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THE INFLUENCE OF PARTIALLY S-EMBEDDED SUBGROUPS
ON THE STRUCTURE OF A FINITE GROUP

T. Zhao, G. Lu

Abstract. Let G be a finite group and H a subgroup of G, then H is said to
be s-permutable (respectively, s-semipermutable) in G if HP = PH hold for every
Sylow subgroup P (respectively, with (|P |, |H|) = 1) of G. Let HsG be the subgroup
of H generated by all those subgroups which are s-semipermutable in G, then we
say that H is partially S-embedded in G if G has a normal subgroup T such that
HT is s-permutable in G and T ∩H ≤ HsG. In this paper, some new criteria about
the p-nilpotency and supersolvability of a finite group G are obtained. A series of
known results in the literature are unified and generalized.

2000 Mathematics Subject Classification: 20D10, 20D20.

Keywords: s-permutable subgroup, s-semipermutable subgroup, partially S-
embedded subgroup, p-nilpotent group, supersolvable group.

1. Introduction

In this paper, all groups considered are finite and G stands for a finite group. Let F
be a formation, U and Np denote the class of all supersolvable groups and p-nilpotent
groups, respectively. GF stands for the F-residual of G, that is, the intersection of
all normal subgroups Ni of G such that G/Ni ∈ F .

The relations between the generalized normal subgroups and the structure of a
group is always a question of particular interest. Following Kegel [12], a subgroup
H is said to be s-permutable (or s-quasinormal [4]) in G, if HP = PH for every
Sylow subgroup P of G. On the other hand, Wang in [20] introduced the concept
of c-normal subgroup from the idea of the supplement subgroup: a subgroup H
is said to be c-normal in G if G has a normal subgroup T such that G = HT
and H ∩ T ≤ HG, where HG is the normal core of H in G. These two kind of
subgroups have been investigated extensively by many scholars. Recently, Guo et al
[8] integrated these two concepts and introduced that: a subgroup H is said to be S-
embedded in G if there exists a normal subgroup N such that HN is s-permutable
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in G and H ∩ N ≤ HsG, where HsG is the largest s-permutable subgroup of G
contained in H. As another generation of the s-permutable subgroup, Chen in [3]
introduced that: a subgroup H of a group G is said to be s-semipermutable (or
s-seminormal) in G if PH = HP holds for every Sylow subgroup P of G with
(|P |, |H|) = 1. By assuming that some subgroups of G satisfy the S-embedded
property or s-semipermutablity, many interesting results have been derived (see [8],
[9], [24], [25] etc.). Motivated by the above research, we now introduce the following
new concept, which can cover the s-permutable, s-semipermutable and S-embedded
subgroups properly.

Definition 1. A subgroup H of G is said to be partially S-embedded in G, if G has
a normal subgroup T such that HT is s-permutable in G and H ∩ T ≤ HsG, where
HsG is generated by all those subgroups of H which are s-semipermutable in G.

It is easy to see that HsG is an s-semipermutable subgroup of G. Besides that,
from our Definition 1, we know every S-embedded subgroup and s-semipermutable
subgroup of G is partially S-embedded in G. In general, a partially S-embedded
subgroup of G need not to be S-embedded or s-semipermutable in G. For instance:

Example 1. Let G = S5 be the symmetric group of degree 5. Since H = S4
permutes with every Sylow 5-subgroup of G, H is s-semipermutable and thus partially
S-embedded in G. Since H and H ∩A5 = A4 are not subnormal in G, they are not
s-permutable in G. Hence from the fact that the only nontrivial normal subgroups
of G are A5 and G itself, we know H = S4 is not S-embedded in G.

Example 2. Let G = S5, K = 〈(12)〉 and T = A5. Since T E G, KT = G and
K ∩ T = 1 ≤ KsG, K is partially S-embedded in G. But the fact K〈(12345)〉 6=
〈(12345)〉K implies that K is not s-semipermutable in G.

In this paper, some results about the influence of partially S-embedded subgroups
on the structure of a finite group are given, a series of known results are generalized.

2. Preliminaries

Lemma 1. ([12]) Suppose that H is an s-permutable subgroup of G and N EG.

(1) If K ≤ G, then H ∩K is s-permutable in K.

(2) HN and H ∩N are s-permutable in G, HN/N is s-permutable in G/N .

(3) H is subnormal in G.

(4) If H is a p-group for some prime p, then NG(H) ≥ Op(G).
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Lemma 2. ([25]) Let G be a group and H ≤ K ≤ G.

(1) If H is s-semipermutable in G, then H is s-semipermutable in K.

(2) Suppose that N is normal in G, and H is a p-group. If H is s-semipermutable
in G, then HN/N is s-semipermutable in G/N .

(3) If H is an s-semipermutable and K a quasinormal subgroup of G, then H ∩K
is s-semipermutable in G.

Now, we prove that:

Lemma 3. Suppose that H is a partially S-embedded subgroup of G.

(1) If H ≤ K ≤ G, then H is partially S-embedded in K.

(2) Let H be a p-group and N E G. If N ≤ H or (p, |N |) = 1, then HN/N is
partially S-embedded in G/N .

Proof. Suppose that T EG, HT is s-permutable in G and H ∩ T ≤ HsG.
(1) Clearly, K∩T is a normal subgroup of K. By Lemmas 1 and 2, we know that

H(K∩T ) = K∩HT is s-permutable in K and H ∩ (K∩T ) = H ∩T ≤ HsG ≤ HsK .
Hence, H is partially S-embedded in K.

(2) It is easy to see that TN/N E G/N and (HN/N)(TN/N) = HTN/N is
s-permutable in G/N . If N ≤ H, then H/N ∩ TN/N = (H ∩ T )N/N ≤ HsGN/N .
If N is a p′-group, then

|H ∩ TN | = |H| · |TN |p
|HTN |p

=
|H| · |T |p
|HT |p

= |H ∩ T |.

This implies that H ∩ TN = H ∩ T , we also conclude that (HN/N) ∩ (TN/N) =
(HN∩TN)/N = (H∩TN)N/N = (H∩T )N/N ≤ HsGN/N . By Lemma 2, we know
that HsGN/N is s-semipermutable in G/N . Hence, HN/N is partially S-embedded
in G/N in any case.

Lemma 4. ([25, Lemma 3]) Let H be a subnormal p-subgroup of G. If H is
s-semipermutable in G, then H is s-permutable in G.

The following result is well known

Lemma 5. Let G be a group and p a prime dividing |G| with (|G|, p − 1) = 1. If
G has cyclic Sylow p-subgroup, then G is p-nilpotent.

Lemma 6. ([5, A, Lemma 1.2]) Let U , V and W be subgroups of a group G. Then
the following statements are equivalent:

(a) U ∩ VW = (U ∩ V )(U ∩W );

(b) UV ∩ UW = U(V ∩W ).
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3. Main results

Theorem 7. Let P be a Sylow p-subgroup of a group G, where p ∈ π(G) and
(|G|, p − 1) = 1. Then G is p-nilpotent if and only if every maximal subgroup of P
is partially S-embedded in G.

Proof. The necessity is obvious, we need to prove only the sufficiency. Suppose that
the result is false and let G be a counterexample of minimal order. Then we have:

(1) P is not cyclic and G is not a non-abelian simple group.
By Lemma 5, we may assume that P is not cyclic. Let P1 be a maximal subgroup

of P , by hypothesis we know P1 is partially S-embedded in G. Then there exists
a normal subgroup K1 of G such that P1K1 is an s-permutable subgroup of G and
P1 ∩ K1 ≤ (P1)sG. If G is a non-abelian simple group, then K1 = 1 or G. First
assume that K1 = 1, in this case, P1 = P1K1 is s-permutable in G. Hence P1 is
a proper subnormal subgroup of G, which is a contradiction. Thus K1 = G and
therefore P1 = P1 ∩K1 = (P1)sG is s-semipermutable in G. The above statements
hold for every maximal subgroup of P . In other words, all maximal subgroups of P
are s-semipermutable in G.

Let H be any nontrivial subgroup of P , we consider NG(H). Suppose that
S1 ∈ Sylp(NG(H)) and Q1 ∈ Sylq(NG(H)) for any prime q 6= p. Let Q be a Sylow
q-subgroup of G containing Q1, then every maximal subgroup of P is permutable
with Q. Since P is not cyclic, P = P1P2 for some maximal subgroups P1 and P2

of P . Thus PQ = P1P2Q = QP1P2 = QP is a proper Hall subgroup of G, as
PQ is solvable. It is easy to see that PQ satisfies the hypothesis of the theorem.
Then the minimal choice of G implies that PQ is p-nilpotent. Hence Q E PQ and
Q1 = Q ∩NPQ(H) ENPQ(H). We conclude that HQ1 = H ×Q1 for any Sylow q-
subgroup Q1 of NG(H) with q 6= p. Hence NG(H) is p-nilpotent. From the Frobenius
Theorem [10, IV, Theorem 5.8], we know G is p-nilpotent. This contradiction implies
that G is not a non-abelian simple group.

(2) G has a unique minimal normal subgroup N , G/N is p-nilpotent and Φ(G) =
1.

Let N be a minimal normal subgroup of G and M/N a maximal subgroup of
PN/N . It is easy to see that M = P1N for some maximal subgroup P1 of P and
P ∩ N = P1 ∩ N is a Sylow p-subgroup of N . Since P1 is partially S-embedded
in G, there exists a normal subgroup K of G such that P1K is s-permutable in G
and P1 ∩K ≤ (P1)sG. Clearly, KN/N is a normal subgroup of G/N and P1N/N ·
KN/N = P1KN/N is s-permutable in G/N . Moreover, since P1 ∩ N is a Sylow
p-subgroup of N , |(P1 ∩N)(K ∩N)|p = |P1 ∩N | = |N |p = |N ∩ P1K|p and

|P1K ∩N |p′ =
|P1K|p′ · |N |p′
|P1KN |p′

=
|K|p′ · |N |p′
|KN |p′

= |K ∩N |p′ = |(P1 ∩N)(K ∩N)|p′ .
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This implies that (P1 ∩ N)(K ∩ N) = P1K ∩ N . Thus by Lemma 6, we have
P1N ∩KN = (P1 ∩K)N . Then it follows from Lemma 2 that P1N/N ∩KN/N =
(P1∩K)N/N ≤ (P1)sGN/N ≤ (P1N/N)s(G/N), and soM/N is partially S-embedded
in G/N . Therefore, G/N satisfies the hypothesis and so it is p-nilpotent by the
minimal choice of G. Since the class of all p-nilpotent groups formed a saturated
formation, N is the unique minimal normal subgroup of G and Φ(G) = 1.

(3) Op′(G) = Op(G) = 1 and N is not p-nilpotent.
If Op′(G) 6= 1, then by (2) we know N ≤ Op′(G) and G/Op′(G) is p-nilpotent.

Hence G is p-nilpotent, a contradiction. If Op(G) 6= 1, then N ≤ Op(G) is an
elementary abelian p-group. Since Φ(G) = 1, G has a maximal subgroup M such
that G = MN and M ∩N = 1. From the unique minimal normality of N , we can
easily deduce that N = Op(G). Since P = N(P ∩M) and N ∩M = 1, P ∩M is
a Sylow p-subgroup of M and there exists a maximal subgroup P1 of P such that
P ∩M ≤ P1 and P = NP1. Since P1 is partially S-embedded in G, there exists some
normal subgroup T of G such that P1T is s-permutable in G and P1 ∩ T ≤ (P1)sG.
If T = 1, then P1 = P1T is s-permutable in G. It follows from Lemma 1(3) that
P1 ≤ Op(G) = N and so P = P1N = N is a minimal normal subgroup of G. Since
NG(P1) ≥ Op(G) by Lemma 1(4) and P1 E P , P1 is a proper normal subgroup of G
contained in P = Op(G), a contradiction. Thus, T 6= 1 and so N ≤ T . In this case,
P1∩T = (P1)sG∩T is s-semipermutable in G. Therefore, for any Sylow q-subgroup
Q of G with q 6= p, we have

N ∩ P1 = N ∩ P1 ∩ T = N ∩ (P1 ∩ T )QE (P1 ∩ T )Q.

Hence Q ≤ NG(N∩P1) and then Op(G) ≤ NG(N∩P1). Since N∩P1EP , it is normal
in G. Thus N ∩P1 = 1 and |N | = p. Let C/N be the normal p-complement of G/N ,
then N is a cyclic Sylow p-subgroup of C. By Lemma 5, C is p-nilpotent and the
normal p-complement of C is also the normal p-complement of G, a contradiction.

If N is p-nilpotent, then Np′ char N E G, so Np′ ≤ Op′(G) = 1. Thus N is a
p-group and so N ≤ Op(G) = 1, a contradiction too.

(4) G = PN .
By Lemma 3, we know PN satisfies the hypothesis of the theorem. Therefore,

PN is p-nilpotent if PN < G. It follows that N is p-nilpotent, which contradicts
with (3). Hence, we have G = PN and N = Op(G).

(5) The final contradiction.
Since N is non-solvable, N = S1 × S2 × · · · × Sk is a direct product of some

isomorphic non-abelian simple groups Si. By (1) and (4), we know N < G and
P ∩ N < P . Thus there exists some maximal subgroup P1 of P such that Sp =
P ∩ S1 ≤ P1, where Sp is a Sylow p-subgroup of S1. By hypothesis, there exists a
normal subgroup T of G such that P1T is s-permutable in G and P1 ∩ T ≤ (P1)sG.

201



T. Zhao, G. Lu – Partially S-embedded subgroups of a finite group

If T = 1, then P1 is s-permutable in G and so Op(G) 6= 1, this contradicts with
(3). Thus T 6= 1 and the uniqueness of N implies that N ≤ T . If P1 ∩ T = 1, then
|T |p ≤ p. Hence by Lemma 5, we know T is p-nilpotent and so N is p-nilpotent. This
contradiction shows that P1∩T 6= 1 and P1∩T = (P1)sG∩T is s-semipermutable in
G. Then for any prime divisor q of |G| different from p and any Sylow q-subgroup
Q of G, (P1 ∩ T )Q = Q(P1 ∩ T ) is a subgroup of G. Since

|Q ∩ P1T | =
|Q| · |P1T |q
|QP1T |q

=
|Q| · |T |q
|QT |q

= |Q ∩ T | = |(Q ∩ P1)(Q ∩ T )|

and (Q∩P1)(Q∩T ) ⊆ Q∩P1T , Q∩P1T = (Q∩P1)(Q∩T ). By Lemma 6, we have
QP1 ∩QT = Q(P1 ∩ T ). Therefore, N ∩ P1Q = N ∩ (P1Q ∩ TQ) = N ∩ (P1 ∩ T )Q.
This implies that S1 ∩ (P1 ∩ T ) = S1 ∩ P1 = Sp is a Sylow p-subgroup and S1 ∩ Q
is a Sylow q-subgroup of S1. Thus for any prime q 6= p, S1 ∩ (P1 ∩ T )Q is a Hall
{p, q}-subgroup of S1. Since N is non-abelian and (|N |, p− 1) = 1, p = 2. Then for
any prime divisor q 6= 2 of |S1|, the non-abelian simple group S1 has a Hall {2, q}-
subgroup, which contradicts with [14, Lemma 2.6]. This contradiction completes
the proof of the theorem.

If we replace the condition that “(|G|, p − 1) = 1” with “NG(P ) is p-nilpotent”
in Theorem 7, we can also get the following similar result:

Theorem 8. Let p be a prime divisor and P a Sylow p-subgroup of G. If NG(P )
is p-nilpotent and every maximal subgroup of P is partially S-embedded in G, then
G is p-nilpotent.

Proof. If p = minπ(G), then by Theorem 7 we know that G is p-nilpotent. Hence
we only need to consider the case that p 6= minπ(G) (and so p is an odd prime).
Assume that the result is false and let G be a counterexample of minimal order.
Then we have:

(1) Every proper subgroup of G containing P is p-nilpotent.
Let M be a proper subgroup of G containing P . Since NM (P ) ≤ NG(P ) is

p-nilpotent, by Lemma 3 we know M satisfies the hypothesis of the theorem. Thus,
the minimal choice of G implies that M is p-nilpotent.

(2) Op′ (G) = 1.
Suppose that Op′ (G) 6= 1, then POp′ (G)/Op′ (G) is a Sylow p-subgroup of

G/Op′ (G) and NG/O
p
′ (G)(POp′ (G)/Op′ (G)) = NG(P )Op′ (G)/Op′ (G) is p-nilpotent.

Let T/Op′ (G) be a maximal subgroup of POp′ (G)/Op′ (G), then T = P1Op′ (G) holds
for some maximal subgroup P1 of P . By Lemma 3, we know P1Op′ (G)/Op′ (G) is
partially S-embedded in G/Op′ (G). This shows that G/Op′ (G) satisfies the hypoth-
esis of the theorem. Then G/Op′ (G) is p-nilpotent by induction, which implies that
G is also p-nilpotent, a contradiction. This contradiction shows that Op′ (G) = 1.
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(3) G = PQ is solvable and 1 < Op(G) < P , where Q is a Sylow q-subgroup of
G with q 6= p.

Since G is not p-nilpotent, by Thompson’s theorem [17, Theorem 10.4.1], there
exists a nontrivial characteristic subgroup H of P such that NG(H) is not p-
nilpotent. Since NG(P ) is p-nilpotent, we may choose H satisfying that NG(H)
is not p-nilpotent, but NG(K) is p-nilpotent for every characteristic subgroup K of
P containing H. Obviously, NG(P ) ≤ NG(H). Then by (1), NG(H) = G. There-
fore, we have H ≤ Op(G) < K. Now by the Thompson’s theorem again, we see
that G/Op(G) is p-nilpotent, and so G is p-solvable. By [6, VI, Theorem 3.5], there
exists a Sylow q-subgroup Q of G such that PQ is a subgroup of G, where q is a
prime divisor of |G| which is different from p. If PQ < G, then PQ is p-nilpotent
by (1). This implies that Q ≤ CG(Op(G)) ≤ Op(G), a contradiction. Thus G = PQ
and (3) holds.

(4) G has a unique minimal normal subgroup N such that G = [N ]M , where
M is a maximal subgroup of G and N = Op(G) = F (G).

Let N be a minimal normal subgroup of G. Then by (2) and (3), N is an
elementary abelian p-group and N ≤ Op(G). It is easy to see that G/N satisfies
the hypothesis of the theorem. Then the minimal choice of G implies that G/N is
p-nilpotent. Since the class of all p-nilpotent groups formed a saturated formation,
N is the unique minimal normal subgroup of G and N � Φ(G). Thus, there exists
a maximal subgroup M of G such that G = MN . Since Op(G) ≤ F (G) ≤ CG(N)
and CG(N) ∩M EG, we can deduce that N = Op(G) = F (G).

(5) N is a cyclic group of order p.
Let Mp be a Sylow p-subgroup of M , then P = NMp and N ∩Mp = 1. Let

P1 be a maximal subgroup of P containing Mp. If P1 = 1, then |N | = |P | = p.
Now suppose that P1 6= 1. By hypothesis, there exists some normal subgroup K
of G such that P1K is s-permutable in G and P1 ∩ K ≤ (P1)sG. If K = 1, then
P1 = P1K is s-permutable in G which implies that P1 ≤ Op(G) = N . Therefore, we
have P = NP1 = N , which is contradict with (3). Thus, K 6= 1 and then N ≤ K.
In this case, P1 ∩K = (P1)sG ∩K is s-semipermutable in G and

N ∩ P1 = N ∩ P1 ∩K = N ∩ (P1 ∩K)QE (P1 ∩K)Q.

Hence, we conclude that Q ≤ NG(N ∩ P1). Since P1 ∩ N E P , it is normal in G.
Thus, the minimal normality of N implies that P1 ∩N = 1 and so |N | = p.

(6) The final contradiction.
By (4) and (5), we know M ∼= G/N = NG(N)/CG(N) is isomorphic with some

subgroup of Aut(P ), which is a cyclic group of order p − 1. Hence M and in
particularly, Q is a cyclic group. It follows form [17, Theorem 10.1.9] that G is
q-nilpotent, in other words, P EG. Then by hypothesis, NG(P ) = G is p-nilpotent.
This contradiction completes the proof of the theorem.
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Next, by using the partially S-embedded properties of some subgroups, we give
out some new criteria for the supersolvability of a group G.

Theorem 9. Let F be a saturated formation containing the class of all supersolvable
groups U . Then a group G ∈ F if and only if there exists a normal subgroup E of
G such that G/E ∈ F and every maximal subgroup of any noncyclic Sylow subgroup
of E is partially S-embedded in G.

Proof. The necessity is obvious, we need to prove only the sufficiency. Suppose that
the result is false and let G be a counterexample with |G||E| minimal. Then we
have:

(1) E is solvable and QEG, where q = maxπ(E) and Q ∈ Sylq(E).
Let p = minπ(E) and P a Sylow p-subgroup of E. If P is cyclic, then E is

p-nilpotent by Lemma 5. Now suppose that P is not cyclic and P1 is a maximal
subgroup of P . Then by hypothesis, P1 is partially S-embedded in G. Thus it
is partially S-embedded in E by Lemma 3. From Theorem 7, we know E is p-
nilpotent. Let K be the normal p-complement of E. By hypothesis and Lemma 3,
we can deduce that every maximal subgroup of any non-cyclic Sylow subgroup of
K is partially S-embedded in K. Thus, we can conclude that E is a Sylow tower
group of supersolvable type and so it is solvable. Let q be the largest prime divisor
and Q a Sylow q-subgroup of E. Since Q char E EG, Q is normal in G.

(2) There is a unique minimal normal subgroupN ofG contained in E, G/N ∈ F
and Φ(G) = 1.

Let N be a minimal normal subgroup of G contained in E. Since E is solvable, N
is an elementary abelian p-group, where p is a prime. Obviously, (G/N)/(E/N) ∼=
G/E ∈ F . Let T/N be a noncyclic Sylow r-subgroup of E/N and T1/N a maximal
subgroup of T/N , where r is a prime divisor of |E/N |. If r = p, then T is a
noncyclic Sylow p-subgroup of E and T1 is a maximal subgroup of T containing N .
By hypothesis, T1 is partially S-embedded in G. So T1/N is partially S-embedded
in G/N by Lemma 3. Now suppose that r 6= p. In this case there exists a Sylow
r-subgroup R of E such that T = RN . Let R1 = R ∩ T1, then R1 is a maximal
subgroup of R and T1 = R1N . Therefore, R1 is partially S-embedded in G and so
T1/N is partially S-embedded in G/N . This shows that (G/N,E/N) satisfies the
hypothesis of the theorem. Then the minimal choice of G implies that G/N ∈ F .
Since F is a saturated formation, N is the unique minimal normal subgroup of G
contained in E and N � Φ(G). Therefore, Φ(G) = 1.

(3) N = Q = F (E) is not a cyclic group, G = [N ]M hold for some maximal
subgroup M of G.

Since Φ(G) = 1, there exists a maximal subgroup M of G such that G = [N ]M .
Since C = CE(N) = CG(N)∩EEG, (C∩M)G = (C∩M)NM = (C∩M)M = C∩M ,
i.e., C ∩M is a normal subgroup of G. It follows that C ∩M = 1 and C = N . Since
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N ≤ Oq(E) ≤ F (E) ≤ F (G) ≤ CG(N), N = F (E) = Q. In view of (2), G/N ∈ F .
By [18, Lemma 2.16], we may assume that N is not cyclic.

(4) The final contradiction.
Let Mq be a Sylow q-subgroup of M and Gq = NMq. Since G = [N ]M and

N is not cyclic, Gq is a noncyclic Sylow q-subgroup of G. Let Q1 be a maximal
subgroup of Gq containing Mq and N1 = N ∩ Q1, then N1 E Gq. Since |N : N1| =
|N : N ∩ Q1| = |NQ1 : Q1| = |Gq : Q1| = q, N1 is a maximal subgroup of N . By
hypothesis, there exists a normal subgroup K of G such that N1K is s-permutable
in G and N1 ∩K ≤ (N1)sG. In view of (2), we see that N ∩K = 1 or N ≤ K. If
N ∩ K = 1, then N1 = N1(N ∩ K) = N ∩ N1K is s-permutable in G by Lemma
1(2). If N ≤ K, then N1 = N1 ∩ K = (N1)sG is s-semipermutable in G. By
Lemma 4, we also have that N1 is s-permutable in G. Consequently, by Lemma
1(4), NG(N1) ≥ Oq(G). On the other hand, N1 = N ∩Q1 EGq. This implies that
N1 EG. Thus N1 = 1 and |N | = q, which contradicts with (3). This contradiction
completes the proof of the theorem.

From our Theorem 9, when F = U we have:

Corollary 10. A group G is supersolvable if and only if there is a normal subgroup
E such that G/E is supersolvable, and every maximal subgroup of any noncyclic
Sylow subgroup of E is partially S-embedded in G.

We use F ∗(G) to denote the generalized Fitting subgroup of G, i.e., F ∗(G) =
F (G)E(G), where F (G) is the Fitting subgroup and E(G) is the layer of G.

Theorem 11. Let F be a saturated formation containing U . Then G ∈ F if and
only if G has a normal subgroup E such that G/E ∈ F , and every maximal subgroup
of any non-cyclic Sylow subgroup of F ∗(E) is partially S-embedded in G.

Proof. The necessity is obvious, we need to prove only the sufficiency. Assume that
the result is false and let (G,E) be a counterexample with |G||E| minimal. Let
F = F (E) and F ∗ = F ∗(E). We use p to denote the minimal prime divisor of
|F ∗(E)| and let P be a Sylow p-subgroup of F ∗(E).

If P is cyclic, then by [10, IV, Theorem 2.8], we know that F ∗(E) is p-nilpotent.
Now we assume that P is not cyclic, by hypothesis and Lemma 3, we have every
maximal subgroup of P is partially S-embedded in F ∗(E). By Corollary 10, we
can also deduce that F ∗(E) is p-nilpotent. Therefore, we know that F ∗ = F is
solvable. If F = E, then G ∈ F by Theorem 9, which contradict with the choice of
G. Hence we may assume that F ∗ = F 6= E. Now by [11, X, Theorem 13.11], we
have CE(F ) = CE(F ∗) ≤ F . Since F ∗ = F is a solvable normal subgroup of G, by
hypothesis and Lemma 4 we can easily deduce that every maximal subgroup of any
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non-cyclic Sylow subgroup of F ∗ is S-embedded in G. Now, from [8, Theorem D],
we can conclude that G ∈ F , as required.

From the partially S-embedded properties of some subgroups, we can also char-
acterize the nilpotency of a finite group G:

Theorem 12. A group G is nilpotent if and only if for every prime p ∈ π(G)
and every Sylow p-subgroup P of G, NG(P )/CG(P ) is a p-group and every maximal
subgroup of P is partially S-embedded in G.

Proof. The necessity is obvious, we need to prove only the sufficiency. By Corollary
10, we know G is supersolvable. Let q be the largest prime divisor and Q a Sylow
q-subgroup of G, then clearly we have QEG.

Let N be a minimal normal subgroup of G contained in Q and P a Sylow p-
subgroup of G = G/N , then there exists a Sylow p-subgroup P of G such that
P = PN/N . Obviously, NG(P ) = NG(P )N/N and CG(P ) ≥ CG(P )N/N . Hence
NG(P )/CG(P ) is a p-group. Let R1/N be a maximal subgroup of PN/N . If p = q,
then N ≤ P and R1 is a maximal subgroup of P . By hypothesis, R1 is partially
S-embedded in G, so R1/N is partially S-embedded in G/N . If p 6= q, then R1 =
R1 ∩ PN = (R1 ∩ P )N and R1 ∩ P is a maximal subgroup of P . By hypothesis,
R1∩P is partially S-embedded in G, consequently R1/N = (R1∩P )N/N is partially
S-embedded in G/N by Lemma 3. This shows that G/N satisfies the hypothesis of
the theorem. Thus G/N is nilpotent by induction. Since the class of all nilpotent
groups formed a saturated formation, N is a unique minimal normal subgroup of G
contained in Q and Φ(G) = 1. Hence there exists a maximal subgroup M such that
G = NM . Since G is solvable, N is an elementary abelian group and so N ∩M = 1.
Then we have Q = Q ∩ NM = N(Q ∩M) and Q ∩M ≤ Q ≤ F (G) ≤ CG(N).
Thus (Q ∩M)G = (Q ∩M)MN = Q ∩M , i.e., Q ∩M EG. Therefore, we conclude
that Q ∩M = 1, N = Q and Q ≤ CG(Q). The condition NG(Q)/CG(Q) is a q-
group implies that NG(Q) = CG(Q) = G. Consequently, Q ≤ Z(G). Since G/Q is
nilpotent, G is nilpotent as well, as required.

4. Some applications

Our Theorems 7, 9 and 11 generalized main results of a large number of papers.
For example, since all s-permutable (or π-quasinormal) subgroups and c-normal
subgroups of G are partially S-embedded in G, by Theorems 9 and 11 we have

Corollary 13. ([19]) Let G be a finite group with the property that maximal sub-
groups of Sylow subgroups are π-quasinormal in G for π = π(G). Then G is super-
solvable.
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Corollary 14. ([2]) If G/H is supersolvable and all maximal subgroups of any
Sylow subgroup of H are π-quasinormal in G, then G is supersolvable.

Corollary 15. ([1]) Let F be a saturated formation containing U . Suppose that G
is a group with normal subgroup H such that G/H ∈ F . If all maximal subgroups
of all Sylow subgroups of H are π-permutable in G, then G ∈ F .

Corollary 16. ([16]) Assume that G is solvable and every maximal subgroup of
the Sylow subgroups of F (G) is π-quasinormal in G. Then G is supersolvable.

Corollary 17. ([2]) Let G be a solvable group. If G/H is supersolvable and all
maximal subgroups of any SyIow subgroup of F (H) are π-quasinormal in G, then G
is supersolvable.

Corollary 18. ([15]) Let F be a saturated formation containing U . Suppose that G
is a group with a normal subgroup H such that G/H ∈ F , and all maximal subgroups
of any Sylow subgroup of F ∗(E) are π-quasinormal in G, then G ∈ F .

Corollary 19. ([20]) Let G be a finite group. Suppose P1 is c-normal in G for
every Sylow subgroup P of G and every maximal subgroup P1 of P . Then G is
supersolvable.

Corollary 20. ([13]) Let G be a solvable group. If H is a normal subgroup of G
such that G/H is supersolvable and all maximal subgroups of any Sylow subgroup of
F (H) are c-ncrmal in G, then G is supersolvable.

Corollary 21. ([21]) Let F be a saturated formation containing U . Suppose that
G is a group with a solvable normal subgroup H such that G/H ∈ F . If all maximal
subgroups of all Sylow subgroups of F (E) are c-normal in G, then G ∈ F .

Corollary 22. ([22]) Let F be a saturated formation containing U . Suppose that G
is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroups
of any Sylow subgroup of F ∗(E) are c-normal in G, then G ∈ F .

Following [7], a subgroup H is said to be nearly s-normal in G, if there exists
a normal subgroup N of G such that HN E G and H ∩ N ≤ HsG, where HsG

is the maximal s-permutable subgroup of G contained in H. From the definition
we know a nearly s-normal subgroup of G is S-embedded in G, then it is partially
S-embedded in G and we have

Corollary 23. ([7]) A group G is supersoluble if and only if there exists a normal
subgroup H of G such that G/H is supersoluble and every maximal subgroup of every
noncyclic Sylow subgroup of H is nearly s-normal in G.
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Corollary 24. ([9]) A group G is supersoluble if and only if there exists a normal
subgroup H of G such that G/H is supersoluble and all maximal subgroups of every
noncyclic Sylow subgroup of H are S-embedded in G.
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