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Abstract. In this paper, we introduce and investigate a new class of sets
called αω-open sets which are weaker than both ω-open sets and α-open sets.
Moreover, we obtain a characterization and preserving theorems of α-Lindelöf
spaces and decompositions of continuity.
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1. Introduction

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with
no separation axioms assumed unless otherwise stated. For a subset A of X,
the closure of A and the interior of A will be denoted by Cl(A) and Int(A),
respectively. Many topologists are focusing their recearch to introduce and
investigate a weak form of open sets in topological spaces. Let (X, τ) be a
space and S a subset of X. A subset S is said to be α-open [7] (resp. semi-
open [6], preopen [10], semi-preopen [2]) if S ⊆ Int(Cl(Int(S))) (resp.
S ⊆ Cl(Int(S)), S ⊆ Int(Cl(S)), S ⊆ Cl(Int(Cl(S)))). Since the advent
of these notions, several research papers with interesting results in different
respects came to existence see [8, 9]. The family of all α-open sets in a space
X is denoted by τα. It is shown in [7] that τα is a topology on X and
that τ ⊆ τα. The complement of an α-open set is said to be α-closed. The
intersection of all α-closed sets of X containing A is called the α-closure of
S and is denoted by αCl(S). The union of all α-open sets of X contained
in S is called the α-interior of A and is denoted by αInt(A). The family of
all α-open (resp. α-closed, regular open) subsets of a space X is denoted by
αO(X) (resp. αC(X), RO(X)) and the collection of all α-open subsets of X
containing a fixed point x is denoted by αO(X, x).
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A point x ∈ X is called a condensation point of A if for each U ∈ τ with
x ∈ U , the set U ∩A is uncountable. A is said to be ω-closed [3] if it contains
all its condensation points. The complement of an ω-closed set is said to be
ω-open. It is well known that a subset W of a space (X, τ) is ω-open if and
only if for each x ∈ W , there exists U ∈ τ such that x ∈ U and U −W is
countable. The family of all ω-open subsets of a space (X, τ), denoted by τω
or ωO(X), forms a topology on X finer than τ . The ω-closure and ω-interior,
that can be defined in the same way as Cl(A) and Int(A), respectively, will
be denoted by ωCl(A) and ωInt(A), respectively. Several characterizations of
ω-closed subsets were provided in [1, 5].

The fundamental relationships between the various types of sets considered
above can be summarized in the following diagram.

The following implications hold:

DIAGRAM I

semi-open set // semi-preopen set

open set

��

// α-open set //

OO

preopen set

OO

ω-open set

We observe that none of the implications in the above diagram can be reversed
in general.

In this paper, we introduce a new class of sets called αω-open sets which
is a new generalization of both ω-open sets and α-open sets and investigate
some properties of this set. Moreover, by using αω-open sets we obtain a char-
acterization and preserving theorems of α-Lindelöf spaces and decompositions
of continuity.

2. αω-open sets

In this section we introduce the following notion:

Definition 1. A subset A of a space X is said to be αω-open if for every
x ∈ A, there exists an α-open subset Ux ⊆ X containing x such that Ux−A is
countable. The complement of an αω-open subset is said to be αω-closed.
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The family of all αω-open subsets of a space (X, τ) is denoted by αωO(X)
or ταω.

Lemma 1. For a subset A of a topological space (X, τ) both ω-openness and
α-openness imply αω-openness.

Proof. (1) Assume A is ω-open. Then for each x ∈ A, there is an open set
Ux containing x such that Ux − A is a countable set. Since every open set is
α-open, A is αω-open.
(2) Let A be α-open. For each x ∈ A, there exists an α-open set Ux = A such
that x ∈ Ux and Ux − A = φ. Therefore, A is αω-open.

The following diagram shows the implications for properties of subsets

DIAGRAM II

open set

��

// α-open set

��
ω-open set // αω-open set

The converses need not be true as shown by the following examples.

Example 1. Let X = {a, b, c} and τ = {X,φ, {a}}, {b}, {a, b}}. Then {c} is
ω-open (since X is a countable set) and it is not α-open.

Example 2. Let X be an uncountable set and let A,B,C and D be subsets of
X such that each of them is uncountable and the family {A,B,C,D} is a par-
tition of X. We defined the topology τ={φ,X, {A}, {B}, {A,B}, {A,B,C}}.
Then {A,B,D} is an α-open set which is not ω-open.

Theorem 2. Let (X, τ) be a topological space. Then ταω = αωO(X) is a
topology for X such that τ ⊆ τα ⊆ ταω and τ ⊆ τω ⊆ ταω.

Proof. (1): We have φ,X ∈ αωO(X).
(2): Let U, V ∈ αωO(X) and x ∈ U ∩ V . Then there exist α-open sets
G,H ∈ X containing x such that G \ U and H \ V are countable.

(G ∩H) \ (U ∩ V ) = (G ∩H) ∩ [X − (U ∩ V )]

= (G ∩H) ∩ [(X − U) ∩ (X − V )]

= [(G ∩H) ∩ (X − U)] ∩ [G ∩H) ∩ (X − V )]

⊆ [G ∩ (X − U)] ∩ [H ∩ (X − V )]

= (G− U) ∩ (H − V ).
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Thus G ∩ H \ U ∩ V is countable and G ∩ H is an α-open set containing x.
Hence G ∩H ∈ αωO(X).
(3): Let {Ui : i ∈ I} be a family of αω-open subsets of X and x ∈ ∪i∈IUi.
Then x ∈ Uj for some j ∈ I. This implies that there exists an α-open subset
V of X containing x such that V \Uj is countable. Since V \ ∪i∈IUi ⊆ V \Uj,
then V \ ∪i∈IUi is countable. Thus ∪i∈IUi ∈ αωO(X).

Theorem 3. If (X, τ) is a locally countable space, then τω = ωO(X) is the
discrete topology.

Proof. Let A ⊆ X and x ∈ A. Then there exist a countable neighborhood
Ux of x and an open set Gx containing x such that Gx ⊆ Ux. We have
Gx \ A ⊆ Ux \ A ⊆ Ux. Thus Gx \ A is countable and A is ω-open. Hence,
ωO(X) is the discrete topology.

Corollary 4. If (X, τ) is a locally countable space, then ταω = αωO(X) is the
discrete topology.

Corollary 5. If (X, τ) is a countable space, then αωO(X) is the discrete
topology.

Proof. Since every countable space is locally countable, the proof is obvious.

Lemma 6. A subset A of a space X is αω-open if and only if for every x ∈ A,
there exist an α-open subset U containing x and a countable subset C such that
U − C ⊆ A.

Proof. Let A be αω-open and x ∈ A, then there exists an α-open subset Ux
containing x such that Ux −A is countable. Let C = Ux −A = Ux ∩ (X −A).
Then Ux − C ⊆ A. Conversely, let x ∈ A. Then there exist an α-open subset
Ux containing x and a countable subset C such that Ux − C ⊆ A. Thus
Ux − A ⊆ C and Ux − A is a countable set.

Theorem 7. Let X be a space and C ⊆ X. If C is αω-closed, then C ⊆ K∪B
for some α-closed subset K and a countable subset B.

Proof. If C is αω-closed, then X−C is αω-open and hence for every x ∈ X−C,
there exists an α-open set U containing x and a countable set B such that
U −B ⊆ X−C. Thus C ⊆ X− (U −B) = X− (U ∩ (X−B)) = (X−U)∪B.
Let K = X − U . Then K is an α-closed set such that C ⊆ K ∪B.
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The intersection of all αω-closed sets of X containing A is called the αω-
closure of A and is denoted by αωCl(A). And the union of all αω-open sets
of X contained in A is called the αω-interior and is denoted by αωInt(A).

Lemma 8. Let A be a subset of a space X. Then

1. A is αω-closed in X if and only if A = αωCl(A).

2. αωCl(X \ A) = X \ αωInt(A).

3. αωCl(A) is αω-closed in X.

4. x ∈ αωCl(A) if and only A ∩G 6= φ for each αω-open set G containing
x.

Definition 2. [11] A function f : X → Y is said to be quasi α-open if the
image of each α-open set in X is open in Y .

Proposition 1. If f : X → Y is quasi α-open, then the image of an αω-open
set of X is ω-open in Y .

Proof. Let f : X → Y be quasi α-open and W an αω-open subset of X. Let
y ∈ f(W ), there exists x ∈ W such that f(x) = y. Since W is αω-open,
there exists an α-open set U such that x ∈ U and U −W = C is countable.
Since f is quasi α-open, f(U) is open in Y such that y = f(x) ∈ f(U) and
f(U) − f(W ) ⊆ f(U −W ) = f(C) is countable. Therefore, f(W ) is ω-open
in Y .

3. α-lindelöf spaces

Definition 3. [4] (1) A space X is said to be α-Lindelöf if every α-open cover
of X has a countable subcover.
(2) A subset A of a space X is said to be α-Lindelöf relative to X if every
cover of A by α-open sets of X has a countable subcover.

Theorem 9. If X is a space such that every α-open subset of X is α-Lindelöf
relative to X, then every subset is α-Lindelöf relative to X.
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Proof. Let B be an arbitrary subset of X and let {Ui : i ∈ I} be a cover of B
by α-open sets of X. Then the family {Ui : i ∈ I} is an α-open cover of the
α-open set ∪{Ui : i ∈ I}. Hence by hypothesis there is a countable subfamily
{Uij : j ∈ N} which covers ∪{Ui : i ∈ I}. This subfamily is also a cover of the
set B.

Theorem 10. For any space X, the following properties are equivalent:

1. X is α-Lindelöf;

2. Every αω-open cover of X has a countable subcover.

Proof. (1)⇒ (2): Let {Uα : α ∈ Λ} be any αω-open cover of X. For each
x ∈ X, there exists α(x) ∈ Λ such that x ∈ Uα(x). Since Uα(x) is αω-open, there
exists an α-open set Vα(x) such that x ∈ Vα(x) and Vα(x)\Uα(x) is countable. The
family {Vα(x)|x ∈ X} is an α-open cover of X and X is α-Lindelöf. There exists
a countable subset, says α(x1), α(x2), · · ·α(xn), · · · such that X = ∪{Vα(xi)|i ∈
N}. Now, we have

X = ∪i∈N {(Vα(xi)\Uα(xi)) ∪ Uα(xi)}
=[∪i∈N(Vα(xi)\Uα(xi))] ∪ [∪i∈NUα(xi)].

For each α(xi), Vα(xi)\Uα(xi) is a countable set and there exists a countable
subset Λα(xi) of Λ such that Vα(xi)\Uα(xi) ⊆ ∪{Uα|α ∈ Λα(xi)}. Therefore, we
have X ⊆ [∪i∈N(∪{Uα|α ∈ Λα(xi)})] ∪ [∪i∈NUα(xi)].
(2)⇒ (1): Since every α-open is αω-open, the proof is obvious.

Definition 4. A function f : X → Y is said to be αω-continuous if f−1(V )
is αω-open in X for each open set V in Y .

Theorem 11. Let f be an αω-continuous function from a space X onto a
space Y . If X is α-Lindelöf, then Y is Lindelöf.

Proof. Let {Vα : α ∈ Λ} be an open cover of Y . Then {f−1(Vα) : α ∈ Λ}
is an αω-open cover of X. Since X is α-Lindelöf, by Theorem 10, X has a
countable subcover, say {f−1(Vαi)}∞i=1 and Vαi ∈ {Vα : α ∈ Λ}. Hence {Vαi}∞i=1

is a countable subcover of Y . Hence Y is Lindelöf.

Definition 5. A function f : X → Y is said to be α-continuous [9] (resp.
ω-continuous [5]) if f−1(V ) is α-open (resp. ω-open) for each open set V in
Y .
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Corollary 12. Let f be an α-continuous (or ω-continuous) function from a
space X onto a space Y . If X is α-Lindelöf, then Y is Lindelöf.

Definition 6. A function f : X → Y is said to be α∗ω-continuous if f−1(V )
is αω-open in X for each α-open set V in Y .

Now we state the following theorem whose proof is similar to Theorem 11.

Theorem 13. Let f be an α∗ω-continuous function from a space X onto a
space Y . If X is α-Lindelöf, then Y is α-Lindelöf.

Proposition 2. An αω-closed subset of an α-Lindelöf space X is α-Lindelöf
relative to X.

Proof. Let A be an αω-closed subset of X. Let {Uα : α ∈ Λ} be a cover of
A by α-open sets of X. Now for each x ∈ X − A, there is an α-open set Vx
such that Vx ∩ A is countable. Since {Uα : α ∈ Λ} ∪ {Vx : x ∈ X − A} is
an α-open cover of X and X is α-Lindelöf, there exists a countable subcover
{Uαi

: i ∈ N} ∪ {Vxi : i ∈ N}. Since ∪i∈N(Vxi ∩ A) is countable, so for each
xj ∈ ∪(Vxi ∩ A), there is Uα(xj) ∈ {Uα : α ∈ Λ} such that xj ∈ Uα(xj) and
j ∈ N. Hence {Uαi

: i ∈ N} ∪ {Uα(xj) : j ∈ N} is a countable subcover of
{Uα : α ∈ Λ} and it covers A. Therefore, A is α-Lindelöf relative to X.

Corollary 14. If a space X is α-Lindelöf and A is ω-closed (or α-closed),
then A is α-Lindelöf relative to X.

Definition 7. A function f : X → Y is said to be αω-closed if f(A) is αω-
closed in Y for each α-closed set A of X.

Theorem 15. If f : X → Y is an αω-closed surjection such that f−1(y) is
α-Lindelöf relative to X and Y is α-Lindelöf, then X is α-Lindelöf.

Proof. Let {Uα : α ∈ Λ} be any α-open cover of X. For each y ∈ Y , f−1(y) is
α-Lindelöf relative to X and there exists a countable subset Λ1(y) of Λ such
that f−1(y) ⊂ ∪{Uα : α ∈ Λ1(y)}. Now we put U(y) = ∪{Uα : α ∈ Λ1(y)} and
V (y) = Y − f(X −U(y)). Then, since f is αω-closed, V (y) is an αω-open set
in Y containing y such that f−1(V (y)) ⊂ U(y). Since V (y) is αω-open, there
exists an α-open set W (y) containing y such that W (y)− V (y) is a countable
set. For each y ∈ Y , we have W (y) ⊂ (W (y)− V (y)) ∪ V (y) and hence

f−1(W (y)) ⊂ f−1(W (y)− V (y)) ∪ f−1(V (y))

⊂ f−1(W (y)− V (y)) ∪ U(y).
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Since W (y) − V (y) is a countable set and f−1(y) is α-Lindelöf relative to X,
there exists a countable set Λ2(y) of Λ such that

f−1(W (y)− V (y)) ⊂ ∪{Uα : α ∈ Λ2(y)}

and hence

f−1(W (y)) ⊂ [∪{Uα : α ∈ Λ2(y)}] ∪ [U(y)].

Since {W (y) : y ∈ Y } is an α-open cover of the α-Lindelöf space Y , there exist
countable points of Y , say, y1, y2, ..., yn, ... such that
Y = ∪{W (yi) : i ∈ N}. Therefore, we obtain

X = ∪i∈Nf−1(W (yi)) = ∪i∈N [∪α∈Λ2(yi)Uα) ∪ (∪α∈Λ1(yi)Uα)]

= ∪{Uα : α ∈ Λ1(yi) ∪ Λ2(yi), i ∈ N}.

This shows that X is α-Lindelöf.

4. Decompositions of continuity

A topological space X is said to be anti-locally countable (see [1]) if every
non-empty open set is uncountable. Note that R with the usual topology is
anti-locally countable.

Lemma 16. A topological space (X, τα) is anti locally countable space if and
only if (X,αωO(X)) is anti locally countable.

Proof. Let A ∈ αωO(X) and x ∈ A. Then by Lemma 6 , there exist an α-
open subset U ⊆ X containing x and a countable set C such that U \ C ⊆ A.
Thus A is uncountable and (X,αωO(X)) is anti locally countable.

Theorem 17. Let (X, τα) be an anti locally countable space. If A is αω-open,
then αωCl(A) = αCl(A) = Cl(A).

Proof. Clearly αωCl(A) ⊆ Cl(A). Let x ∈ Cl(A) and B be an αω-open subset
containing x. Then by Lemma 6, there exists an α-open subset V containing
x and a countable set C such that V \C ⊆ B. Thus (V \C)∩A ⊆ B ∩A and
so (V ∩A) \C ⊆ B ∩A. Since x ∈ V and x ∈ Cl(A), V ∩A 6= φ. Since V and
A are αω-open, V ∩ A is αω-open and as (X, τα) is an anti locally countable
space, by Lemma 16, V ∩ A is uncountable and so is (V ∩ A) \ C. Then
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B ∩A is uncountable. Therefore, B ∩A 6= φ and hence x ∈ αωCl(A). Hence,
αωCl(A) = αCl(A) = Cl(A).

Corollary 18. Let (X, τα) be an anti locally countable space. If A is αω-
closed, then αωInt(A) = αInt(A) = Int(A).

Theorem 19. Let (X, τα) be an anti locally countable space. Then RO(X, τα) =
RO(X,αωO(X)).

Proof. If A ∈ RO(X, τα), then A = αInt(αCl(A)). Since A is αω-open, and
by Theorem 17, we have A = αInt(αωCl(A)) and as αωCl(A) is αω-closed,
Then A = αωInt(αωCl(A)) and hence A ∈ RO(X,αωO(X)).
Conversely, let A ∈ RO(X,αωO(X)). We have A = αωInt(αωCl(A)). Since
A is αω-open, by Theorem 17, A = αωInt(αCl(A)). Since αCl(A) is αω-
closed, then A = αInt(αCl(A)). Thus A ∈ RO(X, τα).

Theorem 20. Let (X, τ) be a topological space. Then RO(X, τα) = RO(X, τ).

Proof. Let A ∈ RO(X, τ), then A = Int(Cl(A)),

αCl(A) =A ∪ Cl(Int(Cl(A))) = A ∪ Cl(A) = Cl(A) and

αInt(αCl(A)) =αInt(Cl(A)) = Cl(A) ∩ Int(Cl(Int(Cl(A))))

=Cl(A) ∩ Int(Cl(A)) = Int(Cl(A)) = A

Thus A ∈ RO(X, τα).
Conversely, Let A = αInt(αCl(A)) i.e. A ∈ RO(X, τα). Since A is α-open,

A ⊆ Int(Cl(Int(A))) ⊆Int(Cl(A)).........(1). On the other hand,

A = αInt(αCl(A)) =αInt[A ∪ Cl(Int(Cl(A)))]

⊆αInt[Cl(Int(Cl(A)))]

⊆Int(Cl(Int(Cl(A)))) = Int(Cl(A)).........(2)

By (1) and (2), we have Int(Cl(A)) = A.

Theorem 21. If A is an αω-open subset of (X, τ), then (ταω)|A ⊆ (τ|A)αω
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Proof. Let G ∈ (ταω)|A. Then G = H ∩ A for some αω-open subset H. For
every x ∈ G, there exist VH , VA ∈ τα containing x and countable sets CH and
CA such that VH\CH ⊆ H and VA\CA ⊆ A. Therefore x ∈ A∩(VH∩VA) ∈ τα|A,

CH ∪CA is countable and A∩ (VH ∩VA) \ (CH ∪CA) ⊆ (VH ∩VA)∩ (X \CH)∩
(X \ CA) = (VH \ CH) ∩ (VA \ CA) ⊆ H ∩ A = G. Therefore, G ∈ (τ|A)αω

Definition 8. A subset A of a topological space (X.τ) is said to be:

1. an (αω, ω)-set if αωInt(A) = ωInt(A).

2. an (αω, α)-set if αωInt(A) = αInt(A).

3. an (αω,O)-set if αωInt(A) = Int(A).

Remark 1. 1. Every ω-open set is an (αω, ω)-set.

2. Every α-open set is an (αω, α)-set.

3. Every open set is an (αω,O)-set.

The above implications are not reversible as shown in the following exam-
ples.

Example 3. In Example 2, if H = {A,B,D} then, Int(H) = ωInt(H) =
{A,B}, αωInt(H) = αInt(H) = H. Thus H is (αω, α)-set but it is not
(αω, ω)-set and (αω,O)-set.

Example 4. In Example 2, if H = {C} then, Int(H) = αInt(H) = ωInt(H) =
αωInt(H) = φ. Thus H is (αω, ω)-set, (αω, α)-set and (αω,O)-set. But it is
not ω-open, α-open and open.

Example 5. In Example 1, if A = {b} then, Int(A) = αInt(A) = φ,
ωInt(A) = αωInt(A) = A. Thus A is (αω, ω)-set but it is not (αω, α)-set
and (αω,O)-set.

Proposition 3. Let A be a subset of a space X. The following are equivalent:

1. A is ω-open;

2. A is αω-open and an (αω, ω)-set.

62



A. Al-Omari, T. Noiri and M. S. M. Noorani – On αω-open sets . . .

Proof. (1) ⇒ (2): It follows form the fact that every ω-open set is αω-open.
(2) ⇒ (1): Let A be αω-open and an (αω, ω)-set. Then A = αωInt(A) =
ωInt(A). This shows that A is ω-open.

Proposition 4. Let A be a subset of a space X. The following are equivalent:

1. A is α-open;

2. A is αω-open and an (αω, α)-set.

Proof. (1) ⇒ (2): It follows form the fact that every α-open set is αω-open.
(2) ⇒ (1): Let A be αω-open and an (αω, α)-set. Then A = αωInt(A) =
αInt(A). This shows that A is α-open.

Proposition 5. Let A be a subset of a space X. The following are equivalent:

1. A is open;

2. A is αω-open and an (αω,O)-set.

Proof. (1) ⇒ (2): It follows form the fact that every open set is αω-open.
(2) ⇒ (1): Let A be αω-open and an (αω,O)-set. Then A = αωInt(A) =
Int(A). This shows that A is open.

Definition 9. A function f : X → Y is said to be (αω, ω)-continuous (resp.
(αω, α)-continuous, (αω,O)-continuous) if f−1(V ) is (αω, ω)-set (resp. (αω, α)-
set, (αω,O)-set) for each open set V in Y .

Theorem 22. A function f : X → Y is continuous (resp. α-continuous, ω-
continuous) if and only if f is αω-continuous and (αω,O)-continuous (resp.
(αω, α)-continuous, (αω, ω)-continuous)

Proof. This is an immediate consequence of Propositions 3, 4 and 5.
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