$\delta - b$ -OPEN SETS AND $\delta - b$ -CONTINUOUS FUNCTIONS

UDAY SHANKAR CHAKRABORTY

ABSTRACT. The aim of this paper is to introduce the concept of $\delta - b$ -open set together with its corresponding operators $\delta - b$ -interior and $\delta - b$ -closure. A few relations between these operators and the operators defined before are established. In this paper, the concept of $\delta - b$ -continuity has been introduced with the aid of $\delta - b$ -open sets. Some basic properties of this mapping have also been studied.

2000 Mathematics Subject Classification: 54C10.

Keywords: $\delta - b$ -open sets, $\delta - b$ -continuity, $\delta - b$ -open functions.

1. INTRODUCTION

Veličko [1] introduced the concept of δ -open sets as a generalization of open sets. After him many others like Raychoudhury and Mukherjee [2], Noiri [3], Hatir and Noiri [4] further generalised the concept and introduced the notion of δ -prepen, δ -semiopen and $\delta - \beta$ -open sets. In this paper we have introduced the notions of $\delta - b$ -open sets and $\delta - b$ -continuity. The class of $\delta - b$ -continuous functions contains both the classes of δ -precontinuous and δ -semicontinuous functions and is contained in the class of all $\delta - \beta$ -continuous functions. We obtained characterizations of $\delta - b$ -continuous functions and analysed some of the basic properties of the function. The relationships between $\delta - b$ -continuity and separation axioms have also been investigated.

2. Preliminaries

Throughout the present paper, X and Y are always topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of X. The interior of A, the closure of A, the δ -interior of A, the δ -closure, the semi-interior, the semi-closure, the pre-interior and the pre-closure of A are denoted by int(A), cl(A), $int_{\delta}(A)$, $cl_{\delta}(A)$, sint(A), scl(A), pint(A) and pcl(A) respectively. A subset A of X is said to be regular open (resp. regular closed) [5] if $A = \operatorname{int}(\operatorname{cl}(A))$ (resp. $A = \operatorname{cl}(\operatorname{int}(A))$). The δ -interior [2] of a subset A of X is the union of all regular open sets of X contained in A. A subset A is called δ -open [1] if $A = \operatorname{int}_{\delta}(A)$, i.e., a set is δ -open if it is the union of regular open sets. The complement of a δ -open set is called δ -closed, alternatively, a subset A of X is called δ -closed [1] if $A = \operatorname{cl}_{\delta}(A)$, where $\operatorname{cl}_{\delta}(A) = \{x \in X : A \cap \operatorname{int}(\operatorname{cl}(U)) \neq \emptyset, U \text{ is open in } X \text{ and } x \in U\}.$

Definition 1. A subset A of X is called

(a) Preopen [6] if $A \subset int(cl(A))$, (b) Semiopen [7] if $A \subset cl(int(A))$, (c) β -open [8] if $A \subset cl(int(cl((A))))$, (d) δ -preopen [2] if $A \subset int(cl_{\delta}(A))$, (e) $\delta - \beta$ -open [4] if $A \subset cl(int(cl_{\delta}(A)))$, (f) δ -semiopen [3] if $A \subset cl(int_{\delta}(A))$, (g) b-open [9] if $A \subset int(cl(A)) \cup cl(int(A))$, (h) δ -b-open if $A \subset int(cl_{\delta}(A)) \cup cl(int_{\delta}(A))$

The family of all $\delta - b$ -open (resp. δ -preopen, δ -semiopen, $\delta - \beta$ -open) sets of X is denoted by $\delta BO(X)$ (resp. $\delta PO(X)$, $\delta SO(X)$, $\delta \beta O(X)$).

Definition 2. Let A be a subset of a topological space X.

- (a) The complement of a δ b-open (resp. δ-preopen, δ-semiopen, δ β-open) set is called δ b-closed (resp. δ-preclosed [2], δ-semclosed [3], δ β-closed [4]).
- (b) The union of all δ − b−open (resp. δ−preopen, δ−semiopen, δ − β−open) sets contained in A is called the δ − b−interior (resp. δ−preinterior [10], δ−seminterior [3], δ − β−interior [4]) of A and is denoted by bint_δ(A) (resp. pint_δ(A), sint_δ(A), βint_δ(A)).
- (c) The intersection of all δ b-closed (resp. δ preclosed, δ-semiclosed, δ β-closed) sets containing A is called the δ b-closure (resp. δ-preclosure [2], δ-semclosure [3], δ β-closure [4]) of A and is denoted by bcl_δ(A) (resp. pcl_δ(A), scl_δ(A), βcl_δ(A)).

Lemma 1. [4] For a subset A of a topological space X, the following properties hold:

- (a) $pint_{\delta}(A) = A \cap int(cl_{\delta}(A)); pcl_{\delta}(A) = A \cup cl(int_{\delta}(A)),$
- (b) $sint_{\delta}(A) = A \cap cl(int_{\delta}(A)); scl_{\delta}(A) = A \cup int(cl_{\delta}(A)),$
- (c) $\beta int_{\delta}(A) = A \cap cl(int(cl_{\delta}(A))); \beta cl_{\delta}(A) = A \cup int(cl(int_{\delta}(A))).$

3. $\delta - b$ -open sets

Theorem 2. $\delta PO(X) \cup \delta SO(X) \subset \delta BO(X) \subset \delta \beta O(X)$.

Remark 1. The inclusions can not be replaced with equalities as shown by the following examples.

Example 1. Let $X = \{a, b, c, d, e\}$ and let $\tau = \{X, \emptyset, \{a\}, \{e\}, \{a, e\}, \{c, d\}, \{a, c, d\}, \{c, d, e\}, \{a, c, d, e\}\}$. Then $A = \{a, b, d\}$ is $\delta - b$ -open but neither δ -preopen nor δ -semiopen.

Example 2. Let $X = \{a, b, c, d\}$ and let $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$. Then $A = \{a, d\}$ is $\delta - \beta$ -open but not δ -b-open.

Theorem 3. Let $A \in \delta BO(X)$ such that $int_{\delta}(A) = \emptyset$, then $A \in \delta PO(X)$.

Theorem 4. A subset A of X is δ -b-closed if and only if $cl(int_{\delta}(A)) \cap int(cl_{\delta}(A)) \subset A$.

Theorem 5. Arbitrary union (intersection) of $\delta - b$ -open (resp. $\delta - b$ -closed) sets is $\delta - b$ -open (resp. $\delta - b$ -closed).

Remark 2. The intersection of two $\delta - b$ -open sets may not be $\delta - b$ -open. This can be shown by the following example.

Example 3. Let $X = \{a, b, c\}$ and $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, c\}$ and $B = \{b, c\}$ are both $\delta - b$ -open sets, but $A \cap B = \{c\}$ is not $\delta - b$ -open.

Theorem 6. The following properties hold for the δ – b–closures of subsets A, B of X.

(a) A is $\delta - b - closed$ in X if and only if $A = bcl_{\delta}(A)$,

(b) $bcl_{\delta}(A) \subset bcl_{\delta}(B)$ whenever $A \subset B \subset X$,

- (c) $bcl_{\delta}(A)$ is $\delta b closed$ in X,
- (d) $bcl_{\delta}(bcl_{\delta}(A)) = bcl_{\delta}(A),$

(e) $x \in cl_{\delta}(A)$ if $A \cap U \neq \emptyset$ for every $\delta - b$ -open set U containing x.

Theorem 7. The following properties hold for the δ – b–interiors of subsets A, B of X.

(a) $bint_{\delta}(A) \subset bint_{\delta}(B)$ whenever $A \subset B \subset X$,

(b) $bint_{\delta}(B)$ is b-open in X,

(c) $bint_{\delta}(bint_{\delta}(A)) = bint_{\delta}(A)$.

Theorem 8. Let $A, B \subset X$ be such that A is $\delta - b$ -open and B is $\delta - b$ -closed. Then there exist a $\delta - b$ -open set H and a $\delta - b$ -closed set K such that $A \cap B \subset K$ and $H \subset A \cup B$.

Proof. Let $K = \operatorname{bcl}_{\delta}(A) \cap B$ and $H = A \cup \operatorname{bint}_{\delta}(B)$. Then K is $\delta - b$ -closed and H is $\delta - b$ -open. Also $A \cap B \subset \operatorname{bcl}_{\delta}(A) \cap B = K$ and $H = A \cup \operatorname{bint}_{\delta}(B) \subset A \cup B$.

Theorem 9. For a subset A of a space X, the following are equivalent.

- (a) A is $\delta b open$.
- (b) $A = pint_{\delta}(A) \cup sint_{\delta}(A).$
- (c) $A \subset pcl_{\delta}(pint_{\delta}(A)).$

Proof.

 $\begin{aligned} (\mathbf{a}) &\Rightarrow (\mathbf{b}): \text{ Let } A \text{ be } \delta - b \text{-open. Then } A \subset \operatorname{cl}(\operatorname{int}_{\delta}(A)) \cup \operatorname{int}(\operatorname{cl}_{\delta}(A)). \text{ Now } \operatorname{pint}_{\delta}(A) \cup \\ \operatorname{sint}_{\delta}(A) &= [A \cap \operatorname{int}(\operatorname{cl}_{\delta}(A))] \cup [A \cap \operatorname{cl}(\operatorname{int}_{\delta}(A))] = A \cap [\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cup \operatorname{cl}(\operatorname{int}_{\delta}(A))] = A. \\ (\mathbf{b}) &\Rightarrow (\mathbf{c}): A = \operatorname{pint}_{\delta}(A) \cup \operatorname{sint}_{\delta}(A) = \operatorname{pint}_{\delta}(A) \cup [A \cap \operatorname{cl}(\operatorname{int}_{\delta}(A))] \subset \operatorname{pint}_{\delta}(A) \cup \operatorname{cl}(\operatorname{int}_{\delta}(A)) \\ &= \operatorname{pcl}_{\delta}(\operatorname{pint}_{\delta}(A)) \end{aligned}$

(c) \Rightarrow (a): $A \subset \text{pcl}_{\delta}(\text{pint}_{\delta}(A)) = \text{pint}_{\delta}(A) \cup \text{cl}(\text{int}_{\delta}(A)) \subset (A \cap \text{cl}(\text{int}_{\delta}(A)) \cup \text{int}(\text{cl}_{\delta}(A))).$ Therefore, A is $\delta - b$ -open.

Lemma 10. [2] Let A be a subset of a space X. Then

(a) $cl_{\delta}(A) \cap G \subset cl_{\delta}(A \cap G)$, for any δ -open set G in X,

(b) $int_{\delta}(A \cup F) \subset int_{\delta}(A) \cup F$, for any δ -closed set F in X.

Theorem 11. For a subset A of a space X, the following properties hold.

(a)
$$bcl_{\delta}(A) = scl_{\delta}(A) \cap pcl_{\delta}(A),$$

- (b) $bint_{\delta}(A) = sint_{\delta}(A) \cup pint_{\delta}(A),$
- (c) $bcl_{\delta}(X \setminus A) = X \setminus bint_{\delta}(A)$,
- (d) $x \in bcl_{\delta}(A)$ if and only if $A \cap U \neq \emptyset$ for every $U \in \delta BO(X)$ containing x.

- Proof. (a) Since $\operatorname{bcl}_{\delta}(A)$ is $\delta-b-\operatorname{closed}$, therefore, $\operatorname{int}(\operatorname{cl}_{\delta}(\operatorname{bcl}_{\delta}(A)))\cap \operatorname{cl}(\operatorname{int}_{\delta}(\operatorname{bcl}_{\delta}(A))) \subset \operatorname{bcl}_{\delta}(A)$. This implies that $A \cup [\operatorname{int}(\operatorname{cl}_{\delta}(A))\cap \operatorname{cl}(\operatorname{int}_{\delta}(A))] \subset \operatorname{bcl}_{\delta}(A)$. Thus $\operatorname{scl}_{\delta}(A)\cap \operatorname{pcl}_{\delta}(A) \subset \operatorname{bcl}_{\delta}(A)$. To prove the reverse inclusion, we have, $\operatorname{scl}_{\delta}(A)\cap \operatorname{pcl}_{\delta}(A)$ is a $\delta-b-\operatorname{closed}$ set containing A. Hence, $\operatorname{bcl}_{\delta}(A) \subset \operatorname{scl}_{\delta}(A)\cap \operatorname{pcl}_{\delta}(A)$.
- (b) Since $\operatorname{bint}_{\delta}(A)$ is δb -open, therefore, $\operatorname{int}(\operatorname{cl}_{\delta}(\operatorname{bint}_{\delta}(A))) \cup \operatorname{cl}(\operatorname{int}_{\delta}(\operatorname{bint}_{\delta}(A))) \supset$ $\operatorname{bint}_{\delta}(A)$. This implies that $A \cap [\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cap \operatorname{cl}(\operatorname{int}_{\delta}(A))] \supset \operatorname{bint}_{\delta}(A)$. Thus $\operatorname{sint}_{\delta}(A) \cup \operatorname{pint}_{\delta}(A) \supset \operatorname{bint}_{\delta}(A)$. To prove the reverse inclusion, we have, $\operatorname{sint}_{\delta}(A) \cup \operatorname{pint}_{\delta}(A)$ is a $\delta - b$ -open set containing A. Hence, $\operatorname{sint}_{\delta}(A) \cup \operatorname{pint}_{\delta}(A)$.
- (c) We have, $\operatorname{bcl}_{\delta}(X \setminus A) = \operatorname{scl}_{\delta}(X \setminus A) \cap \operatorname{pcl}_{\delta}(X \setminus A) = [X \setminus \operatorname{sint}_{\delta}(A)] \cap [X \setminus \operatorname{pint}_{\delta}(A)] = X \setminus [\operatorname{sint}_{\delta}(A) \cup \operatorname{pint}_{\delta}(A)] = X \setminus \operatorname{bint}_{\delta}(A)$
- (d) Let $x \in bcl_{\delta}(A)$. Thus $x \in cl_{\delta}(A)$. Hence, $A \cap U \neq \emptyset$ for every $U \in \delta BO(X)$ containing x. Conversely, let $A \cap U \neq \emptyset$ for every $U \in \delta BO(X)$ containing x. Let $x \in X \setminus bcl_{\delta}(A) = bint_{\delta}(X \setminus A)$. Therefore, there exists $U \in \delta BO(X)$ containing x such that $U \subset X \setminus A$. This implies, $A \cap U = \emptyset$. Which is a contradiction. Hence, $x \in bcl_{\delta}(A)$.

Theorem 12. A set A in X is $\delta - b$ -open if and only if $U \cap A \in \delta BO(X)$, for every regular open (equivalently δ -open)set U of X.

Proof. Let $A \in \delta BO(X)$. Therefore, $U \cap A \subset U \cap [\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cup \operatorname{cl}(\operatorname{int}_{\delta}(A))]$ $\subset [\operatorname{int}(U) \cap \operatorname{int}(\operatorname{cl}_{\delta}(A))] \cup \operatorname{cl}(U \cap \operatorname{int}_{\delta}(A)) = \operatorname{int}(U \cap \operatorname{cl}_{\delta}(A)) \cup \operatorname{cl}(\operatorname{int}_{\delta}(U) \cap \operatorname{int}_{\delta}(A)) \subset \operatorname{int}(\operatorname{cl}_{\delta}(U \cap A)) \cup \operatorname{cl}(\operatorname{int}_{\delta}(U \cap A))$. Thus, $U \cap A \in \delta BO(X)$. Conversely, let $U \cap A \in \delta BO(X)$, for every regular open set U of X. Since, X is regular open, therefore, $X \cap A = A \in \delta BO(X)$.

Definition 3. A subset A of a space X is called a δ – b–neighbourhood of x in X if there exists $U \in \delta BO(X)$ such that $x \in U \subset A$.

Theorem 13. If U is a δ -open subset of a space X and $V \in \delta BO(X)$, then $U \cap V \in \delta BO(U)$.

Proof. We have, $U \cap V \subset U \cap [\operatorname{int}(\operatorname{cl}_{\delta}(A)) \cup \operatorname{cl}(\operatorname{int}_{\delta}(A))]$ = $[U \cap \operatorname{int}(\operatorname{cl}_{\delta}(V))] \cup [U \cap \operatorname{cl}(\operatorname{int}_{\delta}(V))] \subset \operatorname{int}_{U}(U \cap \operatorname{cl}_{\delta}(V)) \cup [U \cap \operatorname{cl}(U \cap \operatorname{int}_{\delta}(V))] \subset$ $\operatorname{int}_{U}(U \cap \operatorname{cl}_{\delta}(U \cap V)) \cup \operatorname{cl}_{U}(U \cap \operatorname{int}_{\delta}(V)) = \operatorname{int}_{U}(\operatorname{cl}_{\delta U}(U \cap V)) \cup \operatorname{cl}_{U}(\operatorname{int}_{\delta}(U \cap V)) \subset$ $\operatorname{int}_{U}(\operatorname{cl}_{\delta U}(U \cap V)) \cup \operatorname{cl}_{U}(\operatorname{int}_{\delta U}(U \cap V)).$ Therefore, $U \cap V \in \delta BO(U)$.

4. $\delta - b$ -continuous function

Definition 4. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be δ -b-continuous (resp. δ -precontinuous, δ -semicontinuous [3], $\delta - \beta$ -continuous [4]) if for each $V \in \sigma$, $f^{-1}(V)$ is δ -b-open (resp. δ -preopen, δ -semiopen, $\delta - \beta$ -open) in X.

Remark 3. Every δ -precontinuous as well as every δ -semicontinuous function is δ -b-continuous function also every δ -b-continuous function is δ - β -continuous. But none of these relations can be reversed as given by the following examples.

Example 4. The function $f: (X, \tau) \to (Y, \sigma)$, where (X, τ) is the topological space given in Example 1 and $Y = \{a, b\}, \sigma = \{Y, \emptyset, \{a\}\},$ defined by f(a) = f(b) = f(d) = a, f(c) = f(e) = b is $\delta - b$ -continuous but it is neither δ -precontinuous nor δ -semicontinuous.

Example 5. The function $f: (X, \tau) \to (Y, \sigma)$, where (X, τ) is the topological space given in Example 3.2. and $Y = \{a, b\}, \sigma = \{Y, \emptyset, \{a\}\},$ defined by f(a) = f(d) = a, f(c) = f(d) = b is $\delta - \beta$ -continuous but not $\delta - b$ -continuous.

Definition 5. [11] A function $f : (X, \tau) \to (Y, \sigma)$ is said to be δ -continuous if for each $x \in X$ and for each $V \in \sigma$ containing f(x), there exists $U \in \tau$ containing x such that $f(int(cl(U))) \subset int(cl(V))$.

Remark 4. δ -continuity and δ – b-continuity are independent of each other as given by the following example.

Example 6. Let $X = Y = \{a, b, c\}$ and let $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \emptyset, \{b, c\}\}$. Then the function $f : (X, \tau) \to (Y, \sigma)$ defined by f(a) = c, f(b) = b, f(c) = a is δ -continuous but not δ -b-continuous whereas the identity function $i : (Y, \sigma) \to (X, \tau)$ defined by i(x) = x for all $x \in Y$ is δ -b-continuous but not δ -continuous.

Definition 6. Let A be a subset of a space X. Then δ – b-frontier of A is defined by $bfr_{\delta}(A) = bcl_{\delta}(A) \cap bcl_{\delta}(X \setminus A) = bcl_{\delta}(A) \setminus bint_{\delta}(A)$.

Theorem 14. The following statements are equivalent for a function $f: X \to Y$.

- (a) f is δb -continuous,
- (b) For each $x \in X$ and each open set V of Y containing f(x), there exists $U \in \delta BO(X)$ containing x such that $f(U) \subset V$,
- (c) For each closed subset W of Y, $f^{-1}(W)$ is δ b-closed.
- (d) For each subset A of X, $f(bcl_{\delta}(A)) \subset cl(f(A))$.

(e) For each subset B of Y, $bcl_{\delta}(f^{-1}(B)) \subset f^{-1}(cl(B))$.

(f) For each subset B of Y, $f^{-1}(int(B)) \subset bint_{\delta}(f^{-1}(B))$.

(g) For each subset B of Y, $bfr_{\delta}(f^{-1}(B)) \subset f^{-1}(fr(B))$.

Proof. (a) \Leftrightarrow (b) and (a) \Leftrightarrow (c) are straightforward.

(c) \Rightarrow (d): For any subset A of X, $f^{-1}(\operatorname{cl}(f(A)))$ is $\delta - b$ -closed and contains A. Thus $\operatorname{bcl}_{\delta}(A) \subset f^{-1}(\operatorname{cl}(f(A)))$, so that $f(\operatorname{bcl}_{\delta}(A)) \subset f(f^{-1}(\operatorname{cl}(f(A)))) \subset \operatorname{cl}(f(A))$. (d) \Rightarrow (e): Let B be any subset of Y. Then $f(\operatorname{bcl}_{\delta}(f^{-1}(B))) \subset \operatorname{cl}(f(f^{-1}(B))) \subset \operatorname{cl}(B)$. Hence $\operatorname{bcl}_{\delta}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}(B))$.

(e) \Rightarrow (c): Let W be a closed subset of Y. Then $\operatorname{bcl}_{\delta}(f^{-1}(B)) \subset f^{-1}(\operatorname{cl}(B) = f^{-1}(B)$. Thus $f^{-1}(B)$ is $\delta - b$ -closed in X. Hence, f is $\delta - b$ -continuous.

(a) \Rightarrow (f): Let *B* be any subset of *Y*. Then $f^{-1}(\operatorname{int}(B)) \in \delta BO(X)$. Thus $f^{-1}(\operatorname{int}(B)) = b\operatorname{int}_{\delta}(f^{-1}(\operatorname{int}(B))) \subset b\operatorname{int}_{\delta}(f^{-1}(B)))$.

(f) \Rightarrow (a): Let $V \in \sigma$. Then $f^{-1}(V) = f^{-1}(\operatorname{int}(V)) \subset \operatorname{bint}_{\delta}(f^{-1}(V))$. Therefore, $f^{-1}(V) \in \delta BO(X)$. Hence, f is $\delta - b$ -continuous.

 $\begin{array}{l} (\mathrm{d}) \Rightarrow (\mathrm{g}) \text{: Let } B \text{ be a subset of } Y. \\ \mathrm{We \ have, \ } b\mathrm{fr}_{\delta}(f^{-1}(B)) = b\mathrm{cl}_{\delta}(f^{-1}(B)) \cap b\mathrm{cl}_{\delta}(X \setminus f^{-1}(B)) \\ \subset f^{-1}(\mathrm{cl}(B)) \cap b\mathrm{cl}_{\delta}(f^{-1}(Y \setminus B)) \subset f^{-1}(\mathrm{cl}(B)) \cap f^{-1}(\mathrm{cl}(Y \setminus B)) = f^{-1}(\mathrm{fr}(B)). \end{array}$

(g) \Rightarrow (c): Let W be a closed subset of Y. Then $bfr_{\delta}(f^{-1}(W)) \subset f^{-1}(fr(W)) \subset f^{-1}(W)$. Thus $f^{-1}(W)$ is $\delta - b$ -closed in X. Hence, f is $\delta - b$ -continuous.

Theorem 15. The set of all points of X at which a function $f : X \to Y$ is not $\delta - b$ -continuous is identical with the union of the $\delta - b$ -frontiers of the inverse images of the open sets containing f(x).

Proof. Let $x \in X$ and let f be not $\delta - b$ -continuous at x. Therefore, there exists an open set V in Y containing f(x) such that $U \cap (X \setminus f^{-1}(V)) \neq \emptyset$ for every $U \in \delta BO(X)$ containing x. This implies $x \in bcl_{\delta}(X \setminus f^{-1}(V))$ and $x \in f^{-1}(V)$. Thus $x \in bfr_{\delta}(f^{-1}(V))$.

Conversely, suppose that f is $\delta - b$ -continuous at $x \in X$ and let V be an open set containing f(x). Therefore, there exists $U \in \delta BO(X)$ containing x such that $U \subset f^{-1}(V)$. This implies that $x \in bint_{\delta}(f^{-1}(V))$ and hence, $x \in X \setminus bfr_{\delta}(f^{-1}(V))$.

Remark 5. The composition of two δ – b–continuous functions may not be δ – b–continuous as shown by the following example.

Example 7. Let $X = Y = Z = \{a, b, c\}$ and let $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \emptyset, \{a\}, \{b, c\}\}, \gamma = \{Z, \emptyset, \{a\}, \{b\}, \{a, c\}, \{a, c\}\}$. Then the functions $f : (X, \tau) \rightarrow (Y, \sigma)$ and $g : (Y, \sigma) \rightarrow (Z, \gamma)$ defined by f(a) = g(a) = c, f(b) = g(b) = c, f(c) = g(c) = b are $\delta - b$ -continuous but their composition $g \circ f$ is not $\delta - b$ -continuous.

Theorem 16. Let $f : X \to Y$ and $g : Y \to Z$. If $f : X \to Z$ is $\delta - b$ -continuous and g is continuous, then $g \circ f$ is $\delta - b$ -continuous.

Proof. Straightforward.

Definition 7. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be $\delta - b$ -open if $f(V) \in \delta BO(Y)$ for each $V \in \delta BO(X)$.

Theorem 17. A function $f : X \to Y$ is $\delta - b$ -open if and only if $f^{-1}(bcl_{\delta}(B)) \subset bcl_{\delta}(f^{-1}(B))$ for each subset B of Y.

Proof. Let f be $\delta - b$ -open and let $x \in f^{-1}(bcl_{\delta}(B))$. Let G be a $\delta - b$ -open set in X containing x. Therefore, f(G) is $\delta - b$ -open in Y containing f(x). As a result $B \cap f(G) \neq \emptyset$ and so $f^{-1}(B) \cap G \neq \emptyset$. Thus $x \in bcl_{\delta}(f^{-1}(B))$. Hence, $f^{-1}(bcl_{\delta}(B)) \subset bcl_{\delta}(f^{-1}(B))$.

Conversely, let $f^{-1}(bcl_{\delta}(B)) \subset bcl_{\delta}(f^{-1}(B))$ for each subset B of Y. Let A be $\delta - b$ -open in X and let $C = Y \setminus f(A)$. Now, $A \cap f^{-1}(bcl_{\delta}(C) \cap f(A)) \subset A \cap f^{-1}(bcl_{\delta}(C) \subset A \cap bcl_{\delta}(f^{-1}(C)) \subset A \cap (X \setminus A) = \emptyset$. This implies that $f^{-1}(bcl_{\delta}(C) \cap f(A)) = \emptyset$. As a result $bcl_{\delta}(C) \cap f(A) = \emptyset$ and so $bcl_{\delta}(C) \subset C$. Therefore, C is $\delta - b$ -closed and hence, $f(A) \in \delta BO(Y)$.

Theorem 18. Let $f: X \to Y$ and $g: Y \to Z$. If $g \circ f: X \to Z$ is $\delta - b$ -continuous and f is a $\delta - b$ -open surjection, then g is $\delta - b$ -continuous.

Proof. Let V be open in Z. Since $g \circ f$ is $\delta - b$ -continuous, therefore, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V)) \in \delta BO(X)$. Since, f is a $\delta - b$ -open surjection, therefore, $f(f^{-1}(g^{-1}(V))) = g^{-1}(V) \in \delta BO(Y)$. Hence, g is $\delta - b$ -continuous.

Remark 6. The term "surjection" can not be dropped from the above theorem as shown by the following example.

Example 8. Let $X = Y = Z = \{a, b, c\}$ and let $\tau = \{X, \emptyset, \{a\}, \{b, c\}\}, \sigma = \{Y, \emptyset, \{a\}, \{b\}, \{a, b\}\}, \gamma = \{Z, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Then function $f : (X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = a, f(b) = f(c) = b is $\delta - b$ -open whereas $g : (Y, \sigma) \rightarrow (Z, \gamma)$ defined by g(a) = b, g(b) = c, g(c) = a is not $\delta - b$ -continuous. But $g_o f$ is $\delta - b$ -continuous.

Definition 8 and Definition 9 can be given as in [12, 13].

Definition 8. A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in a topological space X is said to $\delta - b$ -converge to $x \in X$ if for every $\delta - b$ -neighbourhood U of x, there is some $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$ when $\lambda \geq \lambda_0$.

Theorem 19. A function $f : (X, \tau) \to (Y, \sigma)$ is $\delta - b$ -continuous at $x \in X$ if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which $\delta - b$ -converges to x, the net $\{f(x_{\lambda}) : \lambda \in \Lambda\}$ converges to f(x).

Proof. Let f be $\delta - b$ -continuous at x and let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X such that it $\delta - b$ -converges to x. Let $V \in \sigma$ contain f(x). Therefore, there exists a $\delta - b$ -open set U in X containing x such that $f(U) \subset V$. Now, $\{x_{\lambda} : \lambda \in \Lambda\}$ $\delta - b$ -converges to x implies that there exists $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$ for all $\lambda \geq \lambda_0$. This implies that $f(x_{\lambda}) \in f(U) \subset V$ for all $\lambda \geq \lambda_0$. Thus $\{f(x_{\lambda}) : \lambda \in \Lambda\}$ converges to f(x).

Conversely, let f be not $\delta - b$ -continuous at $x \in X$. Therefore, there exists an open neighbourhood V of f(x) such that f(U) is not a subset of V for every $U \in \delta BO(X)$ containing x. Thus for every $\delta - b$ -open neighbourhood U of x we can find $x_U \in U$ such that $f(x_U) \notin V$. Let N(x) be the set of all δ - b-neighbourhoods U of x in X. The set N(x) with the relation $U_1 \leq U_2$ if and only if $U_2 \subset U_1$, form a directed set. Therefore, the net $\{x_U : U \in N(x)\} \delta$ - b-converges to x but $\{f(x_U) : U \in N(x)\}$ does not converge to f(x) in Y. Which is a contradiction. Hence f is δ - b-continuous at $x \in X$.

Definition 9. A net $\{f_{\alpha} : \alpha \in \Delta\}$ in $\delta BO(X, Y)$ is said to $\delta - b$ -continuously converge to $f \in \delta BO(X, Y)$ if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -b-converges to $x \in X$, the net $\{f_{\alpha}(x_{\lambda}) : (\alpha, \lambda) \in \Delta \times \Lambda\}$ converges to f(x) in Y, where $\delta BO(X, Y)$ denotes the set of all δ - b-continuous functions of X to Y.

Theorem 20. A net $\{f_{\alpha} : \alpha \in \Delta\}$ in $\delta BO(X, Y)$ $\delta - b$ -continuously converges to $f \in \delta BO(X, Y)$ if and only if for every $x \in X$ and for every open neighbourhood V of f(x) in Y, there exists an element $\alpha_0 \in \Delta$ and a $\delta - b$ -open neighbourhood U of x in X such that $f_{\alpha}(U) \subset V$ for every $\alpha \geq \alpha_0, \alpha \in \Delta$.

Proof. Let $x \in X$ and let V be an open neighbourhood of f(x) in Y such that for every $\alpha \in \Delta$ and for every $\delta - b$ -open neighbourhood U of $x \in X$, there exists $\alpha' \geq \alpha, \alpha \in \Delta$ such that $f_{\alpha'}(U)$ is not a subset of V. Then for every $\delta - b$ -open neighbourhood U of x in X we can choose a point $x_U \in U$ such that $f_{\alpha'}(x_U) \notin V$. Therefore, the net $\{x_U : U \in N(x)\} \delta$ - b-converges to x, but the net $\{f_{\alpha}(x_U) : (\alpha, U) \in \Delta \times N\}$ does not converge to f(x) in Y.

Conversely, let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in $\delta BO(X, Y)$ which $\delta - b$ -converges to x in X and an element $\alpha_0 \in \Lambda$ such that $f_{\alpha}(U) \subset V$ for all $\alpha \geq \alpha_0, \alpha \in \Delta$. Since the net $\{x_{\lambda} : \lambda \in \Lambda\}$ $\delta - b$ -converges to x in X, there exists $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in U$ for all $\lambda \in \Lambda, \lambda \geq \lambda_0$. Let $(\lambda_0, \alpha_0) \in \Lambda \times \Delta$. Then for every $(\lambda, \alpha) \in \Lambda \times \Delta, \lambda \geq \lambda_0, \alpha \geq \alpha_0$,

we have, $f_{\alpha}(x_{\lambda}) \in f_{\alpha}(U) \subset V$. Thus the net $\{f_{\alpha}(x_{\lambda}) : (\alpha, \lambda) \in \Delta \times \Lambda\}$ converges to f(x) in Y.

Theorem 21. If $f : X \to Y$ is $\delta - b$ -continuous and U is δ -open in X, then $f|_U : U \to Y$ is $\delta - b$ -continuous.

Proof. Let V be an open subset of Y. Since f is $\delta - b$ -continuous, $f^{-1}(V) \in \delta BO(X)$. Now $(f|U)^{-1}(V) = f^{-1}(V) \cap U \in \delta BO(U)$. Hence $f|_U : U \to Y$ is $\delta - b$ -continuous.

Let $\{X_{\alpha} : \alpha \in \Lambda\}$ and $\{Y_{\alpha} : \alpha \in \Lambda\}$ be any two families of spaces with the same index set Λ . Let $f_{\alpha} : X_{\alpha} \to Y_{\alpha}$ be a function for each $\alpha \in \Lambda$. The product space $\Pi\{X_{\alpha} : \alpha \in \Lambda\}$ will be denoted by ΠX_{α} and $f : \Pi X_{\alpha} \to \Pi Y_{\alpha}$ denotes the product function defined by $f(\{x_{\alpha}\}) = \{f_{\alpha}(x_{\alpha})\}$ for each $\{x_{\alpha}\} \in \Pi X_{\alpha}$.

Theorem 22. If a function $f : X \to \Pi Y_{\alpha}$ is $\delta - b - continuous$, then $p_{\alpha} \circ f : X \to Y_{\alpha}$ is $\delta - b - continuous$ for each $\alpha \in \Lambda$, where p_{α} is the projection of ΠY_{α} onto Y_{α} .

Proof. Let V_{α} be an open set in Y_{α} . Since p_{α} is continuous, therefore, $p_{\alpha}^{-1}(V_{\alpha})$ is open in ΠY_{α} and hence, $f^{-1}(p_{\alpha}^{-1}(V_{\alpha})) = (p_{\alpha} \circ f)^{-1}(V_{\alpha}) \in \delta BO(X)$. This shows that $p_{\alpha} \circ f$ is $\delta - b$ -continuous for each $\alpha \in \Lambda$.

Definition 10. A topological space X is said to be δ -Hausdorff if for any $x, y \neq x \in X$, there exist disjoint δ -open sets G, H such that $x \in G$ and $y \in H$.

Lemma 23. If $U \in \delta BO(X)$ and V is δ -open in Y, then $U \times V \in \delta BO(X \times Y)$.

Theorem 24. If $f: X \to Y$ is $\delta - b - continuous$, $g: X \to Y$ is $\delta - continuous$ and Y is Hausdorff, then the set $\{x \in X : f(x) = g(x)\}$ is $\delta - b - closed$ in X.

Proof. Let $A = \{x \in X : f(x) = g(x)\}$ and let $x \in X \setminus A$. Thus $f(x) \neq g(x)$. Since, Y is Hausdorff, therefore, there exists open sets G and H in Y such that $f(x) \in G, g(x) \in H$ and $G \cap H = \emptyset$. This implies $G \cap \operatorname{int}(\operatorname{cl}(H)) = \emptyset$. Since, f is $\delta - b$ -continuous, there exists $U \in \delta BO(X)$ containing x such that $f(U) \subset G$. Since, g is δ -continuous, there exists an open set V in X containing x such that $f(\operatorname{int}(\operatorname{cl}(V))) \subset \operatorname{int}(\operatorname{cl}(H))$. Let $W = U \cap \operatorname{int}(\operatorname{cl}(V))$. Now, $W \in \delta BO(X)$ and $f(W) \cap g(W) \subset f(U) \cap g(\operatorname{int}(\operatorname{cl}(V))) \subset G \cap \operatorname{int}(\operatorname{cl}(H)) = \emptyset$. This implies $W \cap A = \emptyset$. Thus $x \in X \setminus \operatorname{bcl}_{\delta}(A)$. Hence, A is $\delta - b$ -closed.

Theorem 25. If $f : X \to Y$ is $\delta - b$ -continuous and Y is a δ -Hausdorff space, then the graph $G_f = \{(x, f(x)) : x \in X\}$ is $\delta - b$ -closed. Proof. Let $(x, y) \notin G_f$. Then $f(x) \neq y$. Since, Y is a δ -Hausdorff space, therefore, there exist disjoint δ -open sets G and H such that $f(x) \in G$ and $y \in H$. Since f is $\delta - b$ -continuous, there is a $\delta - b$ -open set U containing x such that $f(U) \subset G$. Thus $(x, y) \in U \times H \subset X \times Y \setminus G_f$. As a result of which $X \times Y \setminus G_f \in \delta BO(X \times Y)$ since, by Lemma 22, $U \times H \in \delta BO(X \times Y)$. Hence, G_f is $\delta - b$ -closed.

Definition 11. A space X is called $\delta - b$ -connected if X is not the union of two disjoint non-empty $\delta - b$ -open sets.

Theorem 26. Let $f : X \to Y$ be a $\delta - b$ -surjection. If X is $\delta - b$ -connected, then Y is connected.

Proof. Suppose that Y is not connected. Therefore, there exist disjoint open sets G and H such that $Y = G \cup H$. Since, f is $\delta - b$ -continuous, $f^{-1}(G)$ and $f^{-1}(H)$ are $\delta - b$ -open in X. On the other hand, $f^{-1}(G)$ and $f^{-1}(H)$ are non-empty disjoint sets and $X = f^{-1}(G) \cup f^{-1}(H)$. This shows that X is not $\delta - b$ -connected which is a contradiction.

Definition 12. A space X is said to be

- (a) $\delta b T_1$ if for each pair of distinct points x and y in X, there exist δb -open sets G and H containing x and y, respectively, such that $y \notin G$ and $x \notin H$.
- (b) δb -Hausdorff if for each pair of distinct points x and y in X, there exist disjoint δb -open sets G and H containing x and y, respectively.

Theorem 27. The following properties hold for a δ – b–continuous injection f: $X \to Y$.

- (a) If Y is a Hausdorff space, then $X \ \delta b Hausdorff$.
- (b) If Y is a T_1 -space, then X is a $\delta b T_1$ space.
- Proof. (a) Let $x, y \neq x \in X$. Since, f is injective, therefore, $f(x) \neq f(y)$ in Y. Since, Y is Hausdorff, therefore, there exist disjoint open sets G and H such that $f(x) \in G$ and $f(y) \in H$. This implies that $f^{-1}(G), f^{-1}(H)$ are disjoint $\delta - b$ -open sets in X containing x, y respectively. Hence, X is $\delta - b$ -Hausdorff.
- (b) Let x, y(≠ x) ∈ X. Since, f is injective, therefore, f(x) ≠ f(y) in Y. Since, Y is T₁, therefore, there exist open sets G and H containing x and y respectively such that f(x) ∉ G and f(y) ∉ H. This implies that f⁻¹(G), f⁻¹(H) are δ − b−open sets in X containing x, y respectively such that x ∉ f⁻¹(G) and y ∉ f⁻¹(H). Hence, X is a δ − b − T₁ space.

Acknowledgements. The author is thankful to Prof. Paritosh Bhattacharyya (retd.), Department of Mathematics, Kalyani University, West Bengal, India for his suggestions.

References

[1] N.V.Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. 2, (1968), 103-118.

[2] S. Raychoudhuri, M.N. Mukherjee, $On \,\delta-almost \ continuity \ and \ \delta-preopen \ sets$, Bull. Inst. Math. Acad. Sinica 21,1 (1993), 357-366.

[3] T. Noiri, Remarks on δ -semiopen sets and δ -preopen sets, Demonstratio Math. 36,4 (2003), 1007-1020.

[4] E. Hatir, T. Noiri, *Decompositions of continuity and complete continuity*, Acta. Math. Hungar. 113,4 (2006), 81-87.

[5] S. Willard, *General Topology*, Dover Publications (2004)

[6] A.S. Mashour, M.E. Abd El-Monsef, S.N. El-Deeb, *On precontinuous and weak precontinuous mappings*, Proc. Math. Phys. Soc. Egypt 53 (1982), 47-53.

[7] N. Levine, Semiopen sets and semi-continuity, Amer. Math. Mon. 70 (1970), 36-41.

[8] M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, β -open sets and β -continuous mapping, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77-90.

[9] D. Andrijevic, On b-open sets, Mat. Vesnik 48 (1996), 59-64.

[10] J. H. Park, Y. Lee, M.J. Son, On δ -semiopen sets in topological spaces, Mat. J. Indian Acad. Math. 19 (1997), 59-67.

[11] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. 16 (1980), 161-166.

[12] E. Hatir, T. Noiri, $On \,\delta - \beta - continuous functions$, Chaos, Solitons and Fractals 42 (2009), 205-211.

[13] J.L. Kelley, *General Topology*, Springer International Edition (2005)

Uday Shankar Chakraborty Department of Mathematics, Albert Einstein School of Physical Science, Assam University, Silchar Assam, India email: udayhkd@gmail.com, uday.shankar.chakraborty@aus.ac.in