APPLICATION OF SUPERORDINATION TO A SUBCLASS OF ANALYTIC FUNCTIONS INCLUDED DOUBLE INTEGRAL OPERATORS

R. Aghalary, P. Arjomandinia and H. Rahimpoor

Abstract. We suppose that the normalized analytic function $f(z)$ satisfies the differential equation

$$
f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)=g(z),
$$

where g is univalent in the open unit disk \mathbb{D} and is superordinate to a convexunivalent function $h(z)$ normalized by $h(0)=1$. In addition, we assume that the function $f(z)$ is given by a double integral operator of the form

$$
f(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} z G^{\prime}\left(z t^{\mu} s^{\nu}\right) d s d t
$$

where $G^{\prime}(z)+z G^{\prime \prime}(z)=g(z)$. We shall determine the best subordinant of the solutions of differential superordination

$$
h(z) \prec f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z) .
$$

Some special cases are given in the corollaries.
2010 Mathematics Subject Classification: Primary 30C45, Secondary 30C80.
Keywords: convoulution, convex-univalent functions, integral operator, superordination.

1. Introduction

Let \mathcal{A} be the class of all analytic functions $f(z)$ of the form

$$
f(z)=z+a_{2} z^{2}+\ldots+a_{n} z^{n}+\ldots ; \quad(z \in \mathbb{D}),
$$

R. Aghalary, P. Arjomandinia and H. Rahimpoor - Superordination . . .
which satisfy the normalization condition $f(0)=f^{\prime}(0)-1=0$, and that $S \subseteq \mathcal{A}$ be the class of normalized univalent functions. Further, suppose that C denote the class of convex-univalent functions in \mathbb{D}. For two analytic functions

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}
$$

the Hadamard product (or convolution) of f and g is an analytic function in \mathbb{D} defined by $(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}$.

For $f, g \in \mathcal{A}$ the function f is subordinate to g (or g is superordinate to f) written as $f(z) \prec g(z)$ if there exist an analytic function $w(z)$ in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ such that $f(z)=g(w(z))$. If g is univalent in \mathbb{D}, then $f \prec g$ if and only if $f(0)=g(0)$ and $f(\mathbb{D}) \subseteq g(\mathbb{D})$, (see [3]).

Suppose that p, h are two analytic function in \mathbb{D} and $\varphi: \mathbb{C}^{3} \times \mathbb{D} \rightarrow \mathbb{C}$. If $p(z)$ and $\varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)$ are univalent in \mathbb{D} and if $p(z)$ satisfies the second-order superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right), \tag{1}
\end{equation*}
$$

then p is called a solution of the differential superordination (1). An analytic function $q(z)$ is called a subordinant of (1), if $q(z) \prec p(z)$ for all the solutions of (1). The best subordinant \tilde{q} is univalent subordinant that satisfies $q \prec \tilde{q}$ for all the subordinants q of (1), (see [4]).

Definition 1. ([3]) We denote by Q the set of all functions $p(z)$ that are analytic and injective on $\overline{\mathbb{D}} \backslash E(p)$, where

$$
E(p)=\left\{\xi \in \partial \mathbb{D}: \lim _{z \rightarrow \xi} p(z)=\infty\right\},
$$

and are such that $p^{\prime}(\xi) \neq 0$ for $\xi \in \partial \mathbb{D} \backslash E(p)$.
We will use the following results, but we omit their proofs.
Lemma 1. ([5]) Let $f, g \in \mathcal{A}$ and $F, G \in C$. If $f \prec F$ and $g \prec G$, then $f * g \prec F * G$.
Lemma 2. ([4]) Let $h(z)$ be convex in \mathbb{D}, with $h(0)=a, \lambda \neq 0$ and $\Re(\lambda) \geq 0$. If $p \in Q(a)=\{p \in Q: p(0)=a\}, p(z)+\frac{1}{\lambda} z p^{\prime}(z)$ is univalent in \mathbb{D} and

$$
h(z) \prec p(z)+\frac{1}{\lambda} z p^{\prime}(z)
$$

then $q(z) \prec p(z)$, where

$$
q(z)=\frac{\lambda}{n z^{\lambda / n}} \int_{0}^{z} h(w) w^{\frac{\lambda}{n}-1} d w .
$$

The function q is convex in \mathbb{D} and is the best subordinant.

In a recently paper [1] authors used subordination and investigated starlikeness and other properties of functions $f \in \mathcal{A}$ given by a double integral operator. In this article, using superordination, conditions on a different integral operator are investigated. Let $\delta_{1}>-1$ and $\delta_{2}>-1$. We consider functions $f \in \mathcal{A}$ defined by the double integral operator of the form

$$
\begin{equation*}
f(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} z G^{\prime}\left(z t^{\mu} s^{\nu}\right) d s d t ; \quad(G \in \mathcal{A}, z \in \mathbb{D}) \tag{2}
\end{equation*}
$$

From (2) we see that

$$
f^{\prime}(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} g\left(z t^{\mu} s^{\nu}\right) d s d t
$$

where $g(z)=G^{\prime}(z)+z G^{\prime \prime}(z)$. In addition, we will see that there are suitable parameters α, λ such that

$$
f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)=g(z)
$$

2. Main Results

Let $h(z)$ be a convex-univalent function in \mathbb{D} with $h(0)=1$. For $\alpha \geq \lambda \geq 0$, consider $f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)$ is univalent in \mathbb{D}. We define the class $S(\alpha, \lambda, h)$ of functions $f \in \mathcal{A}$ as following

$$
S(\alpha, \lambda, h)=\left\{f \in \mathcal{A}: h(z) \prec f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z), z \in \mathbb{D}\right\}
$$

Put

$$
\begin{equation*}
\mu=\frac{1+\delta_{2}}{2}((\alpha-\lambda)-\sqrt{\triangle}), \quad \alpha-\lambda=\frac{\nu}{1+\delta_{1}}+\frac{\mu}{1+\delta_{2}}, \quad\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \lambda=\mu \nu \tag{3}
\end{equation*}
$$

where $\triangle=(\alpha-\lambda)^{2}-4 \lambda$. It is seen that $\Re(\mu) \geq 0$ and $\Re(\nu) \geq 0$. Now we write the solution of

$$
\begin{equation*}
f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)=g(z) \tag{4}
\end{equation*}
$$

in it's double integral form. The relations (3) and (4) show that

$$
\begin{aligned}
g(z) & =f^{\prime}(z)+\left(\frac{\mu \nu}{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}+\frac{\nu}{1+\delta_{1}}+\frac{\mu}{1+\delta_{2}}\right) z f^{\prime \prime}(z)+\frac{\mu \nu}{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)} z^{2} f^{\prime \prime \prime}(z) \\
& =\frac{\nu}{1+\delta_{1}} z^{1-\frac{1+\delta_{1}}{\nu}}\left(\frac{\mu}{1+\delta_{2}} z^{1+\frac{1+\delta_{1}}{\nu}} f^{\prime \prime}(z)+z^{\frac{1+\delta_{1}}{\nu}} f^{\prime}(z)\right)^{\prime} \\
& =\frac{\nu}{1+\delta_{1}} z^{1-\frac{1+\delta_{1}}{\nu}}\left(\frac{\mu}{1+\delta_{2}} z^{1+\frac{1+\delta_{1}}{\nu}-\frac{1+\delta_{2}}{\mu}}\left(z^{\frac{1+\delta_{2}}{\mu}} f^{\prime}(z)\right)^{\prime}\right)^{\prime}
\end{aligned}
$$

R. Aghalary, P. Arjomandinia and H. Rahimpoor - Superordination . . .

Therefore

$$
\frac{\mu}{1+\delta_{2}} z^{1+\frac{1+\delta_{1}}{\nu}-\frac{1+\delta_{2}}{\mu}}\left(z^{\frac{1+\delta_{2}}{\mu}} f^{\prime}(z)\right)^{\prime}=\frac{1+\delta_{1}}{\nu} \int_{0}^{z} w^{\frac{1+\delta_{1}}{\nu}-1} g(w) d w
$$

Using the change of variable $w=z s^{\nu}$, we obtain

$$
\left(z^{\frac{1+\delta_{2}}{\mu}} f^{\prime}(z)\right)^{\prime}=\frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)}{\mu} \int_{0}^{1} s^{\delta_{1}} z^{\frac{1+\delta_{2}}{\mu}-1} g\left(z s^{\nu}\right) d s
$$

Integrating both sides, a change of variable yields

$$
f^{\prime}(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} g\left(z t^{\mu} s^{\nu}\right) d s d t
$$

Take $\psi_{\delta, \lambda}(z)=\int_{0}^{1} \frac{t^{\delta} d t}{1-z t^{\lambda}}$. By Theorem [[3], 2.6h] it is seen that $\psi_{\delta, \lambda}(z) \in C$ provided that $\Re(\lambda) \geq 0$.

Theorem 3. Let μ and ν be defined as (3) and

$$
\begin{equation*}
q(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h\left(z t^{\mu} s^{\nu}\right) d s d t \tag{5}
\end{equation*}
$$

Then the function $q(z)=\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)\left(\psi_{\delta_{1}, \nu} * \psi_{\delta_{2}, \mu} * h\right)(z)$ is convex. If $f \in$ $S(\alpha, \lambda, h), f^{\prime}(z) \in Q$ and $f^{\prime}(z)+\frac{\nu}{1+\delta_{1}} z f^{\prime \prime}(z) \in Q$ then $q(z) \prec f^{\prime}(z)$ and q is the best subordinant.

Proof. We have

$$
\psi_{\delta_{2}, \mu}(z) * h(z)=\int_{0}^{1} \frac{t^{\delta_{2}} d t}{1-z t^{\mu}} * h(z)=\int_{0}^{1} t^{\delta_{2}} h\left(z t^{\mu}\right) d t .
$$

Therefore

$$
\begin{aligned}
\left(\psi_{\delta_{1}, \nu}(z) * \psi_{\delta_{2}, \mu}(z)\right) * h(z) & =\psi_{\delta_{1}, \nu}(z) * \int_{0}^{1} t^{\delta_{2}} h\left(z t^{\mu}\right) d t \\
& =\int_{0}^{1} s^{\delta_{1}}\left(\int_{0}^{1} t^{\delta_{2}} h\left(z s^{\nu} t^{\mu}\right) d t\right) d s \\
& \left.=\int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h\left(z t^{\mu} s^{\nu}\right) d s\right) d t
\end{aligned}
$$

The function $q(z)$ is convex, since the functions $\psi_{\delta_{1}, \nu}, \psi_{\delta_{2}, \mu}$ and h are convex univalent in \mathbb{D} (see [2]). Put $p(z)=f^{\prime}(z)+\frac{\nu}{1+\delta_{1}} z f^{\prime \prime}(z)$, then $h(z) \prec p(z)+\frac{\mu}{1+\delta_{2}} z p^{\prime}(z)$. By Lemma 2 we obtain

$$
\frac{1+\delta_{2}}{\mu z^{\frac{1+\delta_{2}}{\mu}}} \int_{0}^{z} w^{\frac{1+\delta_{2}}{\mu}-1} h(w) d w=\left(1+\delta_{2}\right)\left(\psi_{\delta_{2}, \mu}(z) * h(z)\right) \prec p(z),
$$

R. Aghalary, P. Arjomandinia and H. Rahimpoor - Superordination . . .
or equivalently

$$
\left(1+\delta_{2}\right)\left(\psi_{\delta_{2}, \mu}(z) * h(z)\right) \prec f^{\prime}(z)+\frac{\nu}{1+\delta_{1}} z f^{\prime \prime}(z) .
$$

Using again Lemma 2 we obtain

$$
\frac{1+\delta_{1}}{\nu z^{\frac{1+\delta_{1}}{\nu}}} \int_{0}^{z}\left(1+\delta_{2}\right) w^{\frac{1+\delta_{1}}{\nu}-1}\left(\psi_{\delta_{2}, \mu} * h\right)(w) d w \prec f^{\prime}(z)
$$

or equivalently $q(z) \prec f^{\prime}(z)$. Since $q(z)+\alpha z q^{\prime}(z)+\lambda z^{2} q^{\prime \prime}(z)=h(z)$, this means that $q(z)$ is a solution of the differential superordination

$$
\begin{equation*}
h(z) \prec \varphi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right)=p(z)+\alpha z p^{\prime}(z)+\lambda z^{2} p^{\prime \prime}(z) \tag{6}
\end{equation*}
$$

which $f^{\prime}(z)$ also satisfies (6). Therefore $q(z)$ will be a dominant for all subordinants of $h(z) \prec f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)$. Hence $q(z)$ is the best subordinant of it.

Corollary 4. Suppose that all conditions of Theorem 3 are satisfied. Then

$$
\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h\left(z r t^{\mu} s^{\nu}\right) d r d t d s=\int_{0}^{1} q(t z) d t \prec \frac{f(z)}{z}
$$

Proof. Consider $p(z)=\frac{f(z)}{z}$, then $q(z) \prec p(z)+z p^{\prime}(z)=f^{\prime}(z)$. Lemma 2 shows that

$$
\int_{0}^{1} q(t z) d t=\frac{1}{z} \int_{0}^{z} q(w) d w \prec p(z)=\frac{f(z)}{z}
$$

Using Theorem 3 and Corollary 4 with $h(z)=\frac{1+A z}{1+B z}$ where $-1 \leq B<A \leq 1$, we obtain the following result.

Corollary 5. Suppose that all conditions of Theorem 3 are satisfied. If

$$
\frac{1+A z}{1+B z} \prec f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)
$$

then $q(z ; A, B) \prec f^{\prime}(z)$, where

$$
q(z ; A, B)=\frac{A}{B}-\frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)(A-B)}{B} \int_{0}^{1} \int_{0}^{1} \frac{s^{\delta_{1}} t^{\delta_{2}} d s d t}{1+B z t^{\mu} s^{\nu}} ;(B \neq 0)
$$

and

$$
q(z ; A, 0)=1+\frac{A\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) z}{\left(1+\delta_{1}+\nu\right)\left(1+\delta_{2}+\mu\right)} \prec f^{\prime}(z),
$$

R. Aghalary, P. Arjomandinia and H. Rahimpoor - Superordination ...
also the functions $q(z ; A, B)$ and $q(z ; A, 0)$ are the best subordinants. In addition

$$
\frac{A}{B}-\frac{\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)(A-B)}{B} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{s^{\delta_{1}} t^{\delta_{2}} d r d s d t}{1+B z r t^{\mu} s^{\nu}} \prec \frac{f(z)}{z}
$$

if $B \neq 0$, and

$$
1+\frac{A\left(1+\delta_{1}\right)\left(1+\delta_{2}\right) z}{2\left(1+\delta_{1}+\nu\right)\left(1+\delta_{2}+\mu\right)} \prec \frac{f(z)}{z}
$$

for $B=0$.
Finally, the last theorem is about the convolution of two functions in $S(\alpha, \lambda, h)$.
Theorem 6. Let μ and ν are given by (3) and $f, g \in S(\alpha, \lambda, h)$. If $g^{\prime}(z) \in Q, g^{\prime}(z)+$ $\frac{\nu}{1+\delta_{1}} z g^{\prime \prime}(z) \in Q$ and $f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z), \frac{g(z)}{z} \in C$, then $f * g$ belongs to $S\left(\alpha, \lambda, h_{1}\right)$ where $h_{1}(z)=q(z) * \int_{0}^{1} h(t z) d t$ and $q(z)$ is given by (5).

Proof. It is easy to see that
$(f * g)^{\prime}(z)+\alpha z(f * g)^{\prime \prime}(z)+\lambda z^{2}(f * g)^{\prime \prime \prime}(z)=\left(f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)\right) * \frac{g(z)}{z}$.
Hence

$$
\begin{aligned}
h_{1}(z) & =q(z) * \int_{0}^{1} h(t z) d t \\
& =\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)\left(h(z) * \psi_{\delta_{1}, \nu}(z) * \psi_{\delta_{2}, \mu}(z)\right) *\left(h(z) * \psi_{1}(z)\right) \\
& =\left(1+\delta_{1}\right)\left(1+\delta_{2}\right)\left(h(z) * \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} s^{\delta_{1}} t^{\delta_{2}} h\left(z r t^{\mu} s^{\nu}\right) d r d s d t\right) \\
\text { (by Lemma 1) } & \prec\left(f^{\prime}(z)+\alpha z f^{\prime \prime}(z)+\lambda z^{2} f^{\prime \prime \prime}(z)\right) * \frac{g(z)}{z} \\
& =(f * g)^{\prime}(z)+\alpha z(f * g)^{\prime \prime}(z)+\lambda z^{2}(f * g)^{\prime \prime \prime}(z),
\end{aligned}
$$

where $\psi_{1}(z)=\int_{0}^{1} \frac{d r}{1-z r}$. This completes the proof.

References

[1] R. M. Ali, S. K. Lee, K. G. Subramanian and A. Swaminathan, A third-order differential equation and starlikeness of a double integral operator, Journal of Abstract and Applied Analysis, (2011).
[2] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
R. Aghalary, P. Arjomandinia and H. Rahimpoor - Superordination ...
[3] S. S. Miller and P. T. Mocanu, Differential subordinations, Theory and Applications, Marcel Dekker, New York, (2000).
[4] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48, 10 (2003), 815-826.
[5] S. Ruscheweyh and J. Stankiewicz, Subordination under convex-univalent functions, Bull. Polish Acad. Sci. Math., 33 (1985), 499-502.

Rasoul Aghalary
Department of Mathematics, Faculty of Science, Urmia University,
Urmia, Iran
email: raghalary@yahoo.com
Parviz Arjomandinia
Department of Mathematics,
Urmia University, Urmia, Iran
email: p.arjomandinia@urmia.ac.ir
Hossein Rahimpoor
Department of Mathematics, Payam Noor University, P.O. BOX 19395-3697,
Tehran, Iran
email: rahimpoor2000@yahoo.com

