ON THE CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION

A. ZIREH AND S. SALEHIAN

ABSTRACT. In this paper, we introduce and investigate an interesting subclass $\mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$ of bi-univalent functions in the open unit disk \mathbb{U} . Furthermore, we find estimates on the $|a_2|$ and $|a_3|$ coefficients for functions in this subclass. The results presented in this paper would generalize and improve those in related works of several earlier authors.

2010 Mathematics Subject Classification: 30C45.

Keywords: Bi-univalent functions, Coefficient estimates, Univalent functions.

1. INTRODUCTION

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$, that have the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1)

Further, by S we shall denote the class of functions in A which are univalent in \mathbb{U} (for details, see [2, 3, 5]).

It is well known that every functions $f \in S$ has an inverse f^{-1} , defined by

$$f^{-1}(f(z)) = z \qquad (z \in \mathbb{U})$$

and

$$f(f^{-1}(w)) = w$$
 $\left(|w| < r_0(f); r_0(f) \ge \frac{1}{4} \right)$

where

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f(z) and $f^{-1}(z)$ are univalent in \mathbb{U} .

Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Brannan and Taha [2] (see also[11]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $\mathcal{S}^*(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order α (0 < $\alpha \leq 1$), respectively (see [1]).

Determination of the bounds for the coefficients a_n is an important problem in geometric function theory as they give information about the geometric properties of these functions. Recently there interest to study the bi-univalent functions class Σ (see [3, 6, 7, 9, 10, 12]) and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. The coefficient estimate problem i.e. bound of $|a_n|$ $(n \in \mathbb{N} - \{1, 2\})$ for each $f \in \Sigma$ is still an open problem.

Srivastava et al. [10] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in each of these subclasses.

Definition 1. [10] A function f(z) given by (1) is said to be in the $\mathcal{H}_{\Sigma}^{\alpha}$ ($0 < \alpha \leq 1$), if the following conditions are satisfied:

$$f \in \Sigma, |arg(f'(z))| < \frac{\alpha \pi}{2} \quad (z \in \mathbb{U}), \qquad |arg(g'(w))| < \frac{\alpha \pi}{2} \quad (w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Theorem 1. [10] Let the function f(z) given by (1) be in the $\mathcal{H}_{\Sigma}^{\alpha}$ ($0 < \alpha \leq 1$). Then

$$|a_2| \le \alpha \sqrt{\frac{2}{\alpha+2}}, \qquad |a_3| \le \frac{\alpha(3\alpha+2)}{3}.$$

Definition 2 ([10]). A function f(z) given by (1) is said to be in the $\mathcal{H}_{\Sigma}(\beta)$ ($0 \leq \beta < 1$), if the following conditions are satisfied:

$$f\in \Sigma, \quad Re(f'(z))>\beta \quad (z\in \mathbb{U}), \qquad \qquad Re(g'(w))>\beta \quad (w\in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Theorem 2. [10] Let the function f(z) given by (1) be in the $\mathcal{H}_{\Sigma}(\beta)$ $(0 \leq \beta < 1)$. Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{3}}, \qquad |a_3| \le \frac{(1-\beta)(5-3\beta)}{3}.$$

As a generalization of two subclasses $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$, Frasin [7] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ of functions in each of these subclasses.

Definition 3. [7] A function $f(z) \in \Sigma$ given by (1) is said to be in the $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ (0 < $\alpha \leq 1, \lambda \geq 1$), if the following conditions are satisfied:

$$\left|\arg((1-\lambda)\frac{f(z)}{z} + \lambda f'(z))\right| < \frac{\alpha\pi}{2} \ (z \in \mathbb{U}), \quad \left|\arg((1-\lambda)\frac{g(w)}{w} + \lambda g'(w))\right| < \frac{\alpha\pi}{2} \ (w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Theorem 3. [7] Let the function f(z) given by (1) be in the $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ ($0 < \alpha \leq 1, \lambda \geq 1$). Then

$$|a_2| \le \frac{2\alpha}{\sqrt{(\lambda+1)^2 + \alpha(1+2\lambda-\lambda^2)}}, \qquad |a_3| \le \frac{4\alpha^2}{(\lambda+1)^2} + \frac{2\alpha}{2\lambda+1}.$$

Definition 4. [7] A function $f(z) \in \Sigma$ given by (1) is said to be in the $\mathcal{B}_{\Sigma}(\beta, \lambda)$ ($0 \leq \beta < 1, \lambda \geq 1$), if the following conditions are satisfied:

$$Re((1-\lambda)\frac{f(z)}{z} + \lambda f'(z)) > \beta \ (z \in \mathbb{U}), \qquad Re((1-\lambda)\frac{g(w)}{w} + \lambda g'(w)) > \beta \ (w \in \mathbb{U}),$$

where g is the extension of f^{-1} to \mathbb{U} .

Theorem 4. [7] Let the function f(z) given by (1) be in the $\mathcal{B}_{\Sigma}(\beta, \lambda)$ ($0 \leq \beta < 1, \lambda \geq 1$). Then

$$|a_2| \le \sqrt{\frac{2(1-\beta)}{2\lambda+1}},$$
 $|a_3| \le \frac{4(1-\beta)^2}{(\lambda+1)^2} + \frac{2(1-\beta)}{2\lambda+1}.$

The object of the present paper is to introduce a new subclass of the function class Σ and obtain estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions in this new subclass which generalize and improve those in related works of several earlier authors.

2. Coefficient bounds for the function class $\mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$

In this section, we introduce the subclass $\mathcal{B}_{\Sigma}^{p,q}(h,\lambda)$ and find the estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this subclass.

Let

$$h(z) = z + \sum_{n=2}^{\infty} h_n z^n, \quad \text{where} \quad h_n > 0 \quad \text{for all} \quad n \ge 2.$$
(2)

The Hadamard product f(z), h(z) is defined as $(f * h)(z) = z + \sum_{n=2}^{\infty} a_n h_n z^n$, where $f(z) \in \mathcal{A}$ given by (1).

Definition 5. Let the functions $p, q : \mathbb{U} \to \mathbb{C}$ be so constrained that

 $\min\{Re(p(z)), \ Re(q(z))\} > 0 \quad (z \in \mathbb{U}) \quad and \quad p(0) = q(0) = 1.$

A function $f(z) \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$, if the following conditions are satisfied:

$$f \in \Sigma, \quad \left[(1-\lambda)\frac{(f*h)(z)}{z} + \lambda(f*h)'(z) \right] \in p(\mathbb{U}) \quad (z \in \mathbb{U}; \ \lambda \ge 1)$$
(3)

and

$$[(1-\lambda)\frac{(f*h)^{-1}(w)}{w} + \lambda((f*h)^{-1})'(w)] \in q(\mathbb{U}) \quad (w \in \mathbb{U}; \ \lambda \ge 1),$$
(4)

where the function h(z) is given by (2).

Remark 1. There are many choices of the functions p(z) and q(z) which would provide interesting subclasses of the analytic function class A. For example, if we let

$$p(z) = q(z) = \left(\frac{1+z}{1-z}\right)^{\alpha} \qquad (0 < \alpha \le 1; \ z \in \mathbb{U}),$$

it is easy to verify that the functions p(z) and q(z) satisfy the hypotheses of Definition 5. If $f(z) \in \mathcal{B}_{\Sigma}^{p,q}(h, \lambda)$, then

$$\left|\arg\left((1-\lambda)\frac{(f*h)(z)}{z} + \lambda(f*h)'(z)\right)\right| < \frac{\alpha\pi}{2} \qquad (z \in \mathbb{U}; \ \lambda \ge 1)$$

and

$$|\arg\left((1-\lambda)\frac{(f*h)^{-1}(z)}{w} + \lambda((f*h)^{-1})'(w)\right)| < \frac{\alpha\pi}{2} \qquad (w \in \mathbb{U}; \ \lambda \ge 1).$$

Therefore for $p(z) = q(z) = \left(\frac{1+z}{1-z}\right)^{\alpha}$ and $h(z) = \frac{z}{1-z}$, the class $\mathcal{B}_{\Sigma}^{p,q}(h,\lambda)$ reduce to Definition 3 and in special case $\lambda = 1$ it reduce to Definition 1.

If we take

$$p(z) = q(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \qquad (0 \le \beta < 1; \ z \in \mathbb{U}),$$

then the functions p(z) and q(z) satisfy the hypotheses of Definition 5. If $f(z) \in \mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$, then

$$Re\left((1-\lambda)\frac{(f*h)(z)}{z} + \lambda(f*h)'(z)\right) > \beta \qquad (z \in \mathbb{U}; \ \lambda \ge 1)$$

and

$$Re\left((1-\lambda)\frac{(f*h)^{-1}(z)}{w} + \lambda((f*h)^{-1})'(w)\right) > \beta \qquad (w \in \mathbb{U}; \ \lambda \ge 1).$$

Therefore for $p(z) = q(z) = \frac{1+(1-2\beta)z}{1-z}$ and $h(z) = \frac{z}{1-z}$, the class $\mathcal{B}_{\Sigma}^{p,q}(h,\lambda)$ reduce to Definition 4 and in special case $\lambda = 1$ it reduce to Definition 2.

2.1. Coefficients estimates

Now, we derive the estimates of the coefficients $|a_2|$ and $|a_3|$ for class $\mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$.

Theorem 5. Let a function f(z) given by (1) be in the class $\mathcal{B}^{p,q}_{\Sigma}(h,\lambda)$ $(\lambda \geq 1)$. Then

$$|a_2| \le \min\left\{\frac{1}{h_2(\lambda+1)}\sqrt{\frac{|p'(0)|^2 + |q'(0)|^2}{2}}, \frac{1}{2h_2}\sqrt{\frac{|p''(0)| + |q''(0)|}{2\lambda+1}}\right\}$$

and

$$|a_3| \le \min\left\{\frac{|p'(0)|^2 + |q'(0)|^2}{2h_3(\lambda+1)^2} + \frac{|p''(0)| + |q''(0)|}{4h_3(2\lambda+1)}, \frac{|p''(0)|}{2h_3(2\lambda+1)}\right\}.$$

Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows:

$$(1-\lambda)\frac{(f*h)(z)}{z} + \lambda(f*h)'(z) = p(z) \qquad (z \in \mathbb{U}), \tag{5}$$

$$(1-\lambda)\frac{(f*h)^{-1}(w)}{w} + \lambda((f*h)^{-1})'(w) = q(w) \quad (w \in \mathbb{U}),$$
(6)

respectively, where functions p(z) and q(w) satisfy the conditions of Definition 5. Furthermore, the functions p(z) and q(w) have the following Taylor-Maclaurin series expansions:

$$p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 \dots$$
(7)

and

$$q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 \dots , (8)$$

respectively. Now, upon substituting from (7) and (8) into (5) and (6), respectively, and equating the coefficients, we get

$$(\lambda+1)a_2h_2 = p_1,\tag{9}$$

$$(2\lambda + 1)a_3h_3 = p_2, (10)$$

$$-(\lambda + 1)a_2h_2 = q_1 \tag{11}$$

and

$$2(2\lambda+1)a_2^2h_2^2 - (2\lambda+1)a_3h_3 = q_2.$$
(12)

From (9) and (11), we obtain

$$p_1 = -q_1, \tag{13}$$

$$a_2^2 = \frac{p_1^2 + q_1^2}{2(\lambda + 1)^2 h_2^2}.$$
(14)

By adding (10) and (12), we get

$$a_2^2 = \frac{p_2 + q_2}{2(2\lambda + 1)h_2^2}.$$
(15)

Therefore, we find from the equations (14) and (15) that

$$|a_2| \le \frac{1}{h_2(\lambda+1)} \sqrt{\frac{|p'(0)|^2 + |q'(0)|^2}{2}}$$

and

$$|a_2| \le \frac{1}{2h_2} \sqrt{\frac{|p''(0)| + |q''(0)|}{2\lambda + 1}},$$

respectively. So we get the desired estimate on the coefficient $|a_2|$ asserted. Next, in order to find the bound on the coefficient $|a_3|$, we subtract (12) from (10). We thus get

$$2(2\lambda+1)a_3h_3 - 2(2\lambda+1)a_2^2h_2^2 = p_2 - q_2.$$
 (16)

Upon substituting the value of a_2^2 from (14) into (16), it follows that

$$a_3 = \frac{p_1^2 + q_1^2}{2h_3(\lambda + 1)^2} + \frac{p_2 - q_2}{2h_3(2\lambda + 1)}.$$
(17)

We thus find that

$$|a_3| \le \frac{|p'(0)|^2 + |q'(0)|^2}{2h_3(\lambda+1)^2} + \frac{|p''(0)| + |q''(0)|}{4h_3(2\lambda+1)}.$$

On the other hand, upon substituting the value of a_2^2 from (15) into (16), it follows that

$$a_3 = \frac{p_2 + q_2}{2h_3(2\lambda + 1)} + \frac{p_2 - q_2}{2h_3(2\lambda + 1)}.$$
(18)

Consequently, we have

$$|a_3| \le \frac{|p''(0)|}{2h_3(2\lambda + 1)}.$$

3. Corollaries and Consequences

By setting

$$h(z) = p(z) = (\frac{1+z}{1-z})^{\alpha}$$
 $(0 < \alpha \le 1, \ z \in \mathbb{U}),$

in Theorem 5, we obtain the following result.

Corollary 6. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)$ ($0 < \alpha \leq 1$; $\lambda \geq 1$). Then

$$|a_2| \le min\left\{\frac{2\alpha}{h_2(\lambda+1)}, \frac{\alpha}{h_2}\sqrt{\frac{2}{2\lambda+1}}\right\}$$

and

$$|a_3| \le \frac{2\alpha^2}{h_3(2\lambda+1)}.$$

Remark 2. The bounds on $|a_2|$, $|a_3|$ given in Corollary 6 are better than those given by El-Ashwah[6, Theorem1].

By setting $h(z) = \frac{z}{1-z}$ and $\lambda = 1$ in Corollary 6, we conclude the following corollary.

Corollary 7. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{H}^{\alpha}_{\Sigma}$ (0 < $\alpha \leq 1$). Then

$$|a_2| \leq \min\{\alpha, \sqrt{\frac{2}{3}}\alpha\} = \sqrt{\frac{2}{3}}\alpha$$

and

$$|a_3| \le \frac{2}{3}\alpha^2.$$

Remark 3. The bounds on $|a_2|$, $|a_3|$ given in Corollary 7 are better than those given in Theorem 1. Because

$$\sqrt{\frac{2}{3}}\alpha \le \alpha \sqrt{\frac{2}{\alpha+2}}$$

and

$$\frac{2}{3}\alpha^2 \le \alpha^2 + \frac{2}{3}\alpha.$$

By setting $h(z) = \frac{z}{1-z}$ in Corollary 6, we conclude the following corollary.

Corollary 8. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)$ ($0 < \alpha \leq 1, \lambda \geq 1$). Then

$$|a_2| \le min\{rac{2lpha}{\lambda+1}, lpha \sqrt{rac{2}{2\lambda+1}} \}$$

and

$$|a_3| \le \frac{2\alpha^2}{2\lambda + 1}.$$

Remark 4. The bounds on $|a_2|$, $|a_3|$ given in Corollary 8 are better than those given in Theorem 3. Because

$$\frac{2\alpha}{\lambda+1} \le \frac{2\alpha}{\sqrt{(\lambda+1)^2 + \alpha(1+2\lambda-\lambda^2)}} \qquad (\lambda \ge 1+\sqrt{2})$$

and

$$\frac{2\alpha^2}{2\lambda+1} \leq \frac{4\alpha^2}{(\lambda+1)^2} + \frac{2\alpha}{2\lambda+1}.$$

By setting

$$h(z) = p(z) = \frac{1 + (1 - 2\beta)z}{1 - z} \qquad (0 \le \beta < 1, \ z \in \mathbb{U}),$$

in Theorem 5, we obtain the following result.

Corollary 9. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(h,\beta,\lambda)$ $(0 \leq \beta < 1, \lambda \geq 1)$. Then

$$|a_2| \le \min\{\frac{2(1-\beta)}{h_2(\lambda+1)}, \frac{1}{h_2}\sqrt{\frac{2(1-\beta)}{2\lambda+1}}\}$$

and

$$|a_3| \le \frac{2(1-\beta)}{h_3(2\lambda+1)}.$$

Remark 5. The bounds on $|a_2|$, $|a_3|$ given in Corollary 9 are better than those given by El-Ashwah/6, Theorem 2].

By setting $h(z) = \frac{z}{1-z}$ and $\lambda = 1$ in Corollary 9, we conclude the following corollary.

Corollary 10. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}(\beta)$ ($0 \leq \beta < 1$). Then

$$|a_2| \le \begin{cases} \sqrt{\frac{2}{3}(1-\beta)} & ; \ 0 \le \beta \le \frac{1}{3} \\ (1-\beta) & ; \ \frac{1}{3} \le \beta < 1 \end{cases}$$

and

$$|a_3| \le \frac{2}{3}(1-\beta).$$

Remark 6. The bound on $|a_2|$, $|a_3|$ given in Corollary 10 are better than those given in Theorem 2.

By setting $h(z) = \frac{z}{1-z}$ in Corollary 9, we conclude the following corollary.

Corollary 11. Let the function f(z) given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\beta, \lambda)$ $(0 \leq \beta < 1, \lambda \geq 1)$. Then

$$|a_2| \le \min\{\frac{2(1-\beta)}{\lambda+1}, \sqrt{\frac{2(1-\beta)}{2\lambda+1}}\}$$

and

$$|a_3| \le \frac{2(1-\beta)}{2\lambda+1}.$$

Remark 7. The bounds on $|a_2|$, $|a_3|$ given in Corollary 11 are better than those given in Theorem 4. Because

$$\frac{2(1-\beta)}{(\lambda+1)} \leq \sqrt{\frac{2(1-\beta)}{2\lambda+1}} \qquad (\lambda \geq 1-2\beta+\sqrt{4\beta^2-6\beta+2}; \ 0 \leq \beta \leq \frac{1}{3})$$

and

$$\frac{2(1-\beta)}{(2\lambda+1)} \le \frac{4(1-\beta)^2}{(\lambda+1)^2} + \frac{2(1-\beta)}{2\lambda+1}.$$

References

[1] D. A. Brannan, J. Clunie, W. E. Kirwan, *Coefficient estimates for a class of starlike functions*, Can. J. Math. 22 (1970), 476-485.

[2] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 1-20, 1979, (Academic Press, New York and London, 1980).

[3] D. Breaz, N. Breaz, H. M. Sirvastava, An extention of the univalent conditions for a family of integral operators, Appl. Math. Lett. 22 (2009), 41-44.

[4] M. Chen, On the regular functions satisfying $Re(f(z)/z) > \alpha$, Bull. Inst. Math. Acad. Sinica. 3 (1975), 65-70.

[5] P. L. Duren, *Univalent functions*, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

[6] R. M. El-Ashwah, Subclasses of bi-univalent functions defined by convolution, J. Egyp. Math. Soc. 22 (2014), 348-351.

[7] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.

[8] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Am. Math. Soc. 104 (1962), 532-537.

[9] C. Selvaraj, G. Thirupathi, *Coefficient bounds for a subclass of Bi-univalent functions using differential*, Ann. Acad. Rom. Sci. Ser. Math. Appl. 6 (2014) 204-213.

[10] H. M. Srivastava, A. K. Mishra, P. Gochhayat, *Certain subclasses of analytic and biunivalent functions*, Appl. Math. Lett. 23 (2010), 1188-1192.

[11] T. S. Taha, *Topics in Univalent Function Theory*, Ph.D. Thesis, University of London, 1981.

[12] Q. H. Xu, Y. C. Gui, H. M. Srivastava, *Coefficient estimates for a certain subclass of analytic and bi-univalent functions*, Appl. Math. Lett. 25 (2012), 990-994.

Ahmad Zireh Department of Mathematics, University of Shahrood, Shahrood, Iran email: azireh@gmail.com

Safa Salehian Department of Mathematics, University of Shahrood, Shahrood, Iran email: salehian_gilan86@yahoo.com