ON THE CERTAIN SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS DEFINED BY CONVOLUTION

A. Zireh and S. Salehian

Abstract. In this paper, we introduce and investigate an interesting subclass $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$ of bi-univalent functions in the open unit disk \mathbb{U}. Furthermore, we find estimates on the $\left|a_{2}\right|$ and $\left|a_{3}\right|$ coefficients for functions in this subclass. The results presented in this paper would generalize and improve those in related works of several earlier authors.

2010 Mathematics Subject Classification: 30C45.
Keywords: Bi-univalent functions, Coefficient estimates, Univalent functions.

1. Introduction

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$, that have the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} . \tag{1}
\end{equation*}
$$

Further, by \mathcal{S} we shall denote the class of functions in \mathcal{A} which are univalent in \mathbb{U} (for details, see $[2,3,5]$).

It is well known that every functions $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both $f(z)$ and $f^{-1}(z)$ are univalent in \mathbb{U}.

Let Σ denote the class of bi-univalent functions in \mathbb{U} given by (1). Brannan and Taha [2] (see also[11]) introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$ of starlike and convex functions of order $\alpha(0<\alpha \leq 1)$, respectively (see [1]).
Determination of the bounds for the coefficients a_{n} is an important problem in geometric function theory as they give information about the geometric properties of these functions. Recently there interest to study the bi-univalent functions class Σ (see $[3,6,7,9,10,12])$ and obtain non-sharp estimates on the first two TaylorMaclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The coefficient estimate problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N}-\{1,2\})$ for each $f \in \Sigma$ is still an open problem.

Srivastava et al. [10] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 1. [10] A function $f(z)$ given by (1) is said to be in the $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$, if the following conditions are satisfied:
$f \in \Sigma,\left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}), \quad\left|\arg \left(g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})$,
where g is the extension of f^{-1} to \mathbb{U}.
Theorem 1. [10] Let the function $f(z)$ given by (1) be in the $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{\alpha+2}}, \quad\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3}
$$

Definition 2 ([10]). A function $f(z)$ given by (1) is said to be in the $\mathcal{H}_{\Sigma}(\beta)(0 \leq$ $\beta<1$), if the following conditions are satisfied:

$$
f \in \Sigma, \quad \operatorname{Re}\left(f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U}), \quad \operatorname{Re}\left(g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U})
$$

where g is the extension of f^{-1} to \mathbb{U}.
Theorem 2. [10] Let the function $f(z)$ given by (1) be in the $\mathcal{H}_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{3}}, \quad\left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3}
$$

As a generalization of two subclasses $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$, Frasin [7] introduced the following two subclasses of the bi-univalent function class Σ and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these subclasses.

Definition 3. [7] A function $f(z) \in \Sigma$ given by (1) is said to be in the $\mathcal{B}_{\Sigma}(\alpha, \lambda)(0<$ $\alpha \leq 1, \lambda \geq 1$), if the following conditions are satisfied:

$$
\left|\arg \left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U}), \quad\left|\arg \left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where g is the extension of f^{-1} to \mathbb{U}.
Theorem 3. [7] Let the function $f(z)$ given by (1) be in the $\mathcal{B}_{\Sigma}(\alpha, \lambda)(0<\alpha \leq$ $1, \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}}, \quad\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1} .
$$

Definition 4. [7] A function $f(z) \in \Sigma$ given by (1) is said to be in the $\mathcal{B}_{\Sigma}(\beta, \lambda)(0 \leq$ $\beta<1, \lambda \geq 1$), if the following conditions are satisfied:

$$
\operatorname{Re}\left((1-\lambda) \frac{f(z)}{z}+\lambda f^{\prime}(z)\right)>\beta(z \in \mathbb{U}), \quad \operatorname{Re}\left((1-\lambda) \frac{g(w)}{w}+\lambda g^{\prime}(w)\right)>\beta(w \in \mathbb{U}),
$$

where g is the extension of f^{-1} to \mathbb{U}.
Theorem 4. [7] Let the function $f(z)$ given by (1) be in the $\mathcal{B}_{\Sigma}(\beta, \lambda)(0 \leq \beta<$ $1, \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}, \quad\left|a_{3}\right| \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1} .
$$

The object of the present paper is to introduce a new subclass of the function class Σ and obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new subclass which generalize and improve those in related works of several earlier authors.

2. Coefficient bounds for the function class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$

In this section, we introduce the subclass $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$ and find the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this subclass.

Let

$$
\begin{equation*}
h(z)=z+\sum_{n=2}^{\infty} h_{n} z^{n}, \quad \text { where } \quad h_{n}>0 \quad \text { for all } n \geq 2 . \tag{2}
\end{equation*}
$$

The Hadamard product $f(z), h(z)$ is defined as $(f * h)(z)=z+\sum_{n=2}^{\infty} a_{n} h_{n} z^{n}$, where $f(z) \in \mathcal{A}$ given by (1).

Definition 5. Let the functions $p, q: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\operatorname{Re}(p(z)), \operatorname{Re}(q(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad p(0)=q(0)=1
$$

A function $f(z) \in \mathcal{A}$ given by (1) is said to be in the class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$, if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma, \quad\left[(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right] \in p(\mathbb{U}) \quad(z \in \mathbb{U} ; \lambda \geq 1) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[(1-\lambda) \frac{(f * h)^{-1}(w)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)\right] \in q(\mathbb{U}) \quad(w \in \mathbb{U} ; \lambda \geq 1) \tag{4}
\end{equation*}
$$

where the function $h(z)$ is given by (2).
Remark 1. There are many choices of the functions $p(z)$ and $q(z)$ which would provide interesting subclasses of the analytic function class \mathcal{A}. For example, if we let

$$
p(z)=q(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1 ; z \in \mathbb{U})
$$

it is easy to verify that the functions $p(z)$ and $q(z)$ satisfy the hypotheses of Definition 5. If $f(z) \in \mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$, then

$$
\left|\arg \left((1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U} ; \lambda \geq 1)
$$

and

$$
\left|\arg \left((1-\lambda) \frac{(f * h)^{-1}(z)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U} ; \lambda \geq 1)
$$

Therefore for $p(z)=q(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}$ and $h(z)=\frac{z}{1-z}$, the class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$ reduce to Definition 3 and in special case $\lambda=1$ it reduce to Definition 1.
A. Zireh and S. Salehian - On the certain subclass of analytic ...

If we take

$$
p(z)=q(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1 ; z \in \mathbb{U})
$$

then the functions $p(z)$ and $q(z)$ satisfy the hypotheses of Definition 5. If $f(z) \in$ $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$, then

$$
\operatorname{Re}\left((1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U} ; \lambda \geq 1)
$$

and

$$
\operatorname{Re}\left((1-\lambda) \frac{(f * h)^{-1}(z)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U} ; \lambda \geq 1)
$$

Therefore for $p(z)=q(z)=\frac{1+(1-2 \beta) z}{1-z}$ and $h(z)=\frac{z}{1-z}$, the class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$ reduce to Definition 4 and in special case $\lambda=1$ it reduce to Definition 2.

2.1. Coefficients estimates

Now, we derive the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)$.
Theorem 5. Let a function $f(z)$ given by (1) be in the class $\mathcal{B}_{\Sigma}^{p, q}(h, \lambda)(\lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{1}{h_{2}(\lambda+1)} \sqrt{\frac{\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}}{2}}, \frac{1}{2 h_{2}} \sqrt{\frac{\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \min \left\{\frac{\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}}{2 h_{3}(\lambda+1)^{2}}+\frac{\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|}{4 h_{3}(2 \lambda+1)}, \frac{\left|p^{\prime \prime}(0)\right|}{2 h_{3}(2 \lambda+1)}\right\} .
$$

Proof. First of all, we write the argument inequalities in (3) and (4) in their equivalent forms as follows:

$$
\begin{array}{ll}
(1-\lambda) \frac{(f * h)(z)}{z}+\lambda(f * h)^{\prime}(z)=p(z) & (z \in \mathbb{U}) \\
(1-\lambda) \frac{(f * h)^{-1}(w)}{w}+\lambda\left((f * h)^{-1}\right)^{\prime}(w)=q(w) & (w \in \mathbb{U}) \tag{6}
\end{array}
$$

respectively, where functions $p(z)$ and $q(w)$ satisfy the conditions of Definition 5. Furthermore, the functions $p(z)$ and $q(w)$ have the following Taylor-Maclaurin series expansions:

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3} \ldots \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3} \ldots, \tag{8}
\end{equation*}
$$

respectively. Now, upon substituting from (7) and (8) into (5) and (6), respectively, and equating the coefficients, we get

$$
\begin{gather*}
(\lambda+1) a_{2} h_{2}=p_{1}, \tag{9}\\
(2 \lambda+1) a_{3} h_{3}=p_{2}, \tag{10}\\
-(\lambda+1) a_{2} h_{2}=q_{1} \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
2(2 \lambda+1) a_{2}^{2} h_{2}^{2}-(2 \lambda+1) a_{3} h_{3}=q_{2} \tag{12}
\end{equation*}
$$

From (9) and (11), we obtain

$$
\begin{gather*}
p_{1}=-q_{1}, \tag{13}\\
a_{2}^{2}=\frac{p_{1}^{2}+q_{1}^{2}}{2(\lambda+1)^{2} h_{2}^{2}} . \tag{14}
\end{gather*}
$$

By adding (10) and (12), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{p_{2}+q_{2}}{2(2 \lambda+1) h_{2}^{2}} . \tag{15}
\end{equation*}
$$

Therefore, we find from the equations (14) and (15) that

$$
\left|a_{2}\right| \leq \frac{1}{h_{2}(\lambda+1)} \sqrt{\frac{\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}}{2}}
$$

and

$$
\left|a_{2}\right| \leq \frac{1}{2 h_{2}} \sqrt{\frac{\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|}{2 \lambda+1}},
$$

A. Zireh and S. Salehian - On the certain subclass of analytic ...
respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ asserted. Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (12) from (10). We thus get

$$
\begin{equation*}
2(2 \lambda+1) a_{3} h_{3}-2(2 \lambda+1) a_{2}^{2} h_{2}^{2}=p_{2}-q_{2} . \tag{16}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (14) into (16), it follows that

$$
\begin{equation*}
a_{3}=\frac{p_{1}^{2}+q_{1}^{2}}{2 h_{3}(\lambda+1)^{2}}+\frac{p_{2}-q_{2}}{2 h_{3}(2 \lambda+1)} . \tag{17}
\end{equation*}
$$

We thus find that

$$
\left|a_{3}\right| \leq \frac{\left|p^{\prime}(0)\right|^{2}+\left|q^{\prime}(0)\right|^{2}}{2 h_{3}(\lambda+1)^{2}}+\frac{\left|p^{\prime \prime}(0)\right|+\left|q^{\prime \prime}(0)\right|}{4 h_{3}(2 \lambda+1)} .
$$

On the other hand, upon substituting the value of a_{2}^{2} from (15) into (16), it follows that

$$
\begin{equation*}
a_{3}=\frac{p_{2}+q_{2}}{2 h_{3}(2 \lambda+1)}+\frac{p_{2}-q_{2}}{2 h_{3}(2 \lambda+1)} . \tag{18}
\end{equation*}
$$

Consequently, we have

$$
\left|a_{3}\right| \leq \frac{\left|p^{\prime \prime}(0)\right|}{2 h_{3}(2 \lambda+1)}
$$

3. Corollaries and Consequences

By setting

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 5, we obtain the following result.
Corollary 6. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(h, \alpha, \lambda)(0<\alpha \leq 1 ; \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{h_{2}(\lambda+1)}, \frac{\alpha}{h_{2}} \sqrt{\frac{2}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{h_{3}(2 \lambda+1)}
$$

A. Zireh and S. Salehian - On the certain subclass of analytic ...

Remark 2. The bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 6 are better than those given by El-Ashwah[6, Theorem1].

By setting $h(z)=\frac{z}{1-z}$ and $\lambda=1$ in Corollary 6 , we conclude the following corollary.

Corollary 7. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\alpha, \sqrt{\frac{2}{3}} \alpha\right\}=\sqrt{\frac{2}{3}} \alpha
$$

and

$$
\left|a_{3}\right| \leq \frac{2}{3} \alpha^{2}
$$

Remark 3. The bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 7 are better than those given in Theorem 1. Because

$$
\sqrt{\frac{2}{3}} \alpha \leq \alpha \sqrt{\frac{2}{\alpha+2}}
$$

and

$$
\frac{2}{3} \alpha^{2} \leq \alpha^{2}+\frac{2}{3} \alpha
$$

By setting $h(z)=\frac{z}{1-z}$ in Corollary 6, we conclude the following corollary.
Corollary 8. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\alpha, \lambda)(0<\alpha \leq 1, \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{\lambda+1}, \alpha \sqrt{\frac{2}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{2 \lambda+1}
$$

Remark 4. The bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 8 are better than those given in Theorem 3. Because

$$
\frac{2 \alpha}{\lambda+1} \leq \frac{2 \alpha}{\sqrt{(\lambda+1)^{2}+\alpha\left(1+2 \lambda-\lambda^{2}\right)}} \quad(\lambda \geq 1+\sqrt{2})
$$

and

$$
\frac{2 \alpha^{2}}{2 \lambda+1} \leq \frac{4 \alpha^{2}}{(\lambda+1)^{2}}+\frac{2 \alpha}{2 \lambda+1} .
$$

A. Zireh and S. Salehian - On the certain subclass of analytic ...

By setting

$$
h(z)=p(z)=\frac{1+(1-2 \beta) z}{1-z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem 5, we obtain the following result.
Corollary 9. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(h, \beta, \lambda)(0 \leq \beta<1, \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{h_{2}(\lambda+1)}, \frac{1}{h_{2}} \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{h_{3}(2 \lambda+1)}
$$

Remark 5. The bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 9 are better than those given by El-Ashwah[6, Theorem 2].

By setting $h(z)=\frac{z}{1-z}$ and $\lambda=1$ in Corollary 9, we conclude the following corollary.

Corollary 10. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{H}_{\Sigma}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \begin{cases}\sqrt{\frac{2}{3}(1-\beta)} & ; 0 \leq \beta \leq \frac{1}{3} \\ (1-\beta) & ; \frac{1}{3} \leq \beta<1\end{cases}
$$

and

$$
\left|a_{3}\right| \leq \frac{2}{3}(1-\beta)
$$

Remark 6. The bound on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 10 are better than those given in Theorem 2.

By setting $h(z)=\frac{z}{1-z}$ in Corollary 9, we conclude the following corollary.
Corollary 11. Let the function $f(z)$ given by (1) be in the bi-univalent function class $\mathcal{B}_{\Sigma}(\beta, \lambda)(0 \leq \beta<1, \lambda \geq 1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{\lambda+1}, \sqrt{\frac{2(1-\beta)}{2 \lambda+1}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\beta)}{2 \lambda+1}
$$

Remark 7. The bounds on $\left|a_{2}\right|,\left|a_{3}\right|$ given in Corollary 11 are better than those given in Theorem 4. Because

$$
\frac{2(1-\beta)}{(\lambda+1)} \leq \sqrt{\frac{2(1-\beta)}{2 \lambda+1}} \quad\left(\lambda \geq 1-2 \beta+\sqrt{4 \beta^{2}-6 \beta+2} ; \quad 0 \leq \beta \leq \frac{1}{3}\right)
$$

and

$$
\frac{2(1-\beta)}{(2 \lambda+1)} \leq \frac{4(1-\beta)^{2}}{(\lambda+1)^{2}}+\frac{2(1-\beta)}{2 \lambda+1} .
$$

References

[1] D. A. Brannan, J. Clunie, W. E. Kirwan, Coefficient estimates for a class of starlike functions, Can. J. Math. 22 (1970), 476-485.
[2] D. A. Brannan, J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, July 1-20, 1979, (Academic Press, New York and London, 1980).
[3] D. Breaz, N. Breaz, H. M. Sirvastava, An extention of the univalent conditions for a family of integral operators, Appl. Math. Lett. 22 (2009), 41-44.
[4] M. Chen, On the regular functions satisfying $\operatorname{Re}(f(z) / z)>\alpha$, Bull. Inst. Math. Acad. Sinica. 3 (1975), 65-70.
[5] P. L. Duren, Univalent functions, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[6] R. M. El-Ashwah, Subclasses of bi-univalent functions defined by convolution, J. Egyp. Math. Soc. 22 (2014), 348-351.
[7] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011) 1569-1573.
[8] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Am. Math. Soc. 104 (1962), 532-537.
[9] C. Selvaraj, G. Thirupathi, Coefficient bounds for a subclass of Bi-univalent functions using differential, Ann. Acad. Rom. Sci. Ser. Math. Appl. 6 (2014) 204213.
A. Zireh and S. Salehian - On the certain subclass of analytic ...
[10] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[11] T. S. Taha, Topics in Univalent Function Theory, Ph.D. Thesis, University of London, 1981.
[12] Q. H. Xu, Y. C. Gui, H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990994.

Ahmad Zireh
Department of Mathematics, University of Shahrood, Shahrood, Iran
email: azireh@gmail.com
Safa Salehian
Department of Mathematics, University of Shahrood,
Shahrood, Iran
email: salehian_gilan86@yahoo.com

