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S1−PARACOMPACTNESS WITH RESPECT TO AN IDEAL
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Abstract. In this paper, we study S1−paracompact spaces in ideal topological
spaces and give new characterizations of such spaces. Also, we generalize some
of its properties in ideal topological spaces. We study subsets and subspaces of
S1I−paracompact spaces and discuss their properties. Also, we investigate the
invariants of S1I−paracompact spaces by functions.
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1. Introduction and Preliminaries

In 2011, Al-Zoubi and Rawashdeh introduced and studied the concept of S1−para-
compact spaces. A space (X, τ) is said to be S1−paracompact space [2] if every
semiopen cover of X has a locally finite open refinement. In this paper, we introduce
a new class of spaces, called S1I−paracompact spaces. We give some characteriza-
tions of these spaces and investigate the relation between S1I−paracompact spaces
and I−paracompact spaces.

The subject of ideals in topological spaces has been studied by Kuratowski
[15] and Vaidyanathaswamy [22]. An ideal I on a set X is a nonempty collection of
subsets of X which satisfies (i) A ∈ I and B ⊂ A implies B ∈ I and (ii) A ∈ I and
B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ) with an ideal I on X
and if ℘(X) is the set of all subsets of X, a set operator ()? : ℘(X)→ ℘(X), called
a local function [13] of A with respect to τ and I, is defined as follows: for A ⊂ X,
A?(I, τ) = {x ∈ X | U ∩ A /∈ I for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}.
A Kuratowski closure operator cl?() for a topology τ?(I, τ), called ?−topology, finer
than τ is defined by cl?(A) = A ∪ A?(I, τ) [13] and β = {U − I | U ∈ τ and I ∈ I}
is a basis for τ? [13]. We simply write τ? for τ?(I, τ). If I is an ideal on X, then
(X, τ, I) is called an ideal space. If β = τ?, then we say I is τ−simple [13]. A
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sufficient condition for I to be simple is the following: for A ⊆ X, if for every a ∈ A
there exists U ∈ τ(a) such that U ∩ A ∈ I, then A ∈ I. If (X, τ, I) satisfies this
condition, then τ is said to be compatible with respect to I [13] or I is said to be
τ−local, denoted by I ∼ τ. Given a space (X, τ, I), we say I is τ−boundary [13] or
τ−codense if I ∩ τ = {∅}, that is, each member of I has empty τ−interior. An ideal
I is completely codense [10] if I ⊂ N where N is the ideal of nowhere dense subsets
in (X, τ). An ideal I is said to be weakly τ−local [14] if A? = ∅ implies A ∈ I. I is
called τ−locally finite [12] if the union of each τ−locally finite family contained in
I belongs to I.

We always mean a topological space (X, τ) with no separation properties as-
sumed. A subset A is said to be semiopen [16], (resp. regular open, α−open [17],
preopen [7], semipreopen [8]) in (X, τ) if A ⊂ cl(int(A)) (resp. A = int(cl(A)),
A ⊂ int(cl(int(A))), A ⊂ int(cl(A)), A ⊂ cl(int(cl(A)))). The union of any family
of semiopen subsets of (X, τ) is semiopen [16]. The complement of a semiopen (resp.
regular open) set is said to be semiclosed [6] (resp. regular closed). The semiclo-
sure of A, denoted by scl(A) [7] is defined by the intersection of all semiclosed sets
containing A. A subset A is said to be semiregular [8] if it is both semiopen and
semiclosed. The family of all semiopen (resp. semiclosed, semiregular, regular open,
regular closed, preopen) sets is denoted by SO(X) (resp. SC(X), SR(X), RO(X),
RC(X), PO(X)). A space (X, τ) is said to be extremally disconnected(E.D) if the
closure of every open set in (X, τ) is open. A space (X, τ) is said to be semiregular
[9] if for each semiclosed set F and each point x /∈ F, there exist disjoint semiopen
sets U and V such that x ∈ U and F ⊆ V . This is equivalent to for each U ∈ SO(X)
and for each x ∈ U, there exists V ∈ SO(X) such that x ∈ V ⊆ scl(V ) ⊆ U. The
family of α-sets of a space (X, τ), denoted by τα, forms a topology on X, finer than
τ . A function f : (X, τ) → (Y, σ) is said to be irresolute [7] (resp. semicontinuous
[16], strongly semicontinuous [1]) if the inverse image of every semiopen (resp. open,
semiopen) set is semiopen (resp. semiopen, open). A function f : (X, τ) → (Y, σ)
is said to be presemiopen [6] if f(U) ∈ SO(Y ) for every U ∈ SO(X). A function
f : (X, τ) → (Y, σ) is said to be almost open [23] if f−1(cl(V )) ⊂ cl(f−1(V )) for
every open subset V of Y. A function f : (X, τ) → (Y, σ) is said to be almost-
closed [21] if f(F ) is closed in Y for every regular closed set F of X. A function
f : (X, τ)→ (Y, σ) is said to be semi-closed [20] if f(F ) is semiclosed in Y for every
closed set F of X. A subset S of a space X is said to be N−closed relative to X
(N−closed) [5] if for every cover {Uα | α ∈M} of S by open sets of X, there exists
a finite subfamily M0 of M such that S ⊂

⋃
{int(cl(Uα)) | α ∈M0}. The following

lemmas will be useful in the sequel.

Lemma 1. [2] Let (X, τ) be an E.D. semiregular space. Then
(a) SO(X, τ) = τ.
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(b) (X, τ) is regular.

Lemma 2. (a) If A is an open set in (X, τ) and B ∈ SO(X, τ), then A ∩ B ∈
SO(X, τ). [18]
(b) Let (A, τA) be a subspace of a space (X, τ) and B ⊂ A. If A ∈ τ and B ∈
SO(A, τA), then B ∈ SO(X, τ). [7]

Lemma 3. [17] For any space (X, τ), SO(X, τα) = SO(X, τ).

Lemma 4. [18] Let A and X0 be subsets of X such that A ⊂ X0 and X0 ∈ SO(X).
Then A ∈ SO(X) if and only if A ∈ SO(X0).

Lemma 5. [4] If {Aα | α ∈M} is a locally finite family of subsets in a space X, and
if Bα ⊂ Aα for each α ∈M, then the family {Bα | α ∈M} is a locally finite in X.

Lemma 6. [3] The union of a finite family of locally finite collection of sets in a
space is locally finite family of sets.

Lemma 7. [19] Let f : X → Y be almost closed surjection with N−closed point
inverses. If {Uα | α ∈M} is a locally finite open cover of X, then {f(Uα) | α ∈M} is
a locally finite cover of Y.

Lemma 8. [11] If f : X → Y is a continuous function and U = {Vβ | β ∈M} is
locally finite in Y , then f−1(U) = {f−1(Vβ) | β ∈M} is locally finite in X.

Lemma 9. [13] Let (X, τ) be a space with I an ideal on X. Then the following are
equivalent
(a) X = X?,
(b) τ ∩ I = {∅},
(c) If I ∈ I, then int(I) = ∅, and
(d) For every U ∈ τ , U ⊂ U?.

Lemma 10. [12] I is weakly τ−local implies I is τ−locally finite.

2. S1I−paracompact spaces

A space (X, τ, I) is said to be S1I−paracompact (S1−paracompact modulo I) if
for every semiopen cover U of X, there exist I ∈ I and X−locally finite X−open
refinement V such that X =

⋃
{V | V ∈ V} ∪ I. A space (X, τ) is said to be

S1−almost paracompact if for every semiopen cover U of X, there exists a X−locally
finite open refinement V such that X = cl(

⋃
{V | V ∈ V}). A space (X, τ, I) is said

to be I−paracompact (paracompact modulo I) [12] if and only if every open cover
U of X has a locally finite open refinement V (not necessarily a cover) such that
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X−∪V ∈ I. A collection V of subsets of X is said to be an I−cover [24] of X if X−
∪V ∈ I. A space is S1−paracompact if and only if it is S1−paracompact modulo {∅}.
Since τ ⊂ SO(X, τ), S1I− paracompact implies I−paracompact. Theorem 11 shows
that the converse holds only if the space X is E.D and semiregular, the proof of which
follows from Lemma 1. In this section, we characterize S1I−paracompact spaces
and investigate the relation between S1I−paracompact spaces and I−paracompact
spaces.

Theorem 11. Let (X, τ) be an E.D semiregular space. If (X, τ, I) is I−paracompact,
then (X, τ, I) is S1I−paracompact.

Proof. By lemma 1, the theorem follows.

Theorem 12. Let (X, τ, I) be S1I− paracompact space. If J is an ideal on X with
I ⊂ J , then (X, τ,J ) is S1J−paracompact.

Theorem 13. Let (X, τ, I) be an ideal space and N ⊂ I. If (X, τ) is S1−almost
paracompact, then (X, τ, I) is S1I−paracompact.

Proof. Let U = {Uα | α ∈M0} be a semiopen cover of X. By hypothesis, there
exists an X−locally finite X−open family V = {Vβ | β ∈M1} which refines U such
that X = cl(

⋃
{Vβ | β ∈M1}). Now X = cl(

⋃
{Vβ | β ∈M1}) implies X − cl(

⋃
{Vβ |

β ∈M1}) = ∅ which implies int(X −
⋃
{Vβ | β ∈M1}) = ∅ which in turn implies that

int(cl(X −
⋃
{Vβ | β ∈M1})) = ∅ and so X −

⋃
{Vβ | β ∈M1} ∈ N . Since N ⊂ I,

X −
⋃
{Vβ | β ∈M1} ∈ I. Therefore, (X, τ, I) is S1I− paracompact.

Theorem 14. Let (X, τ, I) be an ideal space. If (X, τ, I) is S1I−paracompact and
I is codense, then (X, τ) is S1−almost paracompact.

Proof. Let U = {Uα | α ∈M0} be a semiopen cover of X. By hypothesis, there exist
I ∈ I and X−locally finite X−open family V = {Vβ | β ∈M1} which refines U such
that X −

⋃
{Vβ | β ∈M1} ∈ I. Since I is codense, int(X −

⋃
{Vβ | β ∈M1}) = ∅

which implies X − cl(
⋃
{Vβ | β ∈M1}) = ∅ which in turn implies that X ⊂ cl(

⋃
{Vβ |

β ∈M1}). So X = cl(
⋃
{Vβ | β ∈M1}). Hence (X, τ) is S1−almost paracompact.

Corollary 15. Let (X, τ, I) be an ideal space. If (X, τ, I) is S1I−paracompact and
I is completely codense, then (X, τ) is S1−almost paracompact

Corollary 16. Let (X, τ, I) be an ideal space with I = N . Then (X, τ) is S1−almost
paracompact if and only if (X, τ, I) is S1I−paracompact.

Theorem 17. Let (X, τ) be an E.D semiregular space with an ideal I. Then (X, τ, I)
is S1I−paracompact if and only if (X, τα, I) is S1I−paracompact.
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Proof. Suppose (X, τ, I) is S1I−paracompact. Let U = {Uα | α ∈M0} be a τα−semiopen
cover of X. Then U = {Uα | α ∈M0} is a τ−semiopen cover of X, by Lemma 3. By
hypothesis, there exist I ∈ I and τ−locally finite τ−open family V = {Vβ | β ∈M1}
which refines U such that X =

⋃
{Vβ | β ∈M1} ∪ I. Let x ∈ X. Since V is τ−locally

finite, there exists W ∈ τ(x) such that Vβ ∩ W 6= ∅ for all β = β1, β2, ..., βn.
Since τ ⊂ τα, the family V = {Vβ | β ∈M1} is τα−locally finite which refines U .
Therefore, (X, τα, I) is S1I−paracompact. Conversely, let U = {Uα | α ∈M0} be
a τ−semiopen cover of X. Then U = {Uα | α ∈M0} is a τα−semiopen cover of
X, by Lemma 3. By hypothesis, there exist I ∈ I and τα−locally finite τα−open
family V = {Vβ | β ∈M1} which refines U such that X =

⋃
{Vβ | β ∈M1} ∪ I.

Let x ∈ X. Since V is τα−locally finite, there exists W ∈ τα(x) such that
Vβ ∩W 6= ∅ for all β = β1, β2, ..., βn. Since W ∈ τα(x), W ⊂ int(cl(int(W ))). Then
int(cl(int(W ))) ∈ τ(x) such that Vβ∩(int(cl(int(W )))) 6= ∅ for all β = β1, β2, ..., βn.
Thus, by Lemma 1, the family V = {Vβ | β ∈M1} is τ−locally finite τ−open which
refines U . Therefore, (X, τ, I) is S1I−paracompact.

Theorem 18. If (X, τ, I) is S1I−paracompact, then for every cover U of regular
closed sets of X, there exists an open X−locally finite I−cover refinement.

Proof. Since regular closed sets are semiopen, the theorem follows.

Theorem 19. Let (X, τ) be a semiregular space. If (X, τ, I) is S1I−paracompact,
then each semiopen cover of X has X−locally finite semiclosed I−cover refinement.

Proof. Let U be a semiopen cover of X. For each x ∈ X, pick Ux ∈ U such
that x ∈ Ux. Since (X, τ) is semiregular, there exists Vx ∈ SO(X, τ) such that
x ∈ Vx ⊂ scl(Vx) ⊂ Ux. Then the family V = {Vx | x ∈ X} is a semiopen
cover of X. By hypothesis, there exist I ∈ I and X−locally finite X−open family
W = {Wα | α ∈M} which refines V such that X ⊂

⋃
{Wα | α ∈M} ∪ I. Since⋃

Wα ⊂
⋃
scl(Wα), X −

⋃
{scl(Wα) | α ∈M} ⊂ X −

⋃
{Wα | α ∈M}. Thus,

X −
⋃
{scl(Wα) | α ∈M} ∈ I. Let x ∈ X. Since W is X−locally finite, there

exists P ∈ τ(x) such that Wα ∩ P 6= ∅ for α = α1, α2, ..., αn. Since Wα ⊂ scl(Wα),
Wα ∩ P ⊂ scl(Wα) ∩ P . Then scl(Wα) ∩ P 6= ∅ for α = α1, α2, ..., αn. Thus, the
collection W ′ = {scl(Wα) | α ∈M} is X−locally finite. Let scl(Wα) ∈ W ′. Then
Wα ∈ W. Since W refines V, there exists Vx ∈ V such that Wα ⊂ Vx so that
scl(Wα) ⊂ scl(Vx) ⊂ Ux. Hence W ′ refines U . Therefore, the family W ′ is an
X−locally finite semiclosed refinement of U . Hence each semiopen cover of X has
X−locally finite semiclosed I−cover refinement.

If I = {∅} in the above Theorem 19, we have the Corollary 20.
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Corollary 20. [2, Theorem 2.13] Let (X, τ) be a semiregular space. If each semiopen
cover of a space X has a locally finite refinement, then each semiopen cover of X
has locally finite semiclosed refinement

Theorem 21. Let (X, τ, I) be an ideal space with a codense ideal I. If (X, τ?) is
S1I−paracompact and I is τ−simple, then every semiopen cover of (X, τ, I) has
X−locally finite X−semiopen I−cover refinement.

Proof. Let U = {Uβ | β ∈M0} be a τ−semiopen cover ofX. By Lemma 9, SO(X, τ) ⊂
SO(X, τ?). Then U is a τ?−semiopen cover of X. By hypothesis, there exist I ∈ I
and τ?−locally finite τ?−open refinement V = {Vα − Iα | α ∈M1, Vα ∈ τ, Iα ∈ I}
such that X =

⋃
{Vα − Iα | α ∈M1} ∪ I. Let x ∈ X. Then there exists a τ?−open

set V containing x such that V ∩ (Vα − Iα) = ∅ for α 6= α1, α2, ..., αn. Since I is
τ−simple, V = U − J for some U ∈ τ and J ∈ I. Thus, (U − J) ∩ (Vα − Iα) = ∅
for α 6= α1, α2, ..., αn which implies (U ∩ Vα) − (J ∪ Iα) = ∅ for α 6= α1, α2, ..., αn
which in turn implies that U ∩Vα = ∅ for α 6= α1, α2, ..., αn, since I is codense. Then
U∩(Vα∩Uβ) = ∅ for α 6= α1, α2, ..., αn. Therefore, the family V1 = {Vα∩Uβ | α ∈M1}
is τ−locally finite. Also, the family V1 is X−semiopen which refines U , by Lemma
2(a). Since V refines U , for every Vα − Iα ∈ V, there exists Uβ ∈ U such that
Vα − Iα ⊂ Uβ. Thus, Vα − Iα = (Vα − Iα) ∩ Uβ ⊂ (Vα ∩ Uβ)− Iα ⊂ Vα ∩ Uβ so that
X −

⋃
(Vα ∩ Uβ) ⊂ X −

⋃
(Vα − Iα) ∈ I. Therefore, X −

⋃
(Vα ∩ Uβ) ∈ I which

completes the proof.

Theorem 22. Let (X, τ, I) be an ideal space and I is weakly τ−local. If (X, τ, I)
is S1I−paracompact, then (X, τ?) is S1I−paracompact.

Proof. Let U = {Uα − Iα | Uα ∈ τ, Iα ∈ I, α ∈M0} be an τ?−semiopen cover of
X. Then U1 = {Uα | α ∈M0} is a τ−semiopen cover of X. By hypothesis, there
exist I ∈ I and τ−locally finite τ−open refinement V1 = {Vβ | β ∈M1} such that
X =

⋃
{Vβ | β ∈M1} ∪ I. Now {Vβ ∩ Iα | β ∈M1} is a τ−locally finite subset of

I and I is weakly τ−local,
⋃

(Vβ ∩ Iα) ∈ I, by Lemma 10. Then X −
⋃

(Vβ −
Iα) ⊂ (X −

⋃
Vβ) ∪ (

⋃
(Vβ ∩ Iα)) ∈ I. Therefore, X −

⋃
(Vβ − Iα) ∈ I. Since

V1 = {Vβ | β ∈M1} is τ−locally finite, V = {Vβ − Iα | β ∈M1} is τ−locally finite.
Since τ ⊂ τ?, V = {Vβ − Iα | β ∈M1} is τ∗−locally finite which refines U . Hence
(X, τ?) is S1I−paracompact.

3. S1I− paracompact subsets

In this section, we define the subsets and subspaces of S1I−paracompact spaces
and discuss some of its properties. A subset A of an ideal space (X, τ, I) is said
to be S1I−paracompact relative to X if for every X−semiopen cover U of A, there

220



N. Sathiyasundari, V. Renukadevi – S1−Paracompactness . . .

exist I ∈ I and X−locally finite family V of X−open sets which refines U such that
A ⊂

⋃
{V | V ∈ V} ∪ I. A is S1I−paracompact if (A, τA, IA) is S1IA−paracompact

as a subspace where τA is the usual subspace topology.

Theorem 23. Every regular open subspace of an S1I−paracompact space is
S1I−paracompact.

Proof. Let A be a regular open subspace of (X, τ, I). Let U = {Uα | α ∈M0} be a
τA−semiopen cover of A. Since A is an open subset of X, Uα ∈ SO(X, τ) for each
α ∈M0, by Lemma 2(b). Then U1 = {Uα | α ∈M0}∪{X−A} is a semiopen cover of X.
By hypothesis, there exist I ∈ I and X−locally finite X−open refinement V1 = {Vβ |
β ∈M1} such that X =

⋃
{Vβ | β ∈M1}∪I which implies A ⊂

⋃
{Vβ∩A | β ∈M1}∪IA

where IA = I ∩ A. Let x ∈ A. Since V1 = {Vβ | β ∈M1} is X−locally finite, there
exists W ∈ τ(x) such that Vβ ∩W = ∅ for β 6= β1, β2, ..., βn. For β 6= β1, β2, ..., βn,
Vβ ∩W = ∅ implies that (Vβ ∩W ) ∩ A = ∅ which implies (Vβ ∩ A) ∩ (W ∩ A) = ∅.
Therefore, V = {Vβ ∩ A | β ∈M1} is τA−locally finite. Let Vβ ∩ A ∈ V. Then
Vβ ∈ V1. Since V1 refines U1, there exists Uα ∈ U1 such that Vβ ⊂ Uα and so
Vβ ∩ A ⊂ Uα ∩ A ⊂ Uα. Hence V refines U . The family V = {Vβ ∩ A | β ∈M1} is
τA−locally finite τA−open refinement of U . Therefore, A is S1I−paracompact.

Corollary 24. Every clopen subspace of an S1I−paracompact space is S1I−
paracompact.

If I = {∅} in the above Theorem 23, we have the Corollary 25.

Corollary 25. [2, Theorem 3.1] Every regular open subspace of an S1−paracompact
space is S1−paracompact.

Theorem 26. Let (X, τ, I) be an ideal space and let A ∈ τα. If A is S1I−paracompact
relative to X, then A is S1I−paracompact.

Proof. Let U = {Uα | α ∈M0} be a cover of A by semiopen sets of A. Since A ∈ τα,
A ∈ SO(X, τ) and so by Lemma 4, U is a τ−semiopen cover of A. By hypothesis,
there exist I ∈ I and τ−locally finite τ−open refinement V1 = {Vβ | β ∈M1} such
that A ⊂

⋃
{Vβ | β ∈M1} ∪ I which implies A ⊂

⋃
{Vβ ∩ A | β ∈M1} ∪ (I ∩ A). Let

x ∈ A. Since V1 = {Vβ | β ∈M1} is τ−locally finite, there exists W ∈ τ(x) such
that Vβ ∩W = ∅ for β 6= β1, β2, ..., βn. Then (Vβ ∩W ) ∩A = ∅ for β 6= β1, β2, ..., βn
which implies (Vβ ∩ A) ∩ (W ∩ A) = ∅ for β 6= β1, β2, ..., βn. Thus, the family
V = {Vβ ∩ A | β ∈M1} is τA−open τA−locally finite refinement of U . Therefore, A
is S1I−paracompact.

Theorem 27. If A and B are S1I−paracompact relative to an ideal space (X, τ, I),
then A ∪B is S1I−paracompact relative to X.
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Proof. Let U = {Uα | α ∈M0} be a X−semiopen cover of A ∪ B. Then U = {Uα |
α ∈M0} is a X−semiopen cover of A and B. By hypothesis, there exist IA, IB ∈ I and
X−open X−locally finite families VA = {Vα | α ∈M1} of A and VB = {Vβ | β ∈M1}
of B which refines U such that A ⊂

⋃
{Vα | α ∈M1} ∪ IA and B ⊂

⋃
{Vβ | β ∈M1

} ∪ IB. Now A ∪ B ⊂
(⋃
{Vα | α ∈M1} ∪ IA

)
∪
(⋃
{Vβ | β ∈M1} ∪ IB

)
implies that

A ∪ B ⊂
⋃
{Vα ∪ Vβ | α, β ∈M1} ∪ (IA ∪ IB) which implies A ∪ B ⊂

⋃
{Vα ∪ Vβ |

α, β ∈M1}∪ I where I = IA∪ IB. Since the families VA and VB are X−locally finite,
the family V = {Vα ∪ Vβ | α, β ∈M1} is X−locally finite, by Lemma 6, which refines
U . Therefore, A ∪B is I−paracompact relative to X.

Theorem 28. Let A and B be subsets of an ideal space (X, τ, I). If A is S1I−para-
compact relative to X and B is semiclosed in X, then A ∩ B is S1I−paracompact
relative to X.

Proof. Let U = {Uα | α ∈M0} be a cover of A ∩ B such that Uα ∈ SO(X, τ).
Since X − B is semiopen in X, U1 = {Uα | α ∈M0} ∪ {X − B} is a X−semiopen
cover of A. By hypothesis, there exist I ∈ I and X−locally finite X−open family
V1 = {Vβ | β ∈M1} ∪ {V } (Vβ ⊂ Uα and V ⊂ X − B) which refines U1 such that
A ⊂

⋃
β

{Vβ | β ∈M1} ∪ V ∪ I. Now A ⊂
⋃
β

{Vβ | β ∈M1} ∪ V ∪ I implies that

A∩B ⊂
⋃
β

({Vβ | β ∈M1}∪V ∪ I)∩B which implies A∩B ⊂
⋃
β

{Vβ | β ∈M1}∪V ∪ I.

Thus, A∩B−
⋃
β

Vβ = A∩B−(V ∪(
⋃
β

Vβ)) and so A∩B−
⋃
β

Vβ ∈ I. Since Vβ ⊂ Vβ∪V ,

V = {Vβ | β ∈M1} is X−locally finite, by Lemma 5. Therefore, V = {Vβ | β ∈M1} is
X−locally finite X−open family which refines U . Hence A∩B is S1I−paracompact
relative to X.

Corollary 29. If (X, τ, I) is S1I−paracompact and B is semiclosed, then B is
S1I−paracompact relative to X.

Corollary 30. If A and B are semiclosed sets of an S1I−paracompact space (X, τ, I),
then A ∩B is S1I−paracompact relative to X.

Theorem 31. In an ideal space (X, τ, I), if A is S1I−paracompact relative to X,
then every cover of A by semiregular sets of X has locally finite open I−cover re-
finement.

Proof. Let U = {Uα | α ∈M0} be a cover of A such that Uα ∈ SR(X, τ). Then U is
an X−semiopen cover of A. By hypothesis, there exist I ∈ I and X−locally finite
X−open family V = {Vβ | β ∈M1} which refines U such that A ⊂

⋃
{Vβ | β ∈M1}∪I.

This completes the proof.
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Theorem 32. Let A and B be subsets of an ideal space (X, τ, I) such that A ⊂
B ⊂ X and B ∈ SO(X, τ). If A is S1I−paracompact relative to X, then A is
S1I−paracompact relative to B.

Proof. Let U = {Uα | α ∈M0} be a cover of A such that Uα ∈ SO(B). Since
B ∈ SO(X, τ), by Lemma 4, U is an X−semiopen cover of A. By hypothesis, there
exist I ∈ I and X−locally finite X−open family V = {Vβ | β ∈M1} which refines U
such that A ⊂

⋃
{Vβ | β ∈M1}∪I. Then A∩B ⊂

⋃
{Vβ∩B | β ∈M1}∪(I∩B) implies

A ⊂
⋃
{Vβ ∩B | β ∈M1}∪ I. Let x ∈ B. Since V = {Vβ | β ∈M1} is X−locally finite,

there exists W ∈ τ(x) such that W ∩ Vβ = ∅ for β 6= β1, β2, ..., βn which implies
(W ∩ Vβ) ∩ B = ∅ for β 6= β1, β2, ..., βn which implies (Vβ ∩ B) ∩ (W ∩ B) = ∅ for
β 6= β1, β2, ..., βn. Therefore, the family V1 = {Vβ ∩ B | β ∈M1} is B−locally finite.
Let Vβ ∩ B ∈ V1. Since V refines U , there exists Uα ∈ U such that Vβ ⊂ Uα and
so Vβ ∩ B ⊂ Uα. Hence V1 refines U . Therefore, A is S1I−paracompact relative to
B.

Corollary 33. If A is S1I−paracompact relative to X, then the following hold.
(a) A ∩B is S1I−paracompact relative to B for each B ∈ SR(X, τ).
(b) If B ∈ SR(X, τ) and B ⊂ A, then B is S1I−paracompact relative to X.

Proof. (a) Let A be S1I−paracompact relative to X. Since B ∈ SR(X, τ), B ∈
SC(X, τ). By Theorem 28, A∩B is S1I−paracompact relative to X. Since A∩B ⊂
B and B ∈ SO(X, τ), by Theorem 32, A ∩B is S1I−paracompact relative to B.
(b) Since B ⊂ A and B ∈ SR(X, τ), by Theorem 28, B is S1I−paracompact relative
to X.

4. Invariants of S1I−paracompact space under mappings

In this section, we discuss that if a function is open irresolute almostclosed sur-
jection with N−closed point inverses, then it preserves S1I−paracompact spaces.
If a function is presemiopen, continuous and bijective, then it inverse preserves
S1I−paracompact spaces.

Theorem 34. Let f : (X, τ, I) → (Y, σ,J ) be an open, irresolute, almostclosed,
surjective mapping with N−closed point inverses and J = f(I). If (X, τ, I) is
S1I−paracompact, then (Y, σ,J ) is S1J−paracompact.

Proof. Let U = {Uα | α ∈M0} be a semiopen cover of Y . Since f is irresolute,
U1 = {f−1(Uα) | α ∈M0} is a semiopen cover of X. By hypothesis, there exist I ∈ I
and X−locally finite X−open family V1 = {Vβ | β ∈M1} which refines U1 such that
X =

⋃
{Vβ | β ∈M1} ∪ I. Then f(X) = f(

⋃
{Vβ | β ∈M1} ∪ I) which implies that

223



N. Sathiyasundari, V. Renukadevi – S1−Paracompactness . . .

Y =
⋃
{f(Vβ) | β ∈M1} ∪ f(I) which implies Y =

⋃
{f(Vβ) | β ∈M1} ∪ J, where

J = f(I). Since V1 is X−locally finite, V = {f(Vβ) | β ∈M1} is Y−locally finite,
by Lemma 7. Since f is open, f(Vβ) is open in Y . Let f(Vβ) ∈ V. Then Vβ ∈ V1.
Since V1 refines U1, there exists f−1(Uα) ∈ U1 such that Vβ ⊂ f−1(Uα). Thus,
f(Vβ) ⊂ f(f−1(Uα)) implies that f(Vβ) ⊂ Uα for some Uα ∈ U . Hence V refines U .
Therefore, (Y, σ,J ) is S1J−paracompact.

Since compact sets are N−closed and closed maps are almostclosed, the proof
of the following Corollary 35 follows from Theorem 34.

Corollary 35. Let f : (X, τ, I)→ (Y, σ,J ) be an open, irresolute, closed, surjective
mapping with compact point inverses and J = f(I). If (X, τ, I) is S1I−paracompact,
then (Y, σ,J ) is S1J−paracompact.

Corollary 36. Let f : (X, τ, I) → (Y, σ,J ) be an open, semicontinuous, almost-
closed, surjective mapping with N−closed point inverses and J = f(I). If (X, τ, I)
is S1I−paracompact, then (Y, σ,J ) is J−paracompact.

Corollary 37. Let f : (X, τ, I) → (Y, σ,J ) be an open, semicontinuous, closed,
surjective mapping with compact point inverses and J = f(I). If (X, τ, I) is
S1I−paracompact, then (Y, σ,J ) is J−paracompact.

If I = {∅} in the above Corollary 35, we have the Corollary 38.

Corollary 38. [2, Theorem 3.5] Let f : (X,T )→ (Y,M) be a continuous, open and
closed surjective function such that f−1(y) is compact for each y ∈ Y . If (X,T ) is
S1−paracompact, then so is (Y,M).

Theorem 39. Let f : (X, τ, I) → (Y, σ,J ) be an open, strongly semicontinuous,
almostclosed, surjective mapping with N−closed point inverses and J = f(I). If
(X, τ, I) is I−paracompact, then (Y, σ,J ) is S1J−paracompact.

Proof. Let U = {Uα | α ∈M0} be a semiopen cover of Y . Since f is strongly
semicontinuous, U1 = {f−1(Uα) | α ∈M0} is an open cover of X. By hypothesis,
there exist I ∈ I and X−locally finite X−open family V1 = {Vβ | β ∈M1} which
refines U1 such that X =

⋃
{Vβ | β ∈M1} ∪ I. Then f(X) = f(

⋃
{Vβ | β ∈M1} ∪ I)

which implies Y =
⋃
{f(Vβ) | β ∈M1}∪f(I) which implies Y =

⋃
{f(Vβ) | β ∈M1}∪J,

where J = f(I). Since V1 is X−locally finite, V = {f(Vβ) | β ∈M1} is Y−locally
finite, by Lemma 7. Since f is open, f(Vβ) is open in Y . Let f(Vβ) ∈ V. Then
Vβ ∈ V1. Since V1 refines U1, there exists f−1(Uα) ∈ U1 such that Vβ ⊂ f−1(Uα).
Thus, f(Vβ) ⊂ f(f−1(Uα)) implies that f(Vβ) ⊂ Uα for some Uα ∈ U . Hence V
refines U . Therefore, (Y, σ,J ) is S1J−paracompact.
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Corollary 40. Let f : (X, τ, I) → (Y, σ,J ) be an open, strongly semicontinuous,
closed, surjective mapping with compact point inverses and J = f(I). If (X, τ, I)
is I−paracompact, then (Y, σ,J ) is S1J−paracompact.

Theorem 41. Let f : (X, τ, I) → (Y, σ,J ) be a presemiopen, continuous, bijective
mapping and I = f−1(J ). If A is S1J−paracompact relative to Y , then f−1(A) is
S1I−paracompact relative to X.

Proof. Let U = {Uα | α ∈M0} be a X−semiopen cover of f−1(A). Since f is
presemiopen, U1 = {f(Uα) | α ∈M0} is a Y−semiopen cover of A. By hypothesis,
there exist J ∈ J and Y−locally finite Y−open family V1 = {Vβ | β ∈M1} which
refines U1 such that A ⊂

⋃
{Vβ | β ∈M1} ∪ J . Now A ⊂

⋃
{Vβ | β ∈M1} ∪ J

implies that f−1(A) ⊂
⋃
{f−1(Vβ) | β ∈M1} ∪ f−1(J) which implies f−1(A) ⊂⋃

{f−1(Vβ) | β ∈M1} ∪ I, where I = f−1(J). Since f is continuous, by Lemma 8,
V = {f−1(Vβ) | β ∈M1} is X−open, X−locally finite. Let f−1(Vβ) ∈ V. Then
Vβ ∈ V1. Since V1 refines U1, there exists f(Uα) ∈ U1 such that Vβ ⊂ f(Uα). Then
f−1(Vβ) ⊂ f−1(f(Uα)) implies f−1(Vβ) ⊂ Uα for some Uα ∈ U . Hence V refines U .
Therefore, f−1(A) is S1I−paracompact relative to X.

Corollary 42. Let f : (X, τ, I) → (Y, σ,J ) be a presemiopen, continuous, bijec-
tive mapping and I = f−1(J ). If (Y, σ,J ) is S1J−paracompact, then (X, τ, I) is
S1I−paracompact.

Corollary 43. Let f : (X, τ, I) → (Y, σ,J ) be a semiopen, continuous, bijec-
tive mapping and I = f−1(J ). If (Y, σ,J ) is S1J−paracompact, then (X, τ, I)
is I−paracompact.

Corollary 44. [2, Theorem 3.8] Let f : (X,T ) → (Y,M) be a continuous, semi-
closed, surjection and f−1(y) is compact for each y ∈ Y . If (Y,M) is S1−paracompact
space, then (X,T ) is paracompact.

Theorem 45. Let f : (X, τ, I) → (Y, σ,J ) be an open, irresolute, almost closed,
surjective mapping with N−closed point inverses and J = f(I) is codense. If
(X, τ, I) is S1I−paracompact, then (Y, σ) is S1−almost paracompact.

Proof. By Theorem 34, (Y, σ,J ) is S1I−paracompact. Since J = f(I) is codense,
by Theorem 14, (Y, σ) is S1−almost paracompact.

Corollary 46. Let f : (X, τ, I) → (Y, σ,J ) be an open, irresolute, closed, surjec-
tive mapping with compact point inverses and J = f(I) is codense. If (X, τ, I) is
S1I−paracompact, then (Y, σ) is S1−almost paracompact.
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Corollary 47. Let f : (X, τ, I) → (Y, σ,J ) be an open, irresolute, almost closed,
surjective mapping with N−closed point inverses and J = f(I) is completely co-
dense. If (X, τ, I) is S1I−paracompact, then (Y, σ) is S1−almost paracompact.

Corollary 48. Let f : (X, τ, I) → (Y, σ,J ) be an open, irresolute, closed, surjec-
tive mapping with compact point inverses and J = f(I) is completely codense. If
(X, τ, I) is S1I−paracompact, then (Y, σ) is S1−almost paracompact.
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