S_1 -PARACOMPACTNESS WITH RESPECT TO AN IDEAL

N. Sathiyasundari, V. Renukadevi

ABSTRACT. In this paper, we study S_1 -paracompact spaces in ideal topological spaces and give new characterizations of such spaces. Also, we generalize some of its properties in ideal topological spaces. We study subsets and subspaces of $S_1\mathcal{I}$ -paracompact spaces and discuss their properties. Also, we investigate the invariants of $S_1\mathcal{I}$ -paracompact spaces by functions.

2000 Mathematics Subject Classification: 54A05, 54D20, 54F65, 54G05.

Keywords: S_1 -paracompact modulo \mathcal{I} space, S_1 -almost paracompact space, codense, completely codense, semiregular space, irresolute, semicontinuous, strongly semicontinuous.

1. INTRODUCTION AND PRELIMINARIES

In 2011, Al-Zoubi and Rawashdeh introduced and studied the concept of S_1 -paracompact spaces. A space (X, τ) is said to be S_1 -paracompact space [2] if every semiopen cover of X has a locally finite open refinement. In this paper, we introduce a new class of spaces, called $S_1\mathcal{I}$ -paracompact spaces. We give some characterizations of these spaces and investigate the relation between $S_1\mathcal{I}$ -paracompact spaces and \mathcal{I} -paracompact spaces.

The subject of ideals in topological spaces has been studied by Kuratowski [15] and Vaidyanathaswamy [22]. An *ideal* \mathcal{I} on a set X is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator ()*: $\wp(X) \to \wp(X)$, called a *local function* [13] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*()$ for a topology $\tau^*(\mathcal{I}, \tau)$, called *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [13] and $\beta = \{U - I \mid U \in \tau \text{ and } I \in \mathcal{I}\}$ is a basis for τ^* [13]. We simply write τ^* for $\tau^*(\mathcal{I}, \tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal space. If $\beta = \tau^*$, then we say \mathcal{I} is τ -simple [13].

sufficient condition for \mathcal{I} to be simple is the following: for $A \subseteq X$, if for every $a \in A$ there exists $U \in \tau(a)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$. If (X, τ, \mathcal{I}) satisfies this condition, then τ is said to be *compatible with respect to* \mathcal{I} [13] or \mathcal{I} is said to be τ -local, denoted by $\mathcal{I} \sim \tau$. Given a space (X, τ, \mathcal{I}) , we say \mathcal{I} is τ -boundary [13] or τ -codense if $\mathcal{I} \cap \tau = \{\emptyset\}$, that is, each member of \mathcal{I} has empty τ -interior. An ideal \mathcal{I} is completely codense [10] if $\mathcal{I} \subset \mathcal{N}$ where \mathcal{N} is the ideal of nowhere dense subsets in (X, τ) . An ideal \mathcal{I} is said to be weakly τ -local [14] if $A^* = \emptyset$ implies $A \in \mathcal{I}$. \mathcal{I} is called τ -locally finite [12] if the union of each τ -locally finite family contained in \mathcal{I} belongs to \mathcal{I} .

We always mean a topological space (X, τ) with no separation properties assumed. A subset A is said to be semiopen [16], (resp. regular open, α -open [17], preopen [7], semipreopen [8]) in (X,τ) if $A \subset cl(int(A))$ (resp. A = int(cl(A)), $A \subset int(cl(int(A))), A \subset int(cl(A)), A \subset cl(int(cl(A))))$. The union of any family of semiopen subsets of (X, τ) is semiopen [16]. The complement of a semiopen (resp. regular open) set is said to be semiclosed [6] (resp. regular closed). The semiclosure of A, denoted by scl(A) [7] is defined by the intersection of all semiclosed sets containing A. A subset A is said to be *semireqular* [8] if it is both semiopen and semiclosed. The family of all semiopen (resp. semiclosed, semiregular, regular open, regular closed, preopen) sets is denoted by SO(X) (resp. SC(X), SR(X), RO(X), RC(X), PO(X)). A space (X, τ) is said to be extremally disconnected (E.D) if the closure of every open set in (X, τ) is open. A space (X, τ) is said to be *semiregular* [9] if for each semiclosed set F and each point $x \notin F$, there exist disjoint semiopen sets U and V such that $x \in U$ and $F \subseteq V$. This is equivalent to for each $U \in SO(X)$ and for each $x \in U$, there exists $V \in SO(X)$ such that $x \in V \subseteq scl(V) \subseteq U$. The family of α -sets of a space (X, τ) , denoted by τ^{α} , forms a topology on X, finer than τ . A function $f:(X,\tau) \to (Y,\sigma)$ is said to be *irresolute* [7] (resp. semicontinuous [16], strongly semicontinuous [1]) if the inverse image of every semiopen (resp. open, semiopen) set is semiopen (resp. semiopen, open). A function $f:(X,\tau)\to (Y,\sigma)$ is said to be presentiopen [6] if $f(U) \in SO(Y)$ for every $U \in SO(X)$. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be almost open [23] if $f^{-1}(cl(V))\subset cl(f^{-1}(V))$ for every open subset V of Y. A function $f: (X,\tau) \to (Y,\sigma)$ is said to be almostclosed [21] if f(F) is closed in Y for every regular closed set F of X. A function $f:(X,\tau)\to(Y,\sigma)$ is said to be *semi-closed* [20] if f(F) is semiclosed in Y for every closed set F of X. A subset S of a space X is said to be N-closed relative to X (N-closed) [5] if for every cover $\{U_{\alpha} \mid \alpha \in \Delta\}$ of S by open sets of X, there exists a finite subfamily Δ_0 of Δ such that $S \subset \bigcup \{int(cl(U_\alpha)) \mid \alpha \in \Delta_0\}$. The following lemmas will be useful in the sequel.

Lemma 1. [2] Let (X, τ) be an E.D. semiregular space. Then (a) $SO(X, \tau) = \tau$. (b) (X, τ) is regular.

Lemma 2. (a) If A is an open set in (X, τ) and $B \in SO(X, \tau)$, then $A \cap B \in SO(X, \tau)$. [18] (b) Let (A, τ_A) be a subspace of a space (X, τ) and $B \subset A$. If $A \in \tau$ and $B \in SO(X, \tau)$.

 $SO(A, \tau_A)$, then $B \in SO(X, \tau)$. [7]

Lemma 3. [17] For any space (X, τ) , $SO(X, \tau^{\alpha}) = SO(X, \tau)$.

Lemma 4. [18] Let A and X_0 be subsets of X such that $A \subset X_0$ and $X_0 \in SO(X)$. Then $A \in SO(X)$ if and only if $A \in SO(X_0)$.

Lemma 5. [4] If $\{A_{\alpha} \mid \alpha \in \Delta\}$ is a locally finite family of subsets in a space X, and if $B_{\alpha} \subset A_{\alpha}$ for each $\alpha \in \Delta$, then the family $\{B_{\alpha} \mid \alpha \in \Delta\}$ is a locally finite in X.

Lemma 6. [3] The union of a finite family of locally finite collection of sets in a space is locally finite family of sets.

Lemma 7. [19] Let $f : X \to Y$ be almost closed surjection with N-closed point inverses. If $\{U_{\alpha} \mid \alpha \in \Delta\}$ is a locally finite open cover of X, then $\{f(U_{\alpha}) \mid \alpha \in \Delta\}$ is a locally finite cover of Y.

Lemma 8. [11] If $f : X \to Y$ is a continuous function and $\mathcal{U} = \{V_{\beta} \mid \beta \in \Delta\}$ is locally finite in Y, then $f^{-1}(\mathcal{U}) = \{f^{-1}(V_{\beta}) \mid \beta \in \Delta\}$ is locally finite in X.

Lemma 9. [13] Let (X, τ) be a space with \mathcal{I} an ideal on X. Then the following are equivalent

(a) X = X^{*},
(b) τ ∩ I = {Ø},
(c) If I ∈ I, then int(I) = Ø, and
(d) For every U ∈ τ, U ⊂ U^{*}.

Lemma 10. [12] \mathcal{I} is weakly τ -local implies \mathcal{I} is τ -locally finite.

2. $S_1 \mathcal{I}$ -paracompact spaces

A space (X, τ, \mathcal{I}) is said to be $S_1\mathcal{I}$ -paracompact $(S_1$ -paracompact modulo $\mathcal{I})$ if for every semiopen cover \mathcal{U} of X, there exist $I \in \mathcal{I}$ and X-locally finite X-open refinement \mathcal{V} such that $X = \bigcup \{V \mid V \in \mathcal{V}\} \cup I$. A space (X, τ) is said to be S_1 -almost paracompact if for every semiopen cover \mathcal{U} of X, there exists a X-locally finite open refinement \mathcal{V} such that $X = cl(\bigcup \{V \mid V \in \mathcal{V}\})$. A space (X, τ, \mathcal{I}) is said to be \mathcal{I} -paracompact (paracompact modulo \mathcal{I}) [12] if and only if every open cover \mathcal{U} of X has a locally finite open refinement \mathcal{V} (not necessarily a cover) such that $X - \cup \mathcal{V} \in \mathcal{I}$. A collection \mathcal{V} of subsets of X is said to be an $\mathcal{I} - cover$ [24] of X if $X - \cup \mathcal{V} \in \mathcal{I}$. A space is S_1 -paracompact if and only if it is S_1 -paracompact modulo $\{\emptyset\}$. Since $\tau \subset SO(X, \tau)$, $S_1\mathcal{I}$ -paracompact implies \mathcal{I} -paracompact. Theorem 11 shows that the converse holds only if the space X is E.D and semiregular, the proof of which follows from Lemma 1. In this section, we characterize $S_1\mathcal{I}$ -paracompact spaces and investigate the relation between $S_1\mathcal{I}$ -paracompact spaces and \mathcal{I} -paracompact spaces.

Theorem 11. Let (X, τ) be an E.D semiregular space. If (X, τ, \mathcal{I}) is \mathcal{I} -paracompact, then (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact.

Proof. By lemma 1, the theorem follows.

Theorem 12. Let (X, τ, \mathcal{I}) be $S_1\mathcal{I}$ -paracompact space. If \mathcal{J} is an ideal on X with $\mathcal{I} \subset \mathcal{J}$, then (X, τ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact.

Theorem 13. Let (X, τ, \mathcal{I}) be an ideal space and $\mathcal{N} \subset \mathcal{I}$. If (X, τ) is S_1 -almost paracompact, then (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a semiopen cover of X. By hypothesis, there exists an X-locally finite X-open family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $X = cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\})$. Now $X = cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\})$ implies $X - cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\}) = \emptyset$ which implies $int(X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\}) = \emptyset$ which in turn implies that $int(cl(X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\})) = \emptyset$ and so $X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \in \mathcal{N}$. Since $\mathcal{N} \subset \mathcal{I}$, $X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \in \mathcal{I}$. Therefore, (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ - paracompact.

Theorem 14. Let (X, τ, \mathcal{I}) be an ideal space. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact and \mathcal{I} is codense, then (X, τ) is S_1 -almost paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \in \mathcal{I}$. Since \mathcal{I} is codense, $int(X - \bigcup\{V_{\beta} \mid \beta \in \Delta_1\}) = \emptyset$ which implies $X - cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\}) = \emptyset$ which in turn implies that $X \subset cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\})$. So $X = cl(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\})$. Hence (X, τ) is S₁-almost paracompact.

Corollary 15. Let (X, τ, \mathcal{I}) be an ideal space. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact and \mathcal{I} is completely codense, then (X, τ) is S_1 -almost paracompact

Corollary 16. Let (X, τ, \mathcal{I}) be an ideal space with $\mathcal{I} = \mathcal{N}$. Then (X, τ) is S_1 -almost paracompact if and only if (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact.

Theorem 17. Let (X, τ) be an E.D semiregular space with an ideal \mathcal{I} . Then (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact if and only if $(X, \tau^{\alpha}, \mathcal{I})$ is $S_1\mathcal{I}$ -paracompact.

Proof. Suppose (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact. Let $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta_0\}$ be a τ^α -semiopen cover of X. Then $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta_0\}$ is a τ -semiopen cover of X, by Lemma 3. By hypothesis, there exist $I \in \mathcal{I}$ and τ -locally finite τ -open family $\mathcal{V} = \{V_\beta \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $X = \bigcup \{V_\beta \mid \beta \in \Delta_1\} \cup I$. Let $x \in X$. Since \mathcal{V} is τ -locally finite, there exists $W \in \tau(x)$ such that $V_\beta \cap W \neq \emptyset$ for all $\beta = \beta_1, \beta_2, ..., \beta_n$. Since $\tau \subset \tau^\alpha$, the family $\mathcal{V} = \{V_\beta \mid \beta \in \Delta_1\}$ is τ^α -locally finite which refines \mathcal{U} . Therefore, $(X, \tau^\alpha, \mathcal{I})$ is $S_1\mathcal{I}$ -paracompact. Conversely, let $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta_0\}$ be a τ -semiopen cover of X. Then $\mathcal{U} = \{U_\alpha \mid \alpha \in \Delta_0\}$ is a τ^α -semiopen cover of X, by Lemma 3. By hypothesis, there exist $I \in \mathcal{I}$ and τ^α -locally finite τ^α -open family $\mathcal{V} = \{V_\beta \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $X = \bigcup \{V_\beta \mid \beta \in \Delta_1\} \cup I$. Let $x \in X$. Since \mathcal{V} is τ^α -locally finite, there exists $W \in \tau^\alpha(x)$ such that $V_\beta \cap W \neq \emptyset$ for all $\beta = \beta_1, \beta_2, ..., \beta_n$. Since $W \in \tau^\alpha(x), W \subset int(cl(int(W)))$. Then $int(cl(int(W))) \in \tau(x)$ such that $V_\beta \cap (int(cl(int(W)))) \neq \emptyset$ for all $\beta = \beta_1, \beta_2, ..., \beta_n$. Thus, by Lemma 1, the family $\mathcal{V} = \{V_\beta \mid \beta \in \Delta_1\}$ is τ -locally finite τ -open which refines \mathcal{U} . Therefore, (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact.

Theorem 18. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then for every cover \mathcal{U} of regular closed sets of X, there exists an open X-locally finite \mathcal{I} -cover refinement.

Proof. Since regular closed sets are semiopen, the theorem follows.

Theorem 19. Let (X, τ) be a semiregular space. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then each semiopen cover of X has X-locally finite semiclosed \mathcal{I} -cover refinement.

Proof. Let \mathcal{U} be a semiopen cover of X. For each $x \in X$, pick $U_x \in \mathcal{U}$ such that $x \in U_x$. Since (X, τ) is semiregular, there exists $V_x \in SO(X, \tau)$ such that $x \in V_x \subset scl(V_x) \subset U_x$. Then the family $\mathcal{V} = \{V_x \mid x \in X\}$ is a semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{W} = \{W_\alpha \mid \alpha \in \Delta\}$ which refines \mathcal{V} such that $X \subset \bigcup \{W_\alpha \mid \alpha \in \Delta\} \cup I$. Since $\bigcup W_\alpha \subset \bigcup scl(W_\alpha), X - \bigcup \{scl(W_\alpha) \mid \alpha \in \Delta\} \subset X - \bigcup \{W_\alpha \mid \alpha \in \Delta\}\}$. Thus, $X - \bigcup \{scl(W_\alpha) \mid \alpha \in \Delta\} \in \mathcal{I}$. Let $x \in X$. Since \mathcal{W} is X-locally finite, there exists $P \in \tau(x)$ such that $W_\alpha \cap P \neq \emptyset$ for $\alpha = \alpha_1, \alpha_2, ..., \alpha_n$. Since $W_\alpha \subset scl(W_\alpha)$, $W_\alpha \cap P \subset scl(W_\alpha) \cap P$. Then $scl(W_\alpha) \cap P \neq \emptyset$ for $\alpha = \alpha_1, \alpha_2, ..., \alpha_n$. Thus, the collection $\mathcal{W}' = \{scl(W_\alpha) \mid \alpha \in \Delta\}$ is X-locally finite. Let $scl(W_\alpha) \in \mathcal{W}'$. Then $W_\alpha \in \mathcal{W}$. Since \mathcal{W} refines \mathcal{V} , there exists $V_x \in \mathcal{V}$ such that $W_\alpha \subset V_x$ so that $scl(W_\alpha) \subset scl(V_x) \subset U_x$. Hence \mathcal{W}' refines \mathcal{U} . Therefore, the family \mathcal{W}' is an X-locally finite semiclosed refinement of \mathcal{U} . Hence each semiopen cover of X has X-locally finite semiclosed \mathcal{I} -cover refinement.

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 19, we have the Corollary 20.

Corollary 20. [2, Theorem 2.13] Let (X, τ) be a semiregular space. If each semiopen cover of a space X has a locally finite refinement, then each semiopen cover of X has locally finite semiclosed refinement

Theorem 21. Let (X, τ, \mathcal{I}) be an ideal space with a codense ideal \mathcal{I} . If (X, τ^*) is $S_1\mathcal{I}$ -paracompact and \mathcal{I} is τ -simple, then every semiopen cover of (X, τ, \mathcal{I}) has X-locally finite X-semiopen \mathcal{I} -cover refinement.

Proof. Let $\mathcal{U} = \{U_{\beta} \mid \beta \in \Delta_0\}$ be a τ -semiopen cover of X. By Lemma 9, $SO(X, \tau) \subset SO(X, \tau^*)$. Then \mathcal{U} is a τ^* -semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and τ^* -locally finite τ^* -open refinement $\mathcal{V} = \{V_{\alpha} - I_{\alpha} \mid \alpha \in \Delta_1, V_{\alpha} \in \tau, I_{\alpha} \in \mathcal{I}\}$ such that $X = \bigcup \{V_{\alpha} - I_{\alpha} \mid \alpha \in \Delta_1\} \cup I$. Let $x \in X$. Then there exists a τ^* -open set V containing x such that $V \cap (V_{\alpha} - I_{\alpha}) = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$. Since \mathcal{I} is τ -simple, V = U - J for some $U \in \tau$ and $J \in \mathcal{I}$. Thus, $(U - J) \cap (V_{\alpha} - I_{\alpha}) = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which implies $(U \cap V_{\alpha}) - (J \cup I_{\alpha}) = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$ which in turn implies that $U \cap V_{\alpha} = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$, since \mathcal{I} is codense. Then $U \cap (V_{\alpha} \cap U_{\beta}) = \emptyset$ for $\alpha \neq \alpha_1, \alpha_2, ..., \alpha_n$. Therefore, the family $\mathcal{V}_1 = \{V_{\alpha} \cap U_{\beta} \mid \alpha \in \Delta_1\}$ is τ -locally finite. Also, the family \mathcal{V}_1 is X-semiopen which refines \mathcal{U} , by Lemma 2(a). Since \mathcal{V} refines \mathcal{U} , for every $V_{\alpha} - I_{\alpha} \in \mathcal{V}$, there exists $U_{\beta} \in \mathcal{U}$ such that $V_{\alpha} - I_{\alpha} \subset U_{\beta}$. Thus, $V_{\alpha} - I_{\alpha} = (V_{\alpha} - I_{\alpha}) \cap U_{\beta} \subset (V_{\alpha} \cap U_{\beta}) - I_{\alpha} \subset V_{\alpha} \cap U_{\beta}$ so that $X - \bigcup (V_{\alpha} \cap U_{\beta}) \subset X - \bigcup (V_{\alpha} - I_{\alpha}) \in \mathcal{I}$. Therefore, $X - \bigcup (V_{\alpha} \cap U_{\beta}) \in \mathcal{I}$ which completes the proof.

Theorem 22. Let (X, τ, \mathcal{I}) be an ideal space and \mathcal{I} is weakly τ -local. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (X, τ^*) is $S_1\mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} - I_{\alpha} \mid U_{\alpha} \in \tau, I_{\alpha} \in \mathcal{I}, \alpha \in \Delta_0\}$ be an τ^* -semiopen cover of X. Then $\mathcal{U}_1 = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ is a τ -semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and τ -locally finite τ -open refinement $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ such that $X = \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. Now $\{V_{\beta} \cap I_{\alpha} \mid \beta \in \Delta_1\}$ is a τ -locally finite subset of \mathcal{I} and \mathcal{I} is weakly τ -local, $\bigcup (V_{\beta} \cap I_{\alpha}) \in \mathcal{I}$, by Lemma 10. Then $X - \bigcup (V_{\beta} - I_{\alpha}) \subset (X - \bigcup V_{\beta}) \cup (\bigcup (V_{\beta} \cap I_{\alpha})) \in \mathcal{I}$. Therefore, $X - \bigcup (V_{\beta} - I_{\alpha}) \in \mathcal{I}$. Since $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ is τ -locally finite, $\mathcal{V} = \{V_{\beta} - I_{\alpha} \mid \beta \in \Delta_1\}$ is τ -locally finite. Since $\tau \subset \tau^*, \mathcal{V} = \{V_{\beta} - I_{\alpha} \mid \beta \in \Delta_1\}$ is τ^* -locally finite which refines \mathcal{U} . Hence (X, τ^*) is $S_1\mathcal{I}$ -paracompact.

3. $S_1\mathcal{I}$ - paracompact subsets

In this section, we define the subsets and subspaces of $S_1\mathcal{I}$ -paracompact spaces and discuss some of its properties. A subset A of an ideal space (X, τ, \mathcal{I}) is said to be $S_1\mathcal{I}$ -paracompact relative to X if for every X-semiopen cover \mathcal{U} of A, there exist $I \in \mathcal{I}$ and X-locally finite family \mathcal{V} of X-open sets which refines \mathcal{U} such that $A \subset \bigcup \{V \mid V \in \mathcal{V}\} \cup I$. A is $S_1\mathcal{I}$ -paracompact if $(A, \tau_A, \mathcal{I}_A)$ is $S_1\mathcal{I}_A$ -paracompact as a subspace where τ_A is the usual subspace topology.

Theorem 23. Every regular open subspace of an $S_1\mathcal{I}$ -paracompact space is $S_1\mathcal{I}$ -paracompact.

Proof. Let A be a regular open subspace of (X, τ, \mathcal{I}) . Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a τ_A -semiopen cover of A. Since A is an open subset of X, $U_{\alpha} \in SO(X, \tau)$ for each $\alpha \in \Delta_0$, by Lemma 2(b). Then $\mathcal{U}_1 = \{U_{\alpha} \mid \alpha \in \Delta_0\} \cup \{X - A\}$ is a semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open refinement $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ such that $X = \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$ which implies $A \subset \bigcup \{V_{\beta} \cap A \mid \beta \in \Delta_1\} \cup I_A$ where $I_A = I \cap A$. Let $x \in A$. Since $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ is X-locally finite, there exists $W \in \tau(x)$ such that $V_{\beta} \cap W = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. For $\beta \neq \beta_1, \beta_2, ..., \beta_n$, $V_{\beta} \cap W = \emptyset$ implies that $(V_{\beta} \cap W) \cap A = \emptyset$ which implies $(V_{\beta} \cap A) \cap (W \cap A) = \emptyset$. Therefore, $\mathcal{V} = \{V_{\beta} \cap A \mid \beta \in \Delta_1\}$ is τ_A -locally finite. Let $V_{\beta} \cap A \in \mathcal{V}$. Then $V_{\beta} \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $U_{\alpha} \in \mathcal{U}_1$ such that $V_{\beta} \in \Delta_1$ is τ_A -locally finite τ_A -open refinement of \mathcal{U} . Therefore, A is $S_1\mathcal{I}$ -paracompact.

Corollary 24. Every clopen subspace of an $S_1\mathcal{I}$ -paracompact space is $S_1\mathcal{I}$ -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 23, we have the Corollary 25.

Corollary 25. [2, Theorem 3.1] Every regular open subspace of an S_1 -paracompact space is S_1 -paracompact.

Theorem 26. Let (X, τ, \mathcal{I}) be an ideal space and let $A \in \tau^{\alpha}$. If A is $S_1\mathcal{I}$ -paracompact relative to X, then A is $S_1\mathcal{I}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a cover of A by semiopen sets of A. Since $A \in \tau^{\alpha}$, $A \in SO(X, \tau)$ and so by Lemma 4, \mathcal{U} is a τ -semiopen cover of A. By hypothesis, there exist $I \in \mathcal{I}$ and τ -locally finite τ -open refinement $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ such that $A \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$ which implies $A \subset \bigcup \{V_{\beta} \cap A \mid \beta \in \Delta_1\} \cup (I \cap A)$. Let $x \in A$. Since $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ is τ -locally finite, there exists $W \in \tau(x)$ such that $V_{\beta} \cap W = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Then $(V_{\beta} \cap W) \cap A = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $(V_{\beta} \cap A) \cap (W \cap A) = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Thus, the family $\mathcal{V} = \{V_{\beta} \cap A \mid \beta \in \Delta_1\}$ is τ_A -open τ_A -locally finite refinement of \mathcal{U} . Therefore, A is $S_1\mathcal{I}$ -paracompact.

Theorem 27. If A and B are $S_1\mathcal{I}$ -paracompact relative to an ideal space (X, τ, \mathcal{I}) , then $A \cup B$ is $S_1\mathcal{I}$ -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a X-semiopen cover of $A \cup B$. Then $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ is a X-semiopen cover of A and B. By hypothesis, there exist $I_A, I_B \in \mathcal{I}$ and X-open X-locally finite families $\mathcal{V}_A = \{V_{\alpha} \mid \alpha \in \Delta_1\}$ of A and $\mathcal{V}_B = \{V_{\beta} \mid \beta \in \Delta_1\}$ of B which refines \mathcal{U} such that $A \subset \bigcup \{V_{\alpha} \mid \alpha \in \Delta_1\} \cup I_A$ and $B \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\}$ $\} \cup I_B$. Now $A \cup B \subset (\bigcup \{V_{\alpha} \mid \alpha \in \Delta_1\} \cup I_A) \cup (\bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I_B)$ implies that $A \cup B \subset \bigcup \{V_{\alpha} \cup V_{\beta} \mid \alpha, \beta \in \Delta_1\} \cup (I_A \cup I_B)$ which implies $A \cup B \subset \bigcup \{V_{\alpha} \cup V_{\beta} \mid \alpha, \beta \in \Delta_1\} \cup (I_A \cup I_B)$ which implies $A \cup B \subset \bigcup \{V_{\alpha} \cup V_{\beta} \mid \alpha, \beta \in \Delta_1\} \cup I_B$. Since the families \mathcal{V}_A and \mathcal{V}_B are X-locally finite, the family $\mathcal{V} = \{V_{\alpha} \cup V_{\beta} \mid \alpha, \beta \in \Delta_1\}$ is X-locally finite, by Lemma 6, which refines \mathcal{U} . Therefore, $A \cup B$ is \mathcal{I} -paracompact relative to X.

Theorem 28. Let A and B be subsets of an ideal space (X, τ, \mathcal{I}) . If A is $S_1\mathcal{I}$ -paracompact relative to X and B is semiclosed in X, then $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a cover of $A \cap B$ such that $U_{\alpha} \in SO(X, \tau)$. Since X - B is semiopen in X, $\mathcal{U}_1 = \{U_{\alpha} \mid \alpha \in \Delta_0\} \cup \{X - B\}$ is a X-semiopen cover of A. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\} \cup \{V\} \ (V_{\beta} \subset U_{\alpha} \text{ and } V \subset X - B)$ which refines \mathcal{U}_1 such that $A \subset \bigcup_{\beta} \{V_{\beta} \mid \beta \in \Delta_1\} \cup V \cup I$. Now $A \subset \bigcup_{\beta} \{V_{\beta} \mid \beta \in \Delta_1\} \cup V \cup I$ implies that $A \cap B \subset \bigcup_{\beta} (\{V_{\beta} \mid \beta \in \Delta_1\} \cup V \cup I) \cap B$ which implies $A \cap B \subset \bigcup_{\beta} \{V_{\beta} \mid \beta \in \Delta_1\} \cup V \cup I$. Thus, $A \cap B - \bigcup_{\beta} V_{\beta} = A \cap B - (V \cup (\bigcup_{\beta} V_{\beta}))$ and so $A \cap B - \bigcup_{\beta} V_{\beta} \in \mathcal{I}$. Since $V_{\beta} \subset V_{\beta} \cup V$, $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ is X-locally finite, by Lemma 5. Therefore, $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ is X-locally finite X-open family which refines \mathcal{U} . Hence $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to X.

Corollary 29. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact and B is semiclosed, then B is $S_1\mathcal{I}$ -paracompact relative to X.

Corollary 30. If A and B are semiclosed sets of an $S_1\mathcal{I}$ -paracompact space (X, τ, \mathcal{I}) , then $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to X.

Theorem 31. In an ideal space (X, τ, \mathcal{I}) , if A is $S_1\mathcal{I}$ -paracompact relative to X, then every cover of A by semiregular sets of X has locally finite open \mathcal{I} -cover refinement.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a cover of A such that $U_{\alpha} \in SR(X, \tau)$. Then \mathcal{U} is an X-semiopen cover of A. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $A \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. This completes the proof.

Theorem 32. Let A and B be subsets of an ideal space (X, τ, \mathcal{I}) such that $A \subset B \subset X$ and $B \in SO(X, \tau)$. If A is $S_1\mathcal{I}$ -paracompact relative to X, then A is $S_1\mathcal{I}$ -paracompact relative to B.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a cover of A such that $U_{\alpha} \in SO(B)$. Since $B \in SO(X, \tau)$, by Lemma 4, \mathcal{U} is an X-semiopen cover of A. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U} such that $A \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. Then $A \cap B \subset \bigcup \{V_{\beta} \cap B \mid \beta \in \Delta_1\} \cup (I \cap B)$ implies $A \subset \bigcup \{V_{\beta} \cap B \mid \beta \in \Delta_1\} \cup I$. Let $x \in B$. Since $\mathcal{V} = \{V_{\beta} \mid \beta \in \Delta_1\}$ is X-locally finite, there exists $W \in \tau(x)$ such that $W \cap V_{\beta} = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $(W \cap V_{\beta}) \cap B = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$ which implies $(V_{\beta} \cap B) \cap (W \cap B) = \emptyset$ for $\beta \neq \beta_1, \beta_2, ..., \beta_n$. Therefore, the family $\mathcal{V}_1 = \{V_{\beta} \cap B \mid \beta \in \Delta_1\}$ is B-locally finite. Let $V_{\beta} \cap B \in \mathcal{V}_1$. Since \mathcal{V} refines \mathcal{U} , there exists $U_{\alpha} \in \mathcal{U}$ such that $V_{\beta} \subset U_{\alpha}$ and so $V_{\beta} \cap B \subset U_{\alpha}$. Hence \mathcal{V}_1 refines \mathcal{U} . Therefore, A is $S_1\mathcal{I}$ -paracompact relative to B.

Corollary 33. If A is $S_1\mathcal{I}$ -paracompact relative to X, then the following hold. (a) $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to B for each $B \in SR(X, \tau)$. (b) If $B \in SR(X, \tau)$ and $B \subset A$, then B is $S_1\mathcal{I}$ -paracompact relative to X.

Proof. (a) Let A be $S_1\mathcal{I}$ -paracompact relative to X. Since $B \in SR(X, \tau)$, $B \in SC(X, \tau)$. By Theorem 28, $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to X. Since $A \cap B \subset B$ and $B \in SO(X, \tau)$, by Theorem 32, $A \cap B$ is $S_1\mathcal{I}$ -paracompact relative to B. (b) Since $B \subset A$ and $B \in SR(X, \tau)$, by Theorem 28, B is $S_1\mathcal{I}$ -paracompact relative to X.

4. Invariants of $S_1\mathcal{I}$ -paracompact space under mappings

In this section, we discuss that if a function is open irresolute almostclosed surjection with N-closed point inverses, then it preserves $S_1\mathcal{I}$ -paracompact spaces. If a function is presemiopen, continuous and bijective, then it inverse preserves $S_1\mathcal{I}$ -paracompact spaces.

Theorem 34. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, almostclosed, surjective mapping with N-closed point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a semiopen cover of Y. Since f is irresolute, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) \mid \alpha \in \Delta_0\}$ is a semiopen cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U}_1 such that $X = \bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. Then $f(X) = f(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \cup I)$ which implies that $Y = \bigcup \{f(V_{\beta}) \mid \beta \in \Delta_1\} \cup f(I) \text{ which implies } Y = \bigcup \{f(V_{\beta}) \mid \beta \in \Delta_1\} \cup J, \text{ where } J = f(I). \text{ Since } \mathcal{V}_1 \text{ is } X - \text{locally finite, } \mathcal{V} = \{f(V_{\beta}) \mid \beta \in \Delta_1\} \text{ is } Y - \text{locally finite, } by \text{ Lemma 7. Since } f \text{ is open, } f(V_{\beta}) \text{ is open in } Y. \text{ Let } f(V_{\beta}) \in \mathcal{V}. \text{ Then } V_{\beta} \in \mathcal{V}_1. \text{ Since } \mathcal{V}_1 \text{ refines } \mathcal{U}_1, \text{ there exists } f^{-1}(U_{\alpha}) \in \mathcal{U}_1 \text{ such that } V_{\beta} \subset f^{-1}(U_{\alpha}). \text{ Thus, } f(V_{\beta}) \subset f(f^{-1}(U_{\alpha})) \text{ implies that } f(V_{\beta}) \subset U_{\alpha} \text{ for some } U_{\alpha} \in \mathcal{U}. \text{ Hence } \mathcal{V} \text{ refines } \mathcal{U}. \text{ Therefore, } (Y, \sigma, \mathcal{J}) \text{ is } S_1 \mathcal{J} - \text{paracompact.}$

Since compact sets are N-closed and closed maps are almostclosed, the proof of the following Corollary 35 follows from Theorem 34.

Corollary 35. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, closed, surjective mapping with compact point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact.

Corollary 36. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, semicontinuous, almostclosed, surjective mapping with N-closed point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ, \mathcal{J}) is \mathcal{J} -paracompact.

Corollary 37. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, semicontinuous, closed, surjective mapping with compact point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ, \mathcal{J}) is \mathcal{J} -paracompact.

If $\mathcal{I} = \{\emptyset\}$ in the above Corollary 35, we have the Corollary 38.

Corollary 38. [2, Theorem 3.5] Let $f : (X,T) \to (Y,M)$ be a continuous, open and closed surjective function such that $f^{-1}(y)$ is compact for each $y \in Y$. If (X,T) is S_1 -paracompact, then so is (Y,M).

Theorem 39. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, strongly semicontinuous, almostclosed, surjective mapping with N-closed point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is \mathcal{I} -paracompact, then (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a semiopen cover of Y. Since f is strongly semicontinuous, $\mathcal{U}_1 = \{f^{-1}(U_{\alpha}) \mid \alpha \in \Delta_0\}$ is an open cover of X. By hypothesis, there exist $I \in \mathcal{I}$ and X-locally finite X-open family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U}_1 such that $X = \bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \cup I$. Then $f(X) = f(\bigcup\{V_{\beta} \mid \beta \in \Delta_1\} \cup I)$ which implies $Y = \bigcup\{f(V_{\beta}) \mid \beta \in \Delta_1\} \cup f(I)$ which implies $Y = \bigcup\{f(V_{\beta}) \mid \beta \in \Delta_1\} \cup J$, where J = f(I). Since \mathcal{V}_1 is X-locally finite, $\mathcal{V} = \{f(V_{\beta}) \mid \beta \in \Delta_1\}$ is Y-locally finite, by Lemma 7. Since f is open, $f(V_{\beta})$ is open in Y. Let $f(V_{\beta}) \in \mathcal{V}$. Then $V_{\beta} \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $f^{-1}(U_{\alpha}) \in \mathcal{U}_1$ such that $V_{\beta} \subset f^{-1}(U_{\alpha})$. Thus, $f(V_{\beta}) \subset f(f^{-1}(U_{\alpha}))$ implies that $f(V_{\beta}) \subset U_{\alpha}$ for some $U_{\alpha} \in \mathcal{U}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact. **Corollary 40.** Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, strongly semicontinuous, closed, surjective mapping with compact point inverses and $\mathcal{J} = f(\mathcal{I})$. If (X, τ, \mathcal{I}) is \mathcal{I} -paracompact, then (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact.

Theorem 41. Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a presentiopen, continuous, bijective mapping and $\mathcal{I} = f^{-1}(\mathcal{J})$. If A is $S_1\mathcal{J}$ -paracompact relative to Y, then $f^{-1}(A)$ is $S_1\mathcal{I}$ -paracompact relative to X.

Proof. Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \Delta_0\}$ be a X-semiopen cover of $f^{-1}(A)$. Since f is presemiopen, $\mathcal{U}_1 = \{f(U_{\alpha}) \mid \alpha \in \Delta_0\}$ is a Y-semiopen cover of A. By hypothesis, there exist $J \in \mathcal{J}$ and Y-locally finite Y-open family $\mathcal{V}_1 = \{V_{\beta} \mid \beta \in \Delta_1\}$ which refines \mathcal{U}_1 such that $A \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup J$. Now $A \subset \bigcup \{V_{\beta} \mid \beta \in \Delta_1\} \cup J$ implies that $f^{-1}(A) \subset \bigcup \{f^{-1}(V_{\beta}) \mid \beta \in \Delta_1\} \cup f^{-1}(J)$ which implies $f^{-1}(A) \subset \bigcup \{f^{-1}(V_{\beta}) \mid \beta \in \Delta_1\} \cup I$, where $I = f^{-1}(J)$. Since f is continuous, by Lemma 8, $\mathcal{V} = \{f^{-1}(V_{\beta}) \mid \beta \in \Delta_1\}$ is X-open, X-locally finite. Let $f^{-1}(V_{\beta}) \in \mathcal{V}$. Then $V_{\beta} \in \mathcal{V}_1$. Since \mathcal{V}_1 refines \mathcal{U}_1 , there exists $f(U_{\alpha}) \in \mathcal{U}_1$ such that $V_{\beta} \subset f(U_{\alpha})$. Then $f^{-1}(V_{\beta}) \subset f^{-1}(f(U_{\alpha}))$ implies $f^{-1}(V_{\beta}) \subset U_{\alpha}$ for some $U_{\alpha} \in \mathcal{U}$. Hence \mathcal{V} refines \mathcal{U} . Therefore, $f^{-1}(A)$ is $S_1\mathcal{I}$ -paracompact relative to X.

Corollary 42. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a presentiopen, continuous, bijective mapping and $\mathcal{I} = f^{-1}(\mathcal{J})$. If (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact, then (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact.

Corollary 43. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be a semiopen, continuous, bijective mapping and $\mathcal{I} = f^{-1}(\mathcal{J})$. If (Y, σ, \mathcal{J}) is $S_1\mathcal{J}$ -paracompact, then (X, τ, \mathcal{I}) is \mathcal{I} -paracompact.

Corollary 44. [2, Theorem 3.8] Let $f : (X,T) \to (Y,M)$ be a continuous, semiclosed, surjection and $f^{-1}(y)$ is compact for each $y \in Y$. If (Y,M) is S_1 -paracompact space, then (X,T) is paracompact.

Theorem 45. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, almost closed, surjective mapping with N-closed point inverses and $\mathcal{J} = f(\mathcal{I})$ is codense. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ) is S_1 -almost paracompact.

Proof. By Theorem 34, (Y, σ, \mathcal{J}) is $S_1\mathcal{I}$ -paracompact. Since $\mathcal{J} = f(\mathcal{I})$ is codense, by Theorem 14, (Y, σ) is S_1 -almost paracompact.

Corollary 46. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, closed, surjective mapping with compact point inverses and $\mathcal{J} = f(\mathcal{I})$ is codense. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ) is S_1 -almost paracompact. **Corollary 47.** Let $f: (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, almost closed, surjective mapping with N-closed point inverses and $\mathcal{J} = f(\mathcal{I})$ is completely codense. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ) is S_1 -almost paracompact.

Corollary 48. Let $f : (X, \tau, \mathcal{I}) \to (Y, \sigma, \mathcal{J})$ be an open, irresolute, closed, surjective mapping with compact point inverses and $\mathcal{J} = f(\mathcal{I})$ is completely codense. If (X, τ, \mathcal{I}) is $S_1\mathcal{I}$ -paracompact, then (Y, σ) is S_1 -almost paracompact.

References

[1] M. E. Abd El-Monsef, R. A. Mohmoud and A. A. Nasef, *Strongly semi*continuous functions, Arab J. Phys. Math. Iraq. 11 (1990), 15 - 22.

[2] K. Al-Zoubi and A. Rawashdeh, S_1 -paracompact spaces, Acta Universitatis Apulensis. 26 (2011), 105 - 112.

[3] A. V. Arkhangel'skii and V. I. Ponomarev, *Fundamentals of General Topology-Problems and Exercises*, Hindustan Pub. Corp., Delhi. 1966.

[4] N. Bourbaki, *General Topology*, Hermann, Addison Wesley Publishing Company, Massachusets. 1966.

[5] D. Carnahan, *Locally nearly-compact spaces*, Boll. U. M. I. 4, 6 (1972), 146 - 153.

[6] C. G. Crossley and S. K. Hildebrand, *Semiclosure*, Texas J. Sci. 22(1971), 99 - 112.

[7] C. G. Crossley and S. K. Hildebrand, *Semitopological properties*, Fund. Math. 74 (1972), 233 - 254.

[8] G. Di Maio and T. Noiri, $On \ s-closed \ spaces$, Indian J. Pure Appl. Math. 18 (1987), 226 - 233.

[9] C. Dorsett, Semiregular spaces, Soochow. J. Math. 8 (1982), 45 - 53.

[10] J. Dontchev, M. Ganster and D. A. Rose, *Ideal resolvability*, Topology Appln. 93 (1999), 1 - 16.

[11] T. R. Hamlett and D. Janković, On almost paracompact and para-H-closed spaces, Q and A in Gen. Topology. 11 (1993), 139 - 143.

[12] T. R. Hamlett, D. Rose and D. Janković, *Paracompactness with respect to an ideal*, Internat. J. Math. Math. Sci. 20, 3 (1997), 433 - 442.

[13] D. Janković and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Monthly. 97, 4 (1990), 295 - 310.

[14] D. Jankovic and T. R. Hamlett, *Compatible extensions of Ideals*, Boll. U. M. I. 7, 6-B (1992), 453 - 465.

[15] K. Kuratowski, Topology I, Warszawa. 1933.

[16] N. Levine, Semiopen sets and semicontinuity in topological spaces, Amer. Math. Monthly. 70 (1963), 36 - 41.

[17] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961 - 970.

[18] T. Noiri, On semi-continuous mappings, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 8, 54 (1973), 210 - 214.

[19] T. Noiri, Completely continuous images of nearly paracompact spaces, Mat. Vesnik. 1, 14, 29 (1977), 59 - 64.

[20] T. Noiri, Properties of S-closed spaces, Acta Math. Hungar. 35 (1980), 431 - 436.

[21] M. K. Singal and A. R. Singal, *Almost-continuous mappings*, Yokohama Math. J. 16 (1968), 63 - 73.

[22] R. Vaidyanathaswamy, *Set Topology*, Chelsea Publishing Company, New York. 1946.

[23] A. Wilansky, Topics in Functional Analysis, Springer, Berlin. 1967.

[24] M. I. Zahid, Para H-closed spaces, locally para H-closed spaces and their minimal topologies, Ph.D dissertation, Univ. of Pittsburgh. 1981.

N. Sathiyasundari, V. Renukadevi Department of Mathematics, ANJA College, Sivakasi - 626 124, Tamil Nadu, India. Email: sathyamat03@yahoo.co.in; renu_siva2003@yahoo.com