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EXACT SOLUTION TO TIME FRACTIONAL FIFTH-ORDER
KORTEWEG-DE VRIES EQUATION BY USING

(G′/G)-EXPANSION METHOD
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Abstract. In this paper, we have established the (G′/G)-expansion method
to find exact solutions for to time fractional fifth-order Korteweg-de Vries equa-
tion (FKdV5). This method is an effective method in finding exact traveling wave
solutions of nonlinear evolution equations (NLEEs) in mathematical physics.

The effectiveness of this manageable method has been shown by applying it to
several particular cases of FKdV5. The present approach has the potential to be
applied to other nonlinear fractional differential equations. All of the numerical cal-
culations in the present study have been performed on a PC applying some programs
written in Mathematica.
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1. Introduction

Nonlinear phenomena have very important roles in applied mathematics and physics.
The accurate calculation of numerical solutions, in particular the traveling wave
solutions of nonlinear equations in mathematical physics, has a significant role in
soliton theory [1, 2].

There have been many powerful methods proposed for finding exact solutions
of NLEEs, such as ansatz method and topological solitons [3], the tanh-function
method [4], simplest equation method [5], the homogeneous balance method [6],
the F-expansion method [7], Hirotas direct method [8], the exp-function method
[9], the Adomian decomposition method [10], the extended tanh-function method
[11], the auxiliary equation method [12], the Jacobi elliptic function method [13],
the Weierstrass elliptic function method [14], the modified exp-function method
[15], the modified simple equation method [16], and so on. A method called the
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(G′/G)-expansion method was introduced by Wang et al. [17] to obtain traveling
wave solutions of the nonlinear partial differential equations. Following that, this
method was used by many researchers to construct the traveling wave solutions of
the Nonlinear Evolution Equations (NLEEs). For example, Ebadi and Biswas [18]
applied the same method to find traveling wave solutions for nonlinear diffusion
equations with nonlinear source term. Also, Zayed [19], studied the various aspects
of the higher dimensional NLEEs by using the same method in order to obtain
solutions.

Numerous other researchers investigated the applicability of the proposed meth-
ods in different areas. Naher et al. [20], for instance, investigated the higher or-
der Caudrey-Dodd-Gibbon equation through applying (G′/G)-expansion method to
construct traveling wave solutions. Further, Liu et al. [21] implemented the same
method to the NLEEs to get exact solutions. The method has also been applied by
Feng et al. [22] in seeking traveling wave solutions of the Kolmogorov-Petrovskii-
Piskunov equation. In Ref. [23], Zhang applied this method for the complex KdV
equation to construct analytical solutions. Moreover, Zayed and Al-Joudi [24] ex-
tended the application of the method by using it to obtain traveling wave solutions of
nonlinear partial differential equations in mathematical physics. Ayhan and Bekir
[25] investigated various aspects of nonlinear lattice equations. Finally, Ozis and
Aslan [26] surveyed the Kawahara type equations for the purpose of finding solu-
tions via this method.

We have established (G′/G)-expansion method to obtain exact solutions for frac-
tional partial differential equations (FPDEs) in the sense of conformable derivative
as defined by Khalil, R., et al. [27] .

In this work, we have limited our focus of attention to the study of the following
form of the time fractional fifth-order Korteweg-de Vries equation (FKdV5)

Dα
t u+ p u uxxx + q uxuxx + r u2 ux + uxxxxx = 0, 0 < α ≤ 1 (1)

with four constant parameters p, q, r, s (for α = 1, see [28]).
The present paper is arranged in five sections. In Section 1, a brief introduc-

tion is given. In Section 2, we briefly describe the modified conformable derivative
with properties. In Section 3, the main steps of the (G′/G)-expansion method
are presented. In Section 4, this method is used to find solutions to time frac-
tional standard Lax equation, time fractional Sawada-Kotera (SK) equation, time
fractional Sawada-Kotera-Parker-Dye (SKPD) equation, time fractional Caudrey-
Dodd-Gibbon (CDG) equation, time fractional Kaup-Kupershmidt (KK) equation,
time fractional Kaup-Kupershmidt-Parker-Dye (KKPD) equation, time fractional
Ito equation. Finally, a conclusion is given in section 5.
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2. Conformable fractional derivative

The expression [27] below is used to define the Modified conformable fractional
derivative

∂α

∂tα
f(x) = lim

ε−→0

f(x+ εx1−α)− f (x)

ε
, 0 < α ≤ 1, (2)

in which, f : [ 0,∞) −→ R and x > 0.
For 0 < α ≤ 1, some properties for the suggested modified conformable fractional
derivative given in [27] are as follows

∂α

∂tα
xγ = γ xγ−α, γ ∈ R (3)

(u(x)v(x))(α) = u(α)(x) v(x) + u(x) v(α)(x) (4)

(f [u(x)])(α) = f ′u(u) u(α)(x). (5)

The above equations have a significant role in fractional calculus as it is shown in
the following sections.

3. The methodology

Following the introduction above, we have presented the main steps of the fractional
(Gα/G)-expansion method as follows.
Step 1. Suppose that a nonlinear FDEs, say in two independent variables x and t,
is given by

P (Dα
t u, u, ux, uxx, . . .) = 0, 0 < α ≤ 1. (6)

where u = u(x, t) is an unknown function, P is a polynomial in u and their various
partial derivatives including fractional time and space derivatives.
Step 2. To obtain the solution of Eq.(6), we introduce the variable transformation

u(x, t) = y(ζ), ζ = x−
( c
α

)
tα, (7)

where c is constant to be determined later. Using Eq.(7) changes the Eq. (6) to an
ODE

Q

(
y,

∂y

∂ζ
,
∂2y

∂ζ2
,
∂3y

∂ζ3
, . . .

)
= 0, 0 < α ≤ 1, (8)

in which y = y(ζ) is an unknown function, Q is a polynomial in the variable y and
its derivatives.
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Step 3. Suppose that the solution of (8) can be expressed by a polynomial in (G′/G)
as follows:

y (ζ) =
N∑
n=1

ai
(
G′/G

)i
, (9)

in which the coefficients ai, i = 1, . . . , N , are constants to be determined later
with aN 6= 0, and (G′/G) are the functions that satisfy some ordinary differential
equations.
In this paper, we use the ordinary differential equations

G′′ (ζ) + λG′ (ζ) + µG (ζ) = 0, (10)

where λ and µ are unknown constants.
By using (10) repeatedly, we can express (G′/G) in term of series in (G′/G).
By the General solutions of Eq.(1), we have

G′(ζ)

G(ζ)
=


−λ

2 +

√
λ2−4µ
2

(
A sinh

√
λ2−4µ
2

ζ+B cosh

√
λ2−4µ
2

ζ

A cosh

√
λ2−4µ
2

ζ+B sinh

√
λ2−4µ
2

ζ

)
, λ2 − 4µ > 0,

−λ
2 +

√
4µ−λ2
2

(
−A sin

√
4µ−λ2
2

ζ+B cos

√
4µ−λ2
2

ζ

A cos

√
4µ−λ2
2

ζ+B sin

√
4µ−λ2
2

ζ

)
, λ2 − 4µ < 0,

−λ
2 + B

A+Bζ , λ2 − 4µ = 0.

(11)

Step 4. If we substitute (9) into (8) and using (10), and calculate all terms with
the same order of (G′/G) together, the left-hand side of (9) is converted into another
polynomial in (G′/G). After solving the equation system and using (11), a variety
of exact solutions can be constructed for Eq.(6).
Equating each coefficient of this polynomial to zero results in a set of algebraic
equations for µ, λ, ai(i = 0, 1, 2, . . . , N).
Remark. We define the degree of y(ζ) as D [y (ζ)] = N , which results in the

degrees of other expressions as D
[
y(n)

]
= N +n, D

[
ym
(
y(n)

)s]
= Nm+ (n+N)s.

By balancing the highest order derivative terms and the non linear terms in (8 ), we
can find the parameter N

i) If N is a positive integer, we suppose that the solution to system (8) has the
form (9).

ii) If N = n
m , we introduce the transformation in the following forms: y(ζ) =

V
m
n (ζ) and then return to step 1 and determine the parameter N .

iii) If N is a negative integer, we make the following transformation: y(ζ) =
V N (ζ).
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4. Applications

In this section, we apply (G′/G)-expansion method to several particular cases of
FKdV5. All of the computing for this equations have been performed on a PC
applying some programs written in Mathematica.

4.1. Time fractional standard Lax equation

When p = 30, q = 20, r = 10, (1) becomes time fractional standard Lax equation:

Dα
t u+ 30 u uxxx + 20 uxuxx + 10 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (12)

With the help of Mathematica, we find

1) a0 = ∓ 1
30

(√
5

√
6c− (λ2 − 4µ)2 + 5λ2 + 40µ

)
, a1 = −2λ, a2 = −2.

2) a0 = ±
√

2c
7 −

3λ2

2 , a1 = −6λ, a2 = −6, µ = 1
28

(
7λ2 ±

√
14c
)
.

Variable c is arbitrary constant.
Then the exact solution to nonlinear time fractional standard Lax equation can be
written as
For case 1. If λ2 − 4µ > 0

u(x, t) =
1

30

(
60µ∓

(√
5

√
6c− (λ2 − 4µ)2 + 5λ2 + 40µ

)
+

15(A−B)(A+B)
(
λ2 − 4µ

)(
A cosh

(√
λ2−4µ(αx−ctα)

2α

)
+B sinh

(√
λ2−4µ(αx−ctα)

2α

))2

)
. (13)

As if λ2 − 4µ < 0

u(x, t) =
1

30

(
60µ∓

(√
5

√
6c− (λ2 − 4µ)2 + 5λ2 + 40µ

)
+

15
(
A2 +B2

) (
λ2 − 4µ

)(
A cos

(√
4µ−λ2(αx−ctα)

2α

)
+B sin

(√
4µ−λ2(αx−ctα)

2α

))2

)
. (14)

As if λ2 − 4µ = 0

u(x, t) =
1

30

(
− 60B2(

A+B
(
x− ctα

α

))2 ∓ (√30c+ 40µ
)
− 5λ2(±1− 3)

)
. (15)

25



A. Neamaty, B. Agheli, R. Darzi – Exact solution to time fractional . . .

For case 2. If λ2 − 4µ > 0

u(x, t) =

√
c
((
A2 −B2

)
(±3∓ 2)− (±3± 2)

((
A2 +B2

)
cosh

(
4

√
2
7L
)

+ 2AB sinh
(

4

√
2
7L
)))

2
√

14
(
A cosh

(
L

23/4 4√7

)
+B sinh

(
L

23/4 4√7

))2
(16)

where

L =

√
±
√
c

(
x− ctα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =

√
c
((
A2 +B2

)
(±3∓ 2)± 3± 2(K)

)
2
√

14

(
A cosh

(
4√c
√
±1(x− ct

α

α )
23/4 4√7

)
+B sin

(√
∓1
√
c(x− ct

α

α )
23/4 4√7

))2 (17)

where

K =
(
B2 −A2

)
cosh

(
4

√
2

7

√
±
√
c

(
x− ctα

α

))
− 2AB sin

(
4

√
2

7

√
∓
√
c

(
x− ctα

α

))
.

As if λ2 − 4µ = 0

u(x, t) = ±
√

2c

7
− 6B2(

A+B
(
x− ctα

α

))2 . (18)

4.2. Time fractional Sawada-Kotera equation

When p = 5, q = 5, r = 5, (1) becomes time fractional Sawada-Kotera (SK)
equation:

Dα
t u+ 5 u uxxx + 5 uxuxx + 5 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (19)

With the help of Mathematica, we find

1) a1 = −6λ, a2 = −6, c = 5a0λ
2 + 40a0µ+ 5a20 + λ4 + 22λ2µ+ 76µ2.

2) a0 = −λ2 − 8µ, a1 = −12λ, a2 = −12, c =
(
λ2 − 4µ

)2
.
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Then the exact solution to nonlinear time fractional Sawada-Kotera equation can
be written as
For case 1. If λ2 − 4µ > 0

u(x, t) = a0 +
3
(
A2 −B2

) (
λ2 − 4µ

)
2(A cosh(L)−B sinh(L))2

+ 6µ, (20)

where

L =

√
λ2 − 4µ

2α

(
tα
(
5a0

(
a0 + λ2 + 8µ

)
+ λ4 + 22λ2µ+ 76µ2

)
− αx

)
.

As if λ2 − 4µ < 0

u(x, t) = a0 +
3
(
A2 +B2

) (
λ2 − 4µ

)
2(A cos(K)−B sin(K))2

+ 6µ, (21)

where

K =

√
4µ− λ2

2α

(
tα
(
5a0

(
a0 + λ2 + 8µ

)
+ λ4 + 22λ2µ+ 76µ2

)
− αx

)
.

As if λ2 − 4µ = 0

u(x, t) = a0 −
6α2B2

(α(A+Bx)−Btα (5a0 (a0 + λ2 + 8µ) + λ4 + 22λ2µ+ 76µ2)) 2
+

3λ2

2
.

(22)

In case 1, a0 is arbitrary constant.
For case 2. If λ2 − 4µ > 0

u(x, t) =
3(A−B)(A+B)

(
λ2 − 4µ

)
(A cosh(L) +B sinh(L))2

− λ2 + 4µ, (23)

where

L =
1

2

√
λ2 − 4µ

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
3
(
A2 +B2

) (
λ2 − 4µ

)
(A cos(K) +B sin(K))2

− λ2 + 4µ, (24)

27



A. Neamaty, B. Agheli, R. Darzi – Exact solution to time fractional . . .

where

K =
1

2

√
4µ− λ2

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ = 0

u(x, t) = − 12B2

(A+Bx)2
. (25)

4.3. Time fractional Sawada-Kotera-Parker-Dye equation

When p = 45, q = −15, r = −15, (1) becomes time fractional Sawada-Kotera-
Parker-Dye (SKPD) equation:

Dα
t u+ 45 u uxxx − 15 uxuxx − 15 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (26)

With the help of Mathematica, we find

1) a1 = 2λ, a2 = 2, c = −15a0λ
2 − 120a0µ+ 45a20 + λ4 + 22λ2µ+ 76µ2.

2) a0 = 1
3

(
λ2 + 8µ

)
, a1 = 4λ, a2 = 4, c =

(
λ2 − 4µ

)2
.

Then the exact solution to nonlinear time fractional Sawada-Kotera-Parker-Dye can
be written as
For case 1. If λ2 − 4µ > 0

u(x, t) =a0 −
(A−B)(A+B)

(
λ2 − 4µ

)
2(A cosh(L) +B sinh(L))2

− 2µ, (27)

where

L =

√
λ2 − 4µ

2α

(
αx− tα

(
−15a0

(
λ2 + 8µ

)
+ 45a20 + λ4 + 22λ2µ+ 76µ2

))
,

and a0 is arbitrary constant.
As if λ2 − 4µ < 0

u(x, t) = a0 −
(
A2 +B2

) (
λ2 − 4µ

)
2(A cos(K) +B sin(K))2

− 2µ, (28)

where

K =

√
4µ− λ2

2α

(
αx− tα

(
−15a0

(
λ2 + 8µ

)
+ 45a20 + λ4 + 22λ2µ+ 76µ2

))
,
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and a0 is arbitrary constant.
As if λ2 − 4µ = 0

u(x, t) = a0 +
2α2B2(

α(A+Bx)−Btα
(
−15a0 (λ2 + 8µ) + 45a20 + λ4 + 22λ2µ+ 76µ2

))
2
− λ2

2
,

(29)

where a0 is arbitrary constant.
For case 2. If λ2 − 4µ > 0

u(x, t) =
1

3

(
λ2 − 4µ

)(
1− 3(A−B)(A+B)

(A cosh(L) +B sinh(L))2

)
, (30)

where

L =

√
λ2 − 4µ

2

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
1

3

(
λ2 − 4µ

)(
1−

3
(
A2 +B2

)
(A cos(K) +B sin(K))2

)
, (31)

where

K =
1

2

√
4µ− λ2

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ = 0

u(x, t) =
4B2

(A+Bx)2
. (32)

4.4. Time fractional Caudrey-Dodd-Gibbon equation

When p = 180, q = 30, r = 30, (1) becomes time fractional Caudrey-Dodd-Gibbon
(CDG) equation:

Dα
t u+ 180 u uxxx + 30 uxuxx + 30 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (33)

With the help of Mathematica, we find

1) a1 = −λ, a2 = −1, c = 30a0λ
2 + 240a0µ+ 180a20 + λ4 + 22λ2µ+ 76µ2.
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2) a0 = 1
6

(
−λ2 − 8µ

)
, a1 = −2λ, a2 = −2, c =

(
λ2 − 4µ

)2
.

Then the exact solution to nonlinear time fractional Caudrey-Dodd-Gibbon equation
can be written as
For case 1. If λ2 − 4µ > 0

u(x, t) = a0 +
(A−B)(A+B)

(
λ2 − 4µ

)
4(A cosh(L)−B sinh(L))2

+ µ, (34)

where

L =

√
λ2 − 4µ

(
tα
(
30a0

(
6a0 + λ2 + 8µ

)
+ λ4 + 22λ2µ+ 76µ2

)
− αx

)
2α

.

As if λ2 − 4µ < 0

u(x, t) = a0 +

(
A2 +B2

) (
λ2 − 4µ

)
4(A cos(K)−B sin(K))2

+ µ, (35)

where

K =

√
4µ− λ2

2α

(
tα
(
30a0

(
6a0 + λ2 + 8µ

)
+ λ4 + 22λ2µ+ 76µ2

)
− αx

)
.

As if λ2 − 4µ = 0

u(x, t) = − α2B2

(α(A+Bx)−Btα (30a0 (6a0 + λ2 + 8µ) + λ4 + 22λ2µ+ 76µ2)) 2
+ a0 +

λ2

4
.

(36)

In case 1, a0 is arbitrary constant.

For case 2. If λ2 − 4µ > 0

u(x, t) =
1

6

(
3(A−B)(A+B)

(
λ2 − 4µ

)
(A cosh(L) +B sinh(L))2

− λ2 + 4µ

)
, (37)

where

L =
1

2

√
λ2 − 4µ

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
1

6

(
3
(
A2 +B2

) (
λ2 − 4µ

)
(A cos(K) +B sin(K))2

− λ2 + 4µ

)
, (38)
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where

K =
1

2

√
4µ− λ2

(
x−

(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ = 0

u(x, t) =
A2λ2 +B

(
λ2x(2A+Bx)− 6B

)
− 4µ(A+Bx)2

3(A+Bx)2
. (39)

4.5. Time fractional Kaup-Kupershmidt equation

When p = 20, q = 25, r = 10, (1) becomes time fractional Kaup-Kupershmidt (KK)
equation:

Dα
t u+ 20 u uxxx + 25 uxuxx + 10 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (40)

With the help of Mathematica, we find

1) a0 = −λ2 − 8µ, a1 = −12λ, a2 = −12, c = 11
(
λ2 − 4µ

)2
.

2) a0 = 1
8

(
−λ2 − 8µ

)
, a1 = −1

2(3λ), a2 = −3
2 , c = 1

16

(
λ2 − 4µ

)2
.

Then the exact solution to nonlinear time fractional Kaup-Kupershmidt can be
written as
For case 1. If λ2 − 4µ > 0

u(x, t) =
3(A−B)(A+B)

(
λ2 − 4µ

)
(A cosh(L) +B sinh(L))2

− λ2 + 4µ, (41)

where

L =
1

2

√
λ2 − 4µ

(
x−

11
(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
3
(
A2 +B2

) (
λ2 − 4µ

)
(A cos(K) +B sin(K))2

− λ2 + 4µ, (42)

where

K =
1

2

√
4µ− λ2

(
x−

11
(
λ2 − 4µ

)2
tα

α

)
.
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As if λ2 − 4µ = 0

u(x, t) = − 12B2

(A+Bx)2
. (43)

For case 2. If λ2 − 4µ > 0

u(x, t) =
1

8

(
3(A−B)(A+B)

(
λ2 − 4µ

)
(A cosh(L) +B sinh(L))2

− λ2 + 4µ

)
, (44)

where

L =
1

2

√
λ2 − 4µ

(
x−

(
λ2 − 4µ

)2
tα

16α

)
.

As if λ2 − 4µ < 0

u(x, t) =
1

8

(
3
(
A2 +B2

) (
λ2 − 4µ

)
(A cos(K) +B sin(K))2

− λ2 + 4µ

)
, (45)

where

K =
1

2

√
4µ− λ2

(
x−

(
λ2 − 4µ

)2
tα

16α

)
.

As if λ2 − 4µ = 0

u(x, t) =
3B2

2(A+Bx)2
. (46)

4.6. Time fractional Kaup-Kupershmidt-Parker-Dye equation

When p = 45, q = −75
2 , r = −15, (1) becomes time fractional Kaup-Kupershmidt-

Parker-Dye (KKPD) equation:

Dα
t u+ 45 u uxxx −

75

2
uxuxx − 15 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (47)

With the help of Mathematica, we find

1) a0 = 1
12

(
λ2 + 8µ

)
, a1 = λ, a2 = 1, c = 1

16

(
λ2 − 4µ

)2
.

2) a0 = 2
3

(
λ2 + 8µ

)
, a1 = 8λ, a2 = 8, c = 11

(
λ2 − 4µ

)2
.
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Then the exact solution to nonlinear time fractional Kaup-Kupershmidt-Parker-Dye
(KKPD) equation can be written as
For case 1. If λ2 − 4µ > 0

u(x, t) =
1

12

(
λ2 − 4µ

)(
1− 3(A−B)(A+B)

(A cosh(L) +B sinh(L))2

)
, (48)

where

L =
1

2

√
λ2 − 4µ

(
x−

(
λ2 − 4µ

)2
tα

16α

)
.

As if λ2 − 4µ < 0

u(x, t) =
1

12

(
λ2 − 4µ

)(
1−

3
(
A2 +B2

)
(A cos(K) +B sin(K))2

)
, (49)

where

K =
1

2

√
4µ− λ2

(
x−

(
λ2 − 4µ

)2
tα

16α

)
.

As if λ2 − 4µ = 0

u(x, t) =
B2

(A+Bx)2
− λ2

6
+

2µ

3
. (50)

For case 2. If λ2 − 4µ > 0

u(x, t) =
2

3

(
λ2 − 4µ

)(
1− 3(A−B)(A+B)

(A cosh(L) +B sinh(L))2

)
, (51)

where

L =
1

2

√
λ2 − 4µ

(
x−

11
(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
2

3

(
λ2 − 4µ

)(
1−

3
(
A2 +B2

)
(A cos(K) +B sin(K))2

)
, (52)
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where

K =
1

2

√
4µ− λ2

(
x−

11
(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ = 0

u(x, t) =
8B2

(A+Bx)2
. (53)

4.7. Time fractional Ito equation

When p = 2, q = 6, r = 3, (1) becomes time fractional fractional Ito equation:

Dα
t u+ 2 u uxxx + 6 uxuxx + 3 u2 ux + uxxxxx = 0, 0 < α ≤ 1. (54)

With the help of Mathematica, we find

a0 =
1

2
(−5)

(
λ2 + 8µ

)
, a1 = −30λ, a2 = −30, c = 6

(
λ2 − 4µ

)2
. Then the exact solution to nonlinear time fractional Ito equation can be written
as
If λ2 − 4µ > 0

u(x, t) =
5

2

(
λ2 − 4µ

)( 3(A−B)(A+B)

(A cosh(L) +B sinh(L))2
− 1

)
, (55)

where

L =
1

2

√
λ2 − 4µ

(
x−

6
(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ < 0

u(x, t) =
5

2

(
λ2 − 4µ

)( 3
(
A2 +B2

)
(A cos(K) +B sin(K))2

− 1

)
, (56)

where

K =
1

2

√
4µ− λ2

(
x−

6
(
λ2 − 4µ

)2
tα

α

)
.

As if λ2 − 4µ = 0

u(x, t) = − 30B2

(A+Bx)2
. (57)
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5. Conclusion

In this study, we have proposed the (G′/G)-expansion method and applied it to
find exact solutions for nonlinear time fractional fifth-order Korteweg-de Vries equa-
tion. The (G′/G)-expansion method is an efficient method in searching solutions
for nonlinear time fractional partial differential equations. The method proposed in
this paper can also be extended to solve nonlinear time fractional partial differential
equations in mathematical physics.
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