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FRACTIONAL CALCULUS OF K-BESSEL’S FUNCTION

K.S. Gehlot, S.D. Purohit

Abstract. This paper deals with the study of newly defended special function
known as k-Bessel’s function [2]. Certain relations that exists between k-Bessel’s
function and the Riemann-Liouville fractional integrals and differential operators
are investigated. It has also been shown that the fractional integrals and differential
operators transforms such functions with power multipliers into the function of the
same form.
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1. Introduction

The computation of fractional integrals (or derivatives) of special functions are im-
portant from the point of view of the usefulness of these results in the evaluation of
generalized integrals, and the solution of differential and integral equations. Frac-
tional integral formulas involving the Bessel function has been developed and play
an important role in several physical problems. In fact, Bessel function is an im-
portant in studying solutions of differential equations, and they are associated with
a wide range of problems in many areas of mathematical physics, like problems of
acoustics, radio physics, hydrodynamics, and atomic and nuclear physics. These
considerations have led various workers in the field of special functions for exploring
the possible extensions and applications for the Bessel function. A useful general-
ization of the Bessel function called as k-Bessel function has been introduced and
studied in [2]. Here we aim at presenting composition formulas of fractional calculus
operators and the k-Bessel function.

In 2007, Díaz and Pariguan [1] introduced the generalized k-Gamma Function
Γk(x) as

Γk(x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
(k > 0, x ∈ C\kZ−), (1)
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where (x)n,k is the k-Pochhammer symbol and is given by

(x)n,k = x(x+ k)(x+ 2k).....(x+ (n− 1)k), x ∈ C, k ∈ R, n ∈ N+. (2)

The integral form of generalized k-Gamma function is given by

Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt, x ∈ C, k ∈ R,<(x) > 0. (3)

It follows easily that

Γk(x) = k
x
k
−1Γ (

x

k
) (4)

and
Γk(x+ k) = xΓk(x). (5)

The Beta function ([3, p.19])∫ 1

0
tn−1(1− t)m−1dt =

Γ (n)Γ (m)

Γ (n+m)
(n,m > 0). (6)

k-Bessel function defined as [2]:

Jk±ϑ(z) =

∞∑
r=0

(−1)r( z2)2r±
ϑ
k

Γk(rk ± ϑ+ k)(r!)
, (7)

where k ∈ R+, ϑ ∈ I and ϑ > −k.

The fractional integrals of a function f(z) of order α ([4, Definition 2.1, P.33])
are defined as:

(Iα0+f)(z) =
1

Γ (α)

∫ z

0

f(t)

(z − t)1−α
dt (z > 0) (8)

and

(Iα−f)(z) =
1

Γ (α)

∫ ∞
z

f(t)

(t− z)1−α
dt (z > 0). (9)

Further, the fractional derivatives ([4, Definition 2.2, P. 35]) are defined as follow:

(Dα
0+f)(z) = (

d

dz
)[<(α)]+1(I

1−α+[<(α)]
0+ f)(z)

=
1

Γ (1− α+ [<(α)])
(
d

dz
)[<(α)]+1

∫ z

0

f(t)

(z − t)α−[<(α)]
dt (z > 0) (10)

and

(Dα
−f)(z) = (− d

dz
)[<(α)]+1(I

1−α+[<(α)]
− f)(z)

=
1

Γ (1− α+ [<(α)])
(− d

dz
)[<(α)]+1

∫ ∞
z

f(t)

(t− z)α−[<(α)]
dt (z > 0), (11)

where α ∈ C(<(α) > 0).
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2. Fractional integration of k-Bessel’s function

In this section, we establish image formulas for the k-Bessel function involving left
and right sided fractional integral operators (8) and (9), in term of the same function.
These formulas are given by the following theorems:

Theorem 1. Let k ∈ R+, a ∈ R, ϑ ∈ I, ϑ > −k and <(α) > 0, then the fractional
integral Iα0+ of k-Bessel’s function (7) is given by

(Iα0+[t
ϑ
2k Jkϑ(a

√
t)])(z) = kα(

a

2
)−αz

ϑ
2k

+α
2 Jkϑ+αk(a

√
z) (z > 0). (12)

Proof. Consider the left hand side (say A) and using the definitions (7) and (8), we
have

A ≡ (Iα0+[t
ϑ
2k Jkϑ(a

√
t)])(z)

≡ 1

Γ (α)

∫ z

0

t
ϑ
2k

(z − t)1−α
∞∑
r=0

(−1)r(a
√
t

2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
dt.

Interchanging the order of integration and summation, and then evaluating the inner
integral by substituting t = zu, we obtain

A ≡ 1

Γ (α)

∞∑
r=0

(−1)r(a2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
zr+α+

ϑ
k

∫ 1

0
ur+

ϑ
k (1− u)α−1du.

Now, on using (6) and (4), and rearranging the terms in above expression, we get
the following

A ≡ kα(
a

2
)−αz

ϑ
2k

+α
2 Jkϑ+αk(a

√
z),

which completes the proof of Theorem 1.

Further theorem involving the right hand sided fractional integration (9) of the
k-Bessel’s function (7) is given by the following result:

Theorem 2. Let k ∈ R+, a ∈ R, ϑ ∈ I, ϑ > −k and <(α) > 0, then the following
formula holds true:

(Iα−[t−
ϑ
2k
−α−1Jkϑ(

a√
t
)])(z) = kα(

a

2
)−αz

α
2
− ϑ

2k
−1Jkϑ+αk(

a√
z

) (z > 0). (13)

Proof. By virtue of the definitions (7) and (9), the left hand side (say B) of above
result, we obtain

B ≡ (Iα−[t−
ϑ
2k
−α−1Jkϑ(

a√
t
)])(z)
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≡ 1

Γ (α)

∫ ∞
z

t−
ϑ
2k
−α−1

(t− z)1−α
∞∑
r=0

(−1)r( a
2
√
t
)2r+

ϑ
k

Γk(rk + ϑ+ k)(r!)
dt,

which on interchanging the order of integration and summation, and evaluating the
inner integral by setting t = z

u , leads to

B ≡ 1

Γ (α)

∞∑
r=0

(−1)r(a2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
z−

ϑ
k
−r−1

∫ 1

0
u1+r+

ϑ
k (1− u)α−1du.

Upon using (6) and (4), we can easily arrive at the right hand side of result (13).

3. Fractional differentiation of k-Bessel’s function

We now give images of the k-Bessel’s function (7) under the fractional differential
operators. Again, we begin with the left hand sided fractional differentiation (10).

Theorem 3. Let k ∈ R+, a ∈ R, ϑ ∈ I, ϑ > −k and <(α) > 0, then the fractional
differentiation Dα

0+ of k-Bessel’s function is given as under:

(Dα
0+[t

ϑ
2k Jkϑ(a

√
t)])(z) = k−α(

a

2
)αz

ϑ
2k
−α

2 Jkϑ−αk(a
√
z) (z > 0). (14)

Proof. Letting n = [<(α)] + 1, where [<(α)] is an integer part of <(α), and using
the equations (7) and (10), the left hand side of result (14) (say C) reduces to

C ≡ (Dα
0+[t

ϑ
2k Jkϑ(a

√
t)])(z)

≡ 1

Γ (n− α)
(
d

dz
)n

∫ z

0

t
ϑ
2k

(z − t)1+α−n
∞∑
r=0

(−1)r(a
√
t

2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
dt.

Again, interchanging the order of integration and summation and evaluating the
inner integral by using t = zu, we obtain

C ≡ 1

Γ (n− α)

∞∑
r=0

(−1)r(a2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
(
d

dz
)n z

ϑ
k
+r−α+n

∫ 1

0
ur+

ϑ
k (1− u)n−α−1du.

Now, on using the differential formula, namely

(
d

dz
)n z

ϑ
k
+r−α+n =

Γ (ϑk + r − α+ n+ 1)

Γ (ϑk + r − α+ 1)
z
ϑ
k
+r−α,

and then taking (6) and (4) into account, we get

C ≡ k−α(
a

2
)αz

ϑ
2k
−α

2 Jkϑ−αk(a
√
z).
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The next result yields the right hand sided fractional differentiation of the k-
Bessel’s function (7).

Theorem 4. Let k ∈ R+, a ∈ R, ϑ ∈ I, ϑ > −k and <(α) > 0, then the fractional
differentiation Dα

− of k-Bessel’s function (7) is given for z > 0 by

(Dα
−[t−

ϑ
2k

+α−1Jkϑ(
a√
t
)])(z) = k−α(

a

2
)α z−

ϑ
2k
−α

2
−1Jkϑ−αk(

a√
z

). (15)

Proof. Setting n = [Re(α)] + 1, where [Re(α)] is an integer part of Re(α), and using
(7) and (11) the left hand side of result (15) (let D), yields to

D ≡ 1

Γ (n− α)
(− d

dz
)n

∫ ∞
z

t−
ϑ
2k

+α−1

(t− z)1+α−n
∞∑
r=0

(−1)r( a
2
√
t
)2r+

ϑ
k

Γk(rk + ϑ+ k)(r!)
dt,

which on interchanging the order of integration and summation and evaluating the
inner integral by taking t = z

u , leads to

D ≡ 1

Γ (n− α)

∞∑
r=0

(−1)r(a2 )2r+
ϑ
k

Γk(rk + ϑ+ k)(r!)
(− d

dz
)n zn−

ϑ
k
−r−1

∫ 1

0
u
ϑ
k
+r−n(1− u)n−α−1du.

Upon using the formula, namely

(
d

dz
)n zn−r−1−

ϑ
k =

Γ (n− r − ϑ
k )

Γ (−r − ϑ
k )

z−r−1−
ϑ
k ,

and definitions (6) and (4), then after certain simplifications we obtain

D ≡
∞∑
r=0

(−1)r(a2 )2r+
ϑ
k (−1)n z−

ϑ
k
−r−1

kαΓk(rk + (ϑ− αk) + k)(r!)

Γ (n− r − ϑ
k )Γ (ϑk + r − n+ 1)

Γ (ϑk + r + 1)Γ (−ϑ
k − r)

. (16)

On the other hand, if we use the reflection formula for the gamma function, namely
(see ([3, p. 21]),

Γ (1− (−ϑ
k
− r))Γ (−ϑ

k
− r) =

−π
sin(rπ + ϑ

kπ)
(17)

and

Γ (1− (n− r − ϑ

k
))Γ (n− r − ϑ

k
) =

π

sin(nπ − (r + ϑ
k )π)

Γ (1− (n− r − ϑ

k
))Γ (n− r − ϑ

k
) =

π

sin(nπ) cos(rπ + ϑ
kπ)− cos(nπ) sin(rπ + ϑ

kπ)
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Γ (1− (n− r − ϑ

k
))Γ (n− r − ϑ

k
) =

(−1)n+1π

sin(rπ + ϑ
kπ)

, (18)

in (16), we obtain

D ≡ k−α(
a

2
)α z−

ϑ
2k
−α

2
−1Jkϑ−αk(

a√
z

).

which completes the proof of Theorem 4.

4. Conclusion

The k-generalized Bessel function defined by (7), possess the advantage that the
Bessel function, trigonometric functions and hyperbolic functions happen to be the
particular cases of this function. Therefore, we conclude this paper with the re-
mark that, the results deduced above are significant and can lead to yield numerous
other fractional integrals (derivatives) involving the Bessel function and trigonomet-
ric functions by the suitable specializations of arbitrary parameters in the theorems.
More importantly, they are expected to find some applications to the solutions of
fractional differential and integral equations.
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