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1. Introduction

A metric space X is a CAT(0) space if it is geodesically connected and if every
geodesic triangle in X is at least as ‘thin’ as its comparison triangle in the Euclidean
plane. It is well known that any complete, simply connected Riemannian manifold
having non-positive sectional curvature is a CAT(0) space. The complex Hilbert
ball with a hyperbolic metric is a CAT(0) space (see [14]). Other examples include
pre-Hilbert spaces, R-trees (see [4]) and Euclidean buildings (see [5]).

Fixed point theory in CAT(0) space has been first studied by Kirk (see [18, 19]).
He showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point. It is
worth mentioning that the results in CAT(0) spaces can be applied to any CAT(k)
space with k ≤ 0 since any CAT(k) space is a CAT(m) space for every m ≥ k (see,
Bridson and Haefliger [4], “Metric spaces of non-positive curvature”).

The concept of ∆-convergence in a general metric space was introduced by Lim
[22]. In 2008, Kirk and Panyanak [20] used the notion of ∆-convergence introduced
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by Lim [22] to prove in the CAT(0) space and analogous of some Banach space
results which involve weak convergence. Further, Dhompongsa and Panyanak [11]
obtained ∆-convergence theorems for the Picard, Mann and Ishikawa iterations in a
CAT(0) space. Since then, the existence problem and the ∆-convergence problem of
iterative sequences to a fixed point for nonexpansive mapping, asymptotically nonex-
pansive mapping, asymptotically quasi-nonexpansive mapping, total asymptotically
nonexpansive mapping, asymptotically nonexpansive mappings in the intermediate
sense and asymptotically quasi-nonexpansive type mappings through Picard, Mann
[23], Ishikawa[15] and modified S-iteration process [2] have been rapidly developed
in the framework of CAT(0) space and many papers have appeared in this direction
(see, e.g.,[1, 8, 11, 17, 25, 26, 27, 28]).

In 2010, Nanjaras and Panyanak [24] proved the demiclosedness principle for
asymptotically nonexpansive mappings and gave the ∆-convergence theorem of the
modified Mann iteration process for above mentioned mappings in a CAT(0) space.
In 2014, Kumam, Saluja and Nashine [21] studied modified S-iteration process in-
volving two mappings and investigate the existence and convergence theorems in
the setting of CAT(0) spaces for a class of mappings which is wider than that of
asymptotically nonexpansive mappings.

Recently, Saluja and Postolache [29] studied modified S-iteration process for two
asymptotically nonexpansive mappings in the intermediate sense in the framework
of CAT(0) spaces and investigate the existence and convergence theorems for the
iteration scheme and mappings.

The purpose of this article is to establish existence theorem, demiclosed princi-
ple, ∆-convergence and some strong convergence theorems of modified S-iteration
process for two generalized asymptotically nonexpansive mappings in the framework
of CAT(0) spaces. This class of mappings is wider than the class of nonexpansive,
asymptotically nonexpansive and asymptotically nonexpansive mappings in the in-
termediate sense. Our results extend and generalize several known results from the
current existing literature.

2. Preliminaries

Let F (T ) = {x ∈ K : Tx = x} denotes the set of fixed points of the mapping T .
We begin with the following definitions.

Definition 1. Let (X, d) be a metric space and K be its nonempty subset. Then
T : K → K said to be

(1) nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K;
(2) asymptotically nonexpansive if there exists a sequence {un} ⊂ [0,∞) with

limn→∞ un = 0 such that d(Tnx, Tny) ≤ (1 + un)d(x, y) for all x, y ∈ K and n ≥ 1;
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(3) uniformly L-Lipschitzian if there exists a constant L > 0 such that d(Tnx, Tny) ≤
Ld(x, y) for all x, y ∈ K and n ≥ 1;

(4) semi-compact if for a sequence {xn} in K with limn→∞ d(xn, Txn) = 0, there
exists a subsequence {xnk

} of {xn} such that xnk
→ p ∈ K as k →∞.

(5) a sequence {xn} in K is called approximate fixed point sequence for T (AFPS,
in short) if limn→∞ d(xn, Txn) = 0.

It is easy to see that every nonexpansive mapping is asymptotically nonexpansive
with the asymptotical sequence {1}. The class of asymptotically nonexpansive map-
pings was introduced by Goebel and Kirk [12] in 1972, is an important generalization
of the class of nonexpansive mapping and they proved that if C is a nonempty closed
and bounded subset of a uniformly convex Banach space, then every asymptotically
nonexpansive self mapping of C has a fixed point.

T is said to be asymptotically nonexpansive in the intermediate sense if it is
continuous and the following inequality holds:

lim sup
n→∞

sup
x, y ∈K

(d(Tnx, Tny)− d(x, y)) ≤ 0. (1)

Putting cn = max
{

0, supx, y∈K(d(Tnx, Tny) − d(x, y))
}

, we see that cn → 0 as
n→∞. Then, (1) is reduced to the following:

d(Tnx, Tny) ≤ d(x, y) + cn, ∀x, y ∈ K, n ≥ 1.

The class of asymptotically nonexpansive mappings in the intermediate sense was
introduced by Bruck et al. [7] as a generalization of the class of asymptotically
nonexpansive mappings. It is known that if K is a nonempty closed convex and
bounded subset of a real Hilbert space, then every asymptotically nonexpansive self
mapping in the intermediate sense has a fixed point (see [33], for more details).

T is said to be generalized asymptotically nonexpansive [3] if it is continuous
and there exists a positive sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

lim sup
n→∞

sup
x, y ∈K

(d(Tnx, Tny)− kn d(x, y)) ≤ 0. (2)

Putting cn = max
{

0, supx, y∈K(d(Tnx, Tny) − kn d(x, y))
}

, we see that cn → 0 as
n→∞. Then, (2) is reduced to the following:

d(Tnx, Tny) ≤ kn d(x, y) + cn, ∀x, y ∈ K, n ≥ 1.

We remark that if kn = 1, then the class of generalized asymptotically nonexpansive
mappings is reduced to the class of asymptotically nonexpansive mappings in the
intermediate sense.
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We now give the definition and some basic properties of CAT(0) space.
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more

briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular,
c is an isometry, and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. We say that X is (i) a geodesic space if any two points of
X are joined by a geodesic and (ii) uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X, which we will denote by [x, y], called the segment
joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points in X (the vertices of4) and a geodesic segment between each pair of ver-
tices (the edges of 4). A comparison triangle for the geodesic triangle 4(x1, x2, x3)
in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that dR2(xi, xj) =
d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [4]).

CAT(0) space. A geodesic metric space is said to be a CAT (0) space if all
geodesic triangles of appropriate size satisfy the following CAT (0) comparison ax-
iom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all
comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (3)

Complete CAT (0) spaces are often called Hadamard spaces (see [16]). If x, y1, y2
are points of a CAT (0) space and y0 is the midpoint of the geodesic segment [y1, y2]
which we will denote by (y1 ⊕ y2)/2, then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2). (4)

Inequality (4) is the (CN) inequality of Bruhat and Tits [6]. The above inequality
was extended in [11] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y), (5)

for any α ∈ [0, 1] and x, y, z ∈ X.
Let us recall that a geodesic metric space is a CAT (0) space if and only if it

satisfies the (CN) inequality (see, [4], p. 163). Moreover, if X is a CAT (0) space
and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point αx⊕(1−α)y ∈ [x, y]
such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (6)
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for any z ∈ X and [x, y] =
{
αx⊕ (1− α)y : α ∈ [0, 1]

}
.

A subsetK of a CAT (0) spaceX is convex if for any x, y ∈ K, we have [x, y] ⊂ K.
In the sequel, we need the following definitions and useful lemmas to prove our

main results.

Lemma 1. (See [24]) Let X be a CAT(0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1− t) d(x, y).

We denote such unique z as (1− t)x⊕ ty.
(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Let {xn} be a bounded sequence in a closed convex subset K of a CAT(0) space
X. For x ∈ X, set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) =
{
x ∈ X : r({xn}) = r(x, {xn})

}
.

It is known that, in a CAT(0) space, A({xn}) consists of exactly one point
[[9], Proposition 7].

We now recall the definition of ∆-convergence and weak convergence (⇀) in
CAT(0) space.

Definition 2. (See [20]) A sequence {xn} in a CAT(0) space X is said to ∆-
converge to x ∈ X if x is the unique asymptotic center of {un} for every subsequence
{un} of {xn}. In this case we write ∆-limn xn = x and call x is the ∆-limit of {xn}.

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) =
r({un}) for every subsequence {un} of {xn}. In the Banach space, it is known that,
every bounded sequence has a regular subsequence ([13], Lemma 15.2).

Lemma 2. (See [24], Lemma 2.4) Every bounded sequence in a complete CAT(0)
space has a ∆-convergent subsequence.
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Lemma 3. (See [11], Lemma 2.8) If {xn} is a bounded sequence in a CAT(0) space
X with A({xn}) = {x} and {un} is a subsequence of {xn} with A({un}) = {u} and
the sequence {d(xn, u)} converges, then x = u.

Lemma 4. (See [10], Proposition 2.1) If K is a closed convex subset of a complete
CAT(0) space X and {xn} is a bounded sequence in K, then the asymptotic center
of {xn} is in K.

Lemma 5. (See [24], Proposition 3.12) Let {xn} be a bounded sequence in a CAT(0)
space X and let K be a closed convex subset of X which contains {xn}. Then

(i) ∆-limn→∞ xn = x implies xn ⇀ x,
(ii) the converse is true if {xn} is regular.

Lemma 6. (See [32]) Suppose that {an}, {bn} and {rn} are sequences of nonnegative
numbers such that an+1 ≤ (1 + bn)an + rn for all n ≥ 1. If

∑∞
n=1 bn < ∞ and∑∞

n=1 rn <∞, then limn→∞ an exists.

Example 1. Let X = K = [0, 1] with the usual metric d, {xn} = { 1n}, {wnm} =
{ 1
(m+1)n}, for all n, m ∈ N are sequences in K. Then A({xn}) = {0} and A({wnm}) =

{0}. This shows that {xn} ∆-converges to 0, that is, ∆-limn→∞ xn = 0. The se-
quence {xn} also converges strongly to 0, that is, |xn− 0| → 0 as n→∞. Also it is
weakly convergent to 0, that is, xn ⇀ 0 as n→∞, by Lemma 5. Thus, we conclude
that

strong convergence ⇒ ∆-convergence ⇒ weak convergence,

but the converse is not true in general.

The following example shows that if the sequence {xn} is weakly convergent then
it is not ∆-convergent.

Example 2. [24] Let X = R, d be the usual metric on X, K = [−1, 1], {xn} =
{1,−1, 1,−1, . . . }, {un} = {−1,−1,−1, . . . } and {vn} = {1, 1, 1, . . . }. Then A({xn}) =
AK({xn}) = {0}, A({un}) = {−1} and A({vn}) = {1}. This shows that {xn} ⇀ 0
but it does not have a ∆-limit.

Algorithm 1. The sequence {xn} defined by{
x1 ∈ K,
xn+1 = αnT

nxn ⊕ (1− αn)xn, n ≥ 1,
(7)

where {αn}∞n=1 is a sequence in (0,1), is called a modified Mann iterative sequence
(see [23]).
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Algorithm 2. The sequence {xn} defined by
x1 ∈ K,
xn+1 = αnT

nyn ⊕ (1− αn)xn,

yn = βnT
nxn ⊕ (1− βn)xn, n ≥ 1,

(8)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in [0,1], is called modified
Ishikawa iterative sequence (see [15]).

Algorithm 3. The sequence {xn} defined by
x1 ∈ K,
xn+1 = αnT

nyn ⊕ (1− αn)Tnxn,

yn = βnT
nxn ⊕ (1− βn)xn, n ≥ 1,

(9)

where {αn}∞n=1 and {βn}∞n=1 are appropriate sequences in (0,1), is called modified
S-iterative sequence (see [2]).

Inspired and motivated by the works of Agarwal et al. [2], Başarir and Şahin
[25] and some others, we modify iteration scheme (9) for two mappings in a CAT(0)
space as follows.

Let K be a nonempty closed convex subset of a complete CAT(0) space X
and S, T : K → K be two generalized asymptotical nonexpansive mappings with
F (S, T ) = F (S) ∩ F (T ) 6= ∅. Suppose that {xn} is a sequence generated iteratively
by 

x1 ∈ K,
xn+1 = (1− αn)Tnxn ⊕ αnS

nyn,

yn = (1− βn)Snxn ⊕ βnTnxn, n ≥ 1,

(10)

where {αn} and {βn} are the sequences such that 0 ≤ αn, βn ≤ 1 for all n ≥ 1.

Remark 1. If we take S = I, where I is the identity mapping and βn = 0 for all
n ≥ 1, then (10) reduces to the modified Mann iteration process (7).

In this paper, we study the modified two-step iteration process (10) involving
two generalized asymptotical nonexpansive mappings and investigate the strong and
∆-convergence theorems for the mappings and iteration scheme in the framework of
CAT(0) spaces. Our results generalize, unify and extend several comparable results
in the existing literature.
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3. Main Results

Existence theorem and Demiclosed principle

Denote by N the set of positive integers. Put

cn = max
{

0, sup
x, y∈K

(
d(Tnx, Tny)− knd(x, y)

)}
.

Theorem 7. Let K be a nonempty closed convex subset of a complete CAT(0) space
X. If T : K → K be a generalized asymptotically nonexpansive mapping, then T has
a fixed point.

Proof. Fix x ∈ K. We can consider the sequence {Tnx}∞n=1 as a bounded sequence
in K. Let Φ: K → [0,∞) be a function defined by

Φ(u) = lim sup
n→∞

d(Tnx, u) for all u ∈ K.

Then there exists z ∈ K such that Φ(z) = inf{Φ(u) : u ∈ K} = Φ0. Since T is a
generalized asymptotically nonexpansive mapping, for each n,m ∈ N, we have

d(Tn+mx, Tmu) ≤ km d(Tnx, u) + cm.

On taking limit as n→∞, we obtain

Φ(Tmu) ≤ km Φ(u) + cm (11)

for any m ∈ N.

Then by (11), for any n ∈ N, we have

Φ(Tnz) ≤ kn Φ(z) + cn = kn Φ0 + cn. (12)

In view of inequality (4), we obtain

d
(
Tnx,

Tmz ⊕ T hz

2

)2
≤ 1

2
d(Tnx, Tmz)2 +

1

2
d(Tnx, T hz)2

−1

4
d(Tmz, T hz)2

which on taking limit as n→∞ gives

Φ2
0 ≤ Φ

(Tmz ⊕ T hz

2

)2
≤ 1

2
Φ(Tmz)2 +

1

2
Φ(T hz)2 − 1

4
d(Tmz, T hz)2. (13)
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Using (12) in (13), we have

d(Tmz, T hz)2 ≤ 2(km Φ0 + cm)2 + 2(kh Φ0 + ch)2 − 4Φ2
0.

As T is a generalized asymptotically noonexpansive mapping, so we have lim supm,h→∞
d(Tmz, T hz) ≤ 0. Therefore, {Tnz}∞n=1 is a Cauchy sequence in K and hence con-
verges to some point v∗ ∈ K. Since T is continuous,

T (v∗) = T
(

lim
n→∞

Tn(z)
)

= lim
n→∞

Tn+1(z) = v∗.

This shows that T has a fixed point in K. This completes the proof.

Theorem 8. Let K be a nonempty closed convex subset of a complete CAT(0) space
X. If T : K → K be a generalized asymptotically nonexpansive mapping, then F (T )
is closed and convex.

Proof. As T is continuous, so F (T ) is closed. In order to prove F (T ) is convex, it
is sufficient to show that x⊕y

2 ∈ F (T ) whenever x, y ∈ F (T ). Set f = x⊕y
2 . For any

n ∈ N, we have

d(Tnf, f)2 = d(Tnf,
x⊕ y

2
)2

≤ 1

2
d(x, Tnf)2 +

1

2
d(y, Tnf)2 − 1

4
d(x, y)2. (14)

In view of Lemma 1(ii), we obtain

d(x, Tnf)2 = d(Tnx, Tnf)2

≤ [kn(.f, x) + cn]2

=
{
kn d

(x⊕ y
2

, x
)

+ cn

}2

≤
{kn

2
d(x, y) + cn

}2
. (15)

Similarly,

d(y, Tnf)2 ≤
{kn

2
d(x, y) + cn

}2
. (16)

From (14), (15) and (16), we get

d(Tnf, f)2 ≤ (k2n − 1)

4
d(x, y)2 + cn(cn + knd(x, y))

for any n ∈ N. Since cn → 0 and kn → 1 as n → ∞, hence limn→∞ T
nf = f and

Tf = f ∈ F (T ). This completes the proof.
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Theorem 9. Let K be a nonempty closed convex subset of a complete CAT(0) space
X. If T : K → K be a generalized asymptotically nonexpansive mapping. If {xn}
is a bounded sequence in K such that limn→∞ d(xn, Txn) = 0 and {xn} ⇀ w, then
Tw = w.

Proof. Define Φ(x) = lim supn→∞ d(Tmxn, x) for all x ∈ K and m ∈ N. Then as
observed in (11), we have

Φ(Tmw) ≤ km Φ(w) + cm for all x ∈ K and m ∈ N.

Hence

lim sup
m→∞

Φ(Tmw) ≤ Φ(w). (17)

In view of inequality (4), we have

d
(
Tnxn,

w ⊕ Tmw

2

)2
≤ 1

2
d(Tmxn, w)2 +

1

2
d(Tmxn, T

mw)2

−1

4
d(w, Tmw)2

for all n,m ∈ N. On taking limit as n→∞, we get

Φ
(w ⊕ Tmw

2

)2
≤ 1

2
Φ(w)2 +

1

2
Φ(Tmw)2 − 1

4
d(w, Tmw)2

for any m ∈ N. Since ∆− limn→∞ xn = w, so A({xn}) = w, letting n→∞, we get
that

Φ(w)2 ≤ 1

2
Φ(w)2 +

1

2
Φ(Tmw)2 − 1

4
d(w, Tmw)2.

That is,

4Φ(w)2 ≤ Φ
(w ⊕ Tmw

2

)2
≤ 2Φ(w)2 + 2Φ(Tmw)2 − d(w, Tmw)2

for any m ∈ N, which implies that

d(w, Tmw)2 ≤ 2Φ(Tmw)2 − 2Φ(w)2. (18)

By (17) and (18), we have

lim
m→∞

d(w, Tmw) = 0

and Tw = w. This completes the proof.
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In the light of Lemma 5, we get the following result from Theorem 9.

Corollary 10. Let K be a nonempty closed convex subset of a complete CAT(0)
space X and T : K → K be a generalized asymptotically nonexpansive mapping. If
{xn} is a bounded sequence in K ∆-converges to x and limn→∞ d(xn, Txn) = 0, then
x ∈ K and Tx = x.

Now, we prove the following lemma using modified two-step iteration scheme for
two generalized asymptotically nonexpansive mappings (10) needed in the sequel.

Lemma 11. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings
with sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) =

F (S) ∩ F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10). Put

An = max
{

0, sup
x, y∈K

(
d(Snx, Sny)− k′nd(x, y)

)}
(19)

and

Bn = max
{

0, sup
x, y∈K

(
d(Tnx, Tny)− k′′nd(x, y)

)}
(20)

such that
∑∞

n=1An <∞ and
∑∞

n=1Bn <∞. Then

(i)limn→∞ d(xn, p) exists for each p ∈ F (S, T ).
(ii) limn→∞ d(xn, F (S, T )) exists.

Proof. Let p ∈ F (S, T ) and let kn = max{k′n, k′′n} with kn → 1 as n → ∞. From
(10), (19), (20) and Lemma 1(ii), we have

d(yn, p) = d((1− βn)Snxn ⊕ βnTnxn, p)

≤ (1− βn)d(Snxn, p) + βnd(Tnxn, p)

≤ (1− βn)[k′n d(xn, p) +An] + βn[k′′n d(xn, p) +Bn]

≤ (1− βn)[kn d(xn, p) +An] + βn[kn d(xn, p) +Bn]

≤ kn d(xn, p) +An +Bn. (21)
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Again using (10), (19)-(21) and Lemma 1(ii), we have

d(xn+1, p) = d((1− αn)Tnxn ⊕ αnS
nyn, p)

≤ (1− αn)d(Tnxn, p) + αnd(Tnyn, p)

≤ (1− αn)[k′′n d(xn, p) +Bn] + αn[k′n d(yn, p) +An]

≤ (1− αn)[kn d(xn, p) +Bn] + αn[kn d(yn, p) +An]

= (1− αn)knd(xn, p) + αnknd(yn, p) + (1− αn)Bn + αnAn

≤ (1− αn)knd(xn, p) + αnkn[knd(xn, p) +An +Bn]

+(1− αn)Bn + αnAn

≤ (1− αn)k2nd(xn, p) + αnkn[knd(xn, p) +An +Bn]

+(1− αn)knBn + αnknAn

≤ k2nd(xn, p) + 2αnknAn + knBn

= [1 + (k2n − 1)]d(xn, p) + 2αnknAn + knBn

= [1 +Wn]d(xn, p) + Vn (22)

where Wn = (k2n − 1) = (kn + 1)(kn − 1) and Vn = 2αnknAn + knBn. Since∑∞
n=1(kn − 1) <∞,

∑∞
n=1An <∞ and

∑∞
n=1Bn <∞, it follows that

∑∞
n=1Wn <

∞ and
∑∞

n=1 Vn <∞.

Taking infimum over all p ∈ F (S, T ), we have

d(xn+1, F (S, T )) ≤ [1 +Wn]d(xn, F (S, T )) + Vn. (23)

Since
∑∞

n=1Wn < ∞ and
∑∞

n=1 Vn < ∞, it follows from Lemma 6, (22) and (23)
that limn→∞ d(xn, p) and limn→∞ d(xn, F (S, T )) both exist.

Lemma 12. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings with
sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) = F (S) ∩

F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10) and An and Bn

be taken as in Lemma 11. Suppose that {αn} and {βn} are real sequence in [a, b] for
some a, b ∈ (0, 1). If d(x, Sx) ≤ d(Tx, Sx) for all x ∈ K, then limn→∞ d(xn, Sxn) =
0 and limn→∞ d(xn, Txn) = 0.
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Proof. Using (10), (19), (20) and (5), we have

d2(yn, p) = d2((1− βn)Snxn ⊕ βnTnxn, p)

≤ βnd
2(Tnxn, p) + (1− βn)d2(Snxn, p)

−βn(1− βn)d2(Tnxn, S
nxn)

≤ βn[k′′nd(xn, p) +Bn]2 + (1− βn)[k′nd(xn, p) +An]2

−βn(1− βn)d2(Tnxn, S
nxn)

≤ βn[knd(xn, p) +Bn]2 + (1− βn)[knd(xn, p) +An]2

−βn(1− βn)d2(Tnxn, S
nxn)

≤ k2nd
2(xn, p) + Pn +Qn − βn(1− βn)d2(Tnxn, S

nxn) (24)

where Pn = B2
n + 2knBnd(xn, p) and Qn = A2

n + 2knAnd(xn, p), since by hypothesis∑∞
n=1An <∞ and

∑∞
n=1Bn <∞, it follows that

∑∞
n=1 Pn <∞ and

∑∞
n=1Qn <∞.

Again using (10), (19), (20), (24) and (5), we have

d2(xn+1, p) = d2((1− αn)Tnxn ⊕ αnS
nyn, p)

≤ αnd
2(Snyn, p) + (1− αn)d2(Tnxn, p)

−αn(1− αn)d2(Snyn, T
nxn)

≤ αn[k′nd(yn, p) +An]2 + (1− αn)[k′′nd(xn, p) +Bn]2

−αn(1− αn)d2(Snyn, T
nxn)

≤ αn[knd(yn, p) +An]2 + (1− αn)[knd(xn, p) +Bn]2

−αn(1− αn)d2(Snyn, T
nxn)

≤ αn[k2nd
2(yn, p) +Rn] + (1− αn)[k2nd

2(xn, p) + Sn]

−αn(1− αn)d2(Snyn, T
nxn)

≤ αnk
2
nd

2(yn, p) + (1− αn)k2nd
2(xn, p) + αnRn + (1− αn)Sn

−αn(1− αn)d2(Snyn, T
nxn)

≤ αnk
2
n[k2nd

2(xn, p) + Pn +Qn − βn(1− βn)d2(Tnxn, S
nxn)]

+(1− αn)k4nd
2(xn, p) + αnRn + (1− αn)Sn

−αn(1− αn)d2(Snyn, T
nxn)

≤ k4nd
2(xn, p)− αnβn(1− βn)k2nd

2(Tnxn, S
nxn)

+(Pn +Qn +Rn + Sn)k2n − αn(1− αn)d2(Snyn, T
nxn)

= k4nd
2(xn, p)− αnβn(1− βn)d2(Tnxn, S

nxn)

+Tn − αn(1− αn)d2(Snyn, T
nxn) (25)

where Rn = A2
n + 2knAnd(yn, p), Sn = B2

n + 2knBnd(xn, p) and Tn = (Pn + Qn +
Rn + Sn)k2n, since by hypothesis

∑∞
n=1An < ∞,

∑∞
n=1Bn < ∞,

∑∞
n=1 Pn < ∞,
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∑∞
n=1Qn < ∞, it follows that

∑∞
n=1Rn < ∞,

∑∞
n=1 Sn < ∞ and

∑∞
n=1 Tn < ∞.

This implies that

d2(Tnxn, S
nxn) ≤ 1

αnβn(1− βn)
[k4nd

2(xn, p)− d2(xn+1, p)]

+
Tn

αnβn(1− βn)

≤ 1

a2(1− b)
[k4nd

2(xn, p)− d2(xn+1, p)]

+
Tn

a2(1− b)
(26)

and

d2(Snyn, T
nxn) ≤ 1

αn(1− αn)
[k4nd

2(xn, p)− d2(xn+1, p)]

+
Tn

αn(1− αn)

≤ 1

a(1− b)
[k4nd

2(xn, p)− d2(xn+1, p)]

+
Tn

a(1− b)
. (27)

Since Tn → 0 and kn → 1 as n→∞ and d(xn, p) is convergent, therefore on taking
limit as n→∞ in (26) and (27), we get

lim
n→∞

d(Tnxn, S
nxn) = 0 (28)

and

lim
n→∞

d(Snyn, T
nxn) = 0. (29)

Now

d(Tnxn, xn) ≤ d(Tnxn, S
nxn) + d(Snxn, xn)

≤ d(Tnxn, S
nxn) + d(Snxn, T

nxn)

= 2d(Tnxn, S
nxn)→ 0 as n→∞, (30)

and

d(Snxn, xn) ≤ d(Snxn, T
nxn) + d(Tnxn, xn)
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by (22) and (24), we obtain

lim
n→∞

d(Snxn, xn) = 0. (31)

Again note that

d(xn+1, T
nxn) = d((1− αn)Tnxn ⊕ αnS

nyn, T
nxn)

≤ (1− αn)d(Tnxn, T
nxn) + αnd(Snyn, T

nxn)

→ 0 as n→∞. (32)

By (30) and (32), we have

d(xn+1, xn) ≤ d(xn+1, T
nxn) + d(Tnxn, xn)

→ 0 as n→∞. (33)

Let ρn = d(Tnxn, xn), by (30), we have ρn → 0 as n→∞. Now, we have

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + d(Tn+1xn+1, T

n+1xn)

+d(Tn+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + k′′n+1d(xn+1, xn) +Bn+1

+d(Tn+1xn, Txn)

≤ d(xn, xn+1) + d(xn+1, T
n+1xn+1) + kn+1d(xn+1, xn) +Bn+1

+d(Tn+1xn, Txn)

≤ ρn+1 + (1 + kn+1)d(xn, xn+1) +Bn+1 + d(Tn+1xn, Txn)

→ 0 as n→∞ (34)

by (30), (33), Bn+1 → 0 and uniform continuity of T . Similarly, we can prove that

lim
n→∞

d(xn, Sxn) = 0. (35)

This completes the proof.

Now we prove the ∆-convergence and strong convergence results.

Theorem 13. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings
with sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) =

F (S)∩F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10) and An

and Bn be taken as in Lemma 11. Suppose that {αn} and {βn} are real sequence in
[a, b] for some a, b ∈ (0, 1). Then {xn} ∆-converges to a point of F (S, T ).
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Proof. It follows from Lemma 12 that limn→∞ d(Sxn, xn) = 0 and limn→∞ d(Txn, xn)
= 0. Now let ωw(xn) :=

⋃
A({un}) where the union is taken over all subsequences

{un} of {xn}. We can complete the proof by showing that ωw(xn) ⊆ F and ωw(xn)
consists of exactly one point. Let u ∈ ωw(xn), then there exists a subsequence {un}
of {xn} such that A({un}) = {u}. By Lemma 2 and 3, there exists a subsequence
{vn} of {un} such that ∆ − limn vn = v ∈ K. Since limn→∞ d(vn, T vn) = 0 and
limn→∞ d(vn, Svn) = 0, then by Corollary 10, v ∈ F (T ) and v ∈ F (S) and so
v ∈ F (S, T ). By Lemma 11, limn→∞ d(xn, F (S, T )) exists so by Lemma 3, v = u,
i.e., ωw(xn) ⊆ F (S, T ).

To show that {xn} ∆-converges to a point in F (S, T ), it is sufficient to show that
ωw(xn) consists of exactly one point.

Let {wn} be a subsequence of {xn} with A({wn}) = {w} and let A({xn}) = {x}.
Since w ∈ ωw(xn) ⊆ F (S, T ) and by Lemma 11, limn→∞ d(xn, w) exists. Again by
Lemma 3, we have x = w ∈ F (S, T ). Thus ωw(xn) = {x}. This shows that {xn}
∆-converges to a point in F (S, T ). This completes the proof.

Theorem 14. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings with
sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) = F (S) ∩

F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10) and An and Bn

be taken as in Lemma 11. Suppose that {αn} and {βn} are real sequence in [a, b] for
some a, b ∈ (0, 1). If lim infn→∞ d(xn, F (S, T )) = 0 or lim supn→∞ d(xn, F (S, T )) =
0, where d(x, F (S, T )) = infp∈F (S,T ) d(x, p), then the sequence {xn} converges strongly
to a point in F (S, T ).

Proof. From (23) of Lemma 11, we have

d(xn+1, p) ≤ [1 +Wn]d(xn, F (S, T )) + Vn

where p ∈ F (S, T ). Since
∑∞

n=1Wn < ∞ and
∑∞

n=1 Vn < ∞, by Lemma 6 and
lim infn→∞ d(xn, F (S, T )) = 0 or lim supn→∞ d(xn, F (S, T )) = 0 gives that

lim
n→∞

d(xn, F (S, T )) = 0. (36)

Next, we show that {xn} is a Cauchy sequence in K. With the help of inequality
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1 + x ≤ ex, x ≥ 0. For any integer m ≥ 1, therefore from (22), we have

d(xn+m, p) ≤ (1 +Wn+m−1)d(xn+m−1, p) + Vn+m−1

≤ eWn+m−1d(xn+m−1, p) + Vn+m−1

≤ eWn+m−1 [eWn+m−2d(xn+m−2, p) + Vn+m−2] + Vn+m−1

≤ e(Wn+m−1+Wn+m−2)d(xn+m−2, p) + eWn+m−1 [Vn+m−2 + Vn+m−1]

≤ . . .

≤
(
e
∑n+m−1

k=n Wk
)
d(xn, p) +

(
e
∑n+m−1

k=n Wk
) n+m−1∑

k=n

Vk

≤
(
e
∑∞

n=1 Wn
)
d(xn, p) +

(
e
∑∞

n=1 Wn
) n+m−1∑

k=n

Vk

= M d(xn, p) +M
n+m−1∑
k=n

Vk, (37)

where M = e
∑∞

n=1 Wn <∞.

Since limn→∞ d(xn, F (S, T )) = 0 and
∑∞

n=1 Vn < ∞, therefore for any ε > 0,
there exists a natural number n0 such that d(xn, F (S, T )) < ε/8M and

∑n+m−1
k=n Vk <

ε/2M for all m,n ≥ n0. So, we can find p∗ ∈ F (S, T ) such that d(xn0 , p
∗) < ε/4M .

Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ M d(xn0 , p
∗) +M

n+m−1∑
k=n

Vk

+M d(xn0 , p
∗)

= 2M d(xn0 , p
∗) +M

n+m−1∑
k=n

Vk

< 2M.
ε

4M
+M.

ε

2M
= ε. (38)

This proves that {xn} is a Cauchy sequence in K. Thus, the completeness of X im-
plies that {xn} must be convergent. Assume that limn→∞ xn = q. Since K is closed,
therefore q ∈ K. Next, we show that q ∈ F (S, T ). Since limn→∞ d(xn, F (S, T )) = 0
we get d(q, F (S, T )) = 0, closedness of F (S, T ) gives that q ∈ F (S, T ). Thus {xn}
converges strongly to a point in F (S, T ). This completes the proof.
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Theorem 15. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings
with sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) =

F (S)∩F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10) and An

and Bn be taken as in Lemma 11. Suppose that {αn} and {βn} are real sequence in
[a, b] for some a, b ∈ (0, 1). If either S or T is semi-compact, then the the sequence
{xn} converges strongly to a point of F (S, T ).

Proof. Suppose that T is semi-compact. By Lemma 12, we have limn→∞ d(xn, Txn) =
0. So there exists a subsequence {xnj} of {xn} such that xnj → p ∈ K. Now Lemma
12 guarantees that limnj→∞ d(xnj , Txnj ) = 0 and so d(p, Tp) = 0. Similarly, we can
show that d(p, Sp) = 0. Thus p ∈ F (S, T ). By (22), we have

d(xn+1, p) ≤ [1 +Wn]d(xn, p) + Vn.

Since
∑∞

n=1Wn < ∞ and
∑∞

n=1 Vn < ∞, by Lemma 6, limn→∞ d(xn, p) exists and
xnj → p ∈ F (S, T ) gives that xn → p ∈ F (S, T ). This shows that {xn} converges
strongly to a point of F (S, T ). This completes the proof.

We recall the following definition.
A mapping T : K → K, where K is a subset of a metric space (X, d), is said to

satisfy condition (A) [31] if there exists a nondecreasing function f : [0,∞)→ [0,∞)
with f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F (T ))) for
all x ∈ K where d(x, F (T )) = inf{d(x, p) : p ∈ F (T ) 6= ∅}.

We modify this definition for two mappings.
Two mappings S, T : K → K, where K is a subset of a metric space (X, d), is said

to satisfy condition (B) if there exists a nondecreasing function f : [0,∞) → [0,∞)
with f(0) = 0 and f(t) > 0 for all t ∈ (0,∞) such that a1 d(x, Sx) + a2 d(x, Tx) ≥
f(d(x, F (S, T ))) for all x ∈ K where d(x, F (S, T )) = inf{d(x, p) : p ∈ F (S, T ) 6= ∅}
and a1 and a2 are two nonnegative real numbers such that a1 + a2 = 1. It is to be
noted that Condition (B) is weaker than compactness of the domain K.

Remark 2. Condition (B) reduces to condition (A) when S = T .

As an application of Theorem 14, we establish some strong convergence results
as follows.

Theorem 16. Let K be a nonempty closed convex subset of a complete CAT(0) space
X and let S, T : K → K be two generalized asymptotical nonexpansive mappings
with sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) < ∞ and F (S, T ) =

F (S)∩F (T ) 6= ∅. Suppose that {xn} is defined by the iteration process (10) and An

and Bn be taken as in Lemma 11. Suppose that {αn} and {βn} are real sequence
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in [a, b] for some a, b ∈ (0, 1). If S and T satisfy condition (B), then the sequence
{xn} converges strongly to a point of F (S, T ).

Proof. By Lemma 12, we know that

lim
n→∞

d(xn, Sxn) = 0 and lim
n→∞

d(xn, Txn) = 0. (39)

From condition (B) and (39), we get

lim
n→∞

f(d(xn, F (S, T ))) ≤ a1. lim
n→∞

d(xn, Sxn) + a2. lim
n→∞

d(xn, Txn) = 0,

i.e.,
lim
n→∞

f(d(xn, F (S, T ))) = 0

.
Since f : [0,∞)→ [0,∞) is a nondecreasing function satisfying f(0) = 0, f(t) > 0

for all t ∈ (0,∞), therefore we obtain

lim
n→∞

d(xn, F (S, T )) = 0.

The conclusion now follows from Theorem 14. This completes the proof.

Theorem 17. Let K be a nonempty closed convex subset of a complete CAT(0)
space X and let S, T : K → K be two uniformly continuous asymptotical nonex-
pansive mappings with sequences {k′n}, {k′′n} ⊂ [1,∞) such that

∑∞
n=1(kn − 1) <∞

and F (S, T ) = F (S) ∩ F (T ) 6= ∅. Suppose that {xn} is defined by the iteration
process (10). Suppose that {αn} and {βn} are real sequence in [a, b] for some
a, b ∈ (0, 1). If lim infn→∞ d(xn, F (S, T )) = 0 or lim supn→∞ d(xn, F (S, T )) = 0,
where d(x, F (S, T )) = infp∈F (S,T ) d(x, p), then the sequence {xn} converges strongly
to a point of F (S, T ).

Proof. Let p ∈ F (S, T ) and let kn = max{k′n, k′′n} with kn → 1 as n → ∞. Since
S is uniformly continuous and asymptotically nonexpansive mapping, we know that
there exist a sequence {k′n} ⊂ [1,∞) with k′n → 1 as n→∞ such that

d(Snx, Sny) ≤ k′n d(x, y)

≤ kn d(x, y), ∀x, y ∈ K, n ≥ 1.

This implies that

d(Snx, Sny)− kn d(x, y) ≤ 0, ∀x, y ∈ K, n ≥ 1.
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Therefore we have

lim sup
n→∞

{
sup

x, y∈K

(
d(Snx, Sny)− kn d(x, y)

)}
≤ 0.

This implies that S is a generalized asymptotically nonexpansive mapping. By
similar fashion, we can show that T is also a generalized asymptotically nonexpansive
mapping. Thus the conclusion of Theorem 17 follows from Theorem 14 immediately.
This completes the proof.

Example 3. Let E = R, K = [−1, 1] and T : K → K be a mapping defined by

T (x) =
x

2
, if x ∈ [−1, 1].

Thus T is a nonexpansive mapping and hence it is asymptotically nonexpansive
mapping with constant sequence {1}. Also T is uniformly continuous on [−1, 1].
Thus T is asymptotically nonexpansive mapping in the intermediate sense and hence
it is generalized asymptotically nonexpansive mapping.

4. Conclusion

In this paper, we establish a ∆ convergence and some strong convergence theorems
using iteration scheme (10) which contains modified Mann iteration scheme for a
wider class of nonexpansive, asymptotically nonexpansive and asymptotically non-
expansive mappings in the intermediate sense in the setting of CAT(0) spaces. The
results presented in this paper extend and generalize several known results from the
previous work given in the current existing literature.

References

[1] M. Abbas, Z. Kadelburg, D.R. Sahu, Fixed point theorems for Lipschitzian type
mappings in CAT(0) spaces, Math. Comput. Model. 55 (2012), 1418-1427.

[2] R. P. Agarwal, Donal O’Regan, D. R. Sahu, Iterative construction of fixed points
of nearly asymptotically nonexpansive mappings, Nonlinear Convex Anal. 8, 1 (2007),
61-79.

[3] R.P. Agarwal, X. Qin, S.M. Kang, An implicit iterative algorithm with errors
for two families of generalized asymptotically nonexpansive mappings, Fixed Point
Theory Appl. 2011:58 (2011).

[4] M.R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Vol. 319 of
Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 1999.

72



G. S. Saluja – Demiclosed principle and convergence theorems . . .

[5] K.S. Brown, Buildings, Springer, New York, NY, USA, 1989.

[6] F. Bruhat, J. Tits, ”Groups reductifs sur un corps local”, Institut des Hautes
Etudes Scientifiques. Publications Mathematiques, 41 (1972), 5-251.

[7] R.E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically
nonexpansive mappings in Banach spaces with the uniform opial property, Colloq
Math. 65 (1993), 169-179.

[8] S.S. Chang, L. Wang, H.W. Joesph Lee, C.K. Chan, L. Yang, Demiclosed prin-
ciple and ∆-convergence theorems for total asymptotically nonexpansive mappings in
CAT(0) spaces, Appl. Math. Comput. 219, 5 (2012), 2611-2617.

[9] S. Dhompongsa, W.A. Kirk, B. Sims, Fixed points of uniformly Lipschitzian
mappings, Nonlinear Anal. 65, 4 (2006), 762-772.

[10] S. Dhompongsa, W.A. Kirk, B. Panyanak, Nonexpansive set-valued mappings
in metric and Banach spaces, J. Nonlinear Convex Anal. 8, 1 (2007), 35-45.

[11] S. Dhompongsa, B. Panyanak, On 4-convergence theorem in CAT(0) spaces,
Comput. Math. Appl. 56, 10 (2008), 2572-2579.

[12] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive
mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.

[13] K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Uni-
versity Press, Cambridge, 1990.

[14] K. Goebel, S. Reich, Uniform convexity, Hyperbolic Geometry and Nonexpan-
sive mappings, Dekker, New York, 1984.

[15] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc.
44 (1974), 147-150.

[16] M.A. Khamsi, W.A. Kirk, An introduction to metric spaces and fixed point
theory, Pure Appl. Math, Wiley-Interscience, New York, NY, USA, 2001.

[17] S.H. Khan, M. Abbas, Strong and 4-convergence of some iterative schemes in
CAT(0) spaces, Comput. Math. Appl. 61, 1 (2011), 109-116.

[18] W.A. Kirk, Geodesic geometry and fixed point theory, in Seminar of Mathe-
matical Analysis (Malaga/Seville, 2002/2003), Vol. 64 of Coleccion Abierta, 195-225,
University of Seville Secretary of Publications, Seville, Spain, 2003.

[19] W.A. Kirk, Geodesic geometry and fixed point theory II, in International Con-
ference on Fixed point Theory and Applications, 113-142, Yokohama Publishers,
Yokohama, Japan, 2004.

[20] W.A. Kirk, B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Anal. 68 (2008), 3689-3696.

[21] P. Kumam. G.S. Saluja, H.K. Nashine, Convergence of modified S-iteration
process for two asymptotically nonexpansive mappings in the intermediate sense in
CAT(0) spaces, J. Inequality and Applications 2014:368, 2014.

73



G. S. Saluja – Demiclosed principle and convergence theorems . . .

[22] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60
(1976), 179-182.

[23] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953),
506-510.

[24] B. Nanjaras, B. Panyanak, Demiclosed principle for asymptotically nonexpan-
sive mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID
268780.
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