1999), 71-80.
[13] V. Ravichandran, C. Selvaraj and R. Rajagopal, On the uniformly convex spiral functins and uniformly spirallike functions, Soochow J. Math., 29(2003), 393-405.
[14] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48(1943), 48-82.
[15] St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup. 83, Presses Univ. Montreal, 1982.
[16] St. Ruscheweyh and T. Sheil-Small, Hadamard product of schlicht functions and the Poyla-Schoenberg conjecture, Comm. Math. Helv., 48(1973), 119-135.
[17] N. Xu, D. Yang, On β Uniformly convex α-spiral Functions, Soochow journal of Mathematices, 31(2005), 561-571.

Ebrahim Amini
Department of Mathematics, Faculty of Science, Payame Noor University,
P.O. Box 19395-3697 Tehran, Iran
email:ab.amini.s@gmail.com
Shahram Najafzadeh
Department of Mathematics, Faculty of Science, Payame Noor University,
E. Amini, Sh. Najafzadeh and A. Ebadian - Noor operator, Spirallike ...
P.O. Box 19395-3697 Tehran, Iran email: najafzadeh1234@yahoo.ie

Ali Ebadian
Department of Mathematics, Faculty of Science, Payame Noor University, P.O. Box 19395-3697 Tehran, Iran email: ebadian.ali@gmail.com

