
Acta Universitatis Apulensis,
ISSN 1582-5329, 2011,
Special Issue on Understanding Complex Systems,
Eds. Barna Iantovics, Ladislav Hluchý and Roumen Kountchev

UNSUPERVISED TRANSFORMATION OF PROCEDURAL
PROGRAMS TO OBJECT-ORIENTED DESIGN

Istvan Gergely Czibula and Gabriela Czibula

Abstract. Object-oriented programming has many advantages over con-
ventional procedural programming languages for constructing highly flexible,
adaptable, and extensible systems. Therefore a transformation of procedural
programs to object-oriented architectures becomes an important process to
enhance the reuse of procedural programs. Moreover, it would be useful to as-
sist by automatic methods the software developers in transforming procedural
code into an equivalent object-oriented one. In this paper we aim at intro-
ducing an agglomerative hierarchical clustering algorithm that can be used for
assisting software developers in the process of transforming procedural code
into an object-oriented architecture. We also provide a code example showing
how our approach works, emphasizing, this way, the potential of our proposal.

Keywords: software engineering, procedural systems, object-oriented sys-
tems, machine learning, clustering

2000 Mathematics Subject Classification: 68N30, 62H30.

15

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

1. Introduction

Object-oriented programming has many advantages over conventional pro-
cedural programming languages for constructing highly flexible, adaptable,
and extensible systems [16]. It is well known that software evolution is an in-
evitable process for software systems. Repeated changes alter the structure of
a system, rapidly degrading it and making the system “legacy”. Reengineering
seems to be a promising approach to upgrade these systems according to the
latest technologies [1].

Object-oriented concepts are useful concerning the reuse of existing soft-
ware. Therefore a transformation of procedural programs to object-oriented
architectures becomes an important process to enhance the reuse of procedural
programs. The evolution of some legacy software systems often requires the
rewriting of the system into an object-oriented programming language. This
activity, especially for large software systems, is difficult and time consuming.
That is why it would be useful to assist by automatic methods the software
developers in transforming procedural code into an equivalent object-oriented
one.

Unsupervised classification, or clustering, as it is more often referred as, is a
data mining activity that aims to differentiate groups (classes or clusters) inside
a given set of objects [2], being considered the most important unsupervised
learning problem.

The resulting subsets or groups, distinct and non-empty, are to be built so
that the objects within each cluster are more closely related to one another
than objects assigned to different clusters. Central to the clustering process is
the notion of degree of similarity (or dissimilarity) between the objects.

We have previously introduced in [3] a clustering approach for transforming
procedural systems into object-oriented ones. For this purpose, a partitional
clustering algorithm, named kOOS, was introduced.

In this paper we aim at extending the approach from [3] by introducing a hi-
erarchical agglomerative clustering algorithm that can be used for re-grouping
the entities from an existing software system written in a procedural language.
The goal is to obtain a partition of a software system, in which each cluster
would correspond to an application class from the equivalent object-oriented
system.

The rest of the paper is structured as follows. The clustering approach for
assisting developers in the process of transforming software systems written

16

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

in procedural programming languages into object-oriented systems that we
have previously introduced in [3] is described in Section 2. Section 3 presents
some existing work related to the considered problem. A hierarchical cluster-
ing algorithm for transforming procedural systems into object-oriented ones is
introduced in Section 4. Section 5 presents an experimental evaluation of our
approach and Section 6 provides a comparison of our approach with similar
existing ones. Some conclusions of the paper and further research directions
are outlined in Section 7.

2. A clustering approach for OO transformation. Background

We have previously introduced in [3] a clustering approach for transforming
procedural systems into object-oriented ones. In the following we will briefly
describe the proposed approach.

Let S = {s1, s2, ..., sn} be a non object-oriented software system, where
si, 1 ≤ i ≤ n can be a subprogram (function or procedure), a global variable,
a user defined type.

In the following we will refer an element s ∈ S as an entity.
In order to transform S into an object-oriented system, we have proposed

an approach consisting of two steps [3]:

• Data collection - The existing software system is analyzed in order
to extract from it the relevant entities: subprograms, local and global
variables, subprograms parameters, subprograms invocations, data types
and modules, source files or other structures used for organizing the
procedural code.

• Grouping - The set of entities extracted at the previous step are grouped
in clusters. The goal of this step is to obtain clusters corresponding to
the application classes of the software system S.

In the Grouping step we propose a hierarchical agglomerative clustering
algorithm, HOOS (H ierarchical Agglomerative Clustering for OO Transfor-
mation).

17

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

3. Related Work

In this section we present some existing work in the field of transforming
procedural code into object-oriented systems.

A generic re-engineering source code transformation framework to support
the incremental migration of procedural legacy systems to object-oriented plat-
forms is presented in [4]. First, a source code representation framework that
uses a generic domain model for procedural languages allows for the repre-
sentation of Abstract Syntax Trees as XML documents. Second, a set of
transformations allow for the identification of object models in specific parts
of the legacy source code. In this way, the migration process is incrementally
applied on different parts of the system. A partitioning algorithm is used to
decompose a program into a set of smaller components that are suitable for the
incremental migration process. Finally, the migration process gradually com-
poses the object models obtained at every stage to generate an object model
for the whole system.

The approach from [4] aims to discover relations between data declarations
and functions that use such data starting from a set of initial seeds consisting
of all aggregate data types, all global variable declarations, and all function
pointer declarations.

The paper [1] describes a tool to reengineer procedural systems written in
Cobol, Fortran, C or Pascal, into object-oriented ones written in Smalltalk.
The developed prototype automatically identifies potential classes, but allows
user intervention to work up conflicts.

The paper [5] shows how an object-oriented development method can be
used to gradually modernize an old system, i.e re-engineer the system. The
proposed technique is based on experiences from real projects.

The approaches from [1, 5] describe re-engineering processes for transform-
ing procedural systems into object-oriented ones, but without focusing on au-
tomating the transformation process.

A reengineering tool for automatically transforming a system composed of
procedural programs into a functionally comparable object-oriented system is
introduced in [16]. The transformation into the object-oriented form locates
redundant, duplicated and similar data and processes and abstracts them into
classes and methods.

A program transformation process, which transforms originally procedural
systems to object-oriented systems is described in [7]. The objects of the result-
ing system may then be used for further object-oriented systems engineering,

18

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

avoiding many problems arising in connection with procedural software reuse,
such as module interconnection. This approach focuses on the problem of
software reuse.

Scenarios and strategies for gradually reengineering into object-oriented are
described in [8]. Techniques for encapsulation of legacy systems into object
wrappers are discussed in [9]. Techniques, but not automation, for abstracting
of functions from COBOL programs are described in [10]. Analytical analyses
with partial automation of the process for abstracting objects and object-
oriented specification from procedurally oriented programs are reported in [11],
and highly automated techniques for recovering abstract data types and object
instances for C are discussed in [12].

4. A Hierarchical Clustering Algorithm for OO
Transformation

In our clustering approach, the objects to be clustered are the entities from
the software system S, i.e., O = {s1, s2, . . . , sn}. Our focus is to group similar
entities from S in order to obtain groups (clusters) that will represent classes
in the equivalent object-oriented version of the software system S.

In order to express the dissimilarity degree between the entities from the
software system S, we will use an adapted generic cohesion measure [13]. Con-
sequently, the distance d(si, sj) between two entities si and sj is expressed as
in Equation (1).

d(si, sj) =

0 if i = j

1− |prop(si)∩prop(sj)|
|prop(si)|+|prop(sj)| if prop(si) ∩ prop(sj) 6= ∅

∞ otherwise

, (1)

where, for a given entity e ∈ S, prop(e) defines a set of relevant properties of
e, expressed as follows.

• If e is a subprogram (procedure or function) then prop(e) consists of:
the subprogram itself, the source file or module where e is defined, the
parameters types of e, the return type of e if it is a function and all
subprograms that invoke e.

• If e is global variable then prop(e) consists of: the variable itself, the
source files or modules where the variable is defined, all subprograms
that use e.

19

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

• If e is a user defined type then prop(e) consists of: the type itself, all
subprograms that use e, all subprograms that have a parameter of type
e and all functions that have e as returned type.

We have chosen the distance between two entities as expressed in Equation
(1) because it emphasizes the idea of cohesion. As illustrated in [14], “Cohe-
sion refers to the degree to which module components belong together”. Our
distance, as defined in Equation (1), highlights the concept of cohesion. It is
very likely that entities with low distances will be placed in the same applica-
tion class, and distant entities will belong to different application classes.

For example, if a procedure p1 has a formal parameter of type T , and
a procedure p2 has also a formal parameter of type T , intuitively the two
procedures have to be placed into an application class corresponding to type
T . The attributes of the resulted application class will be obtained from type
T and the two procedures p1 and p2 will be transformed in methods of the
application class. As defined in Equation (1), d(p1, T) and d(p2, T) are small
enough to favorize the grouping of procedures p1, p2 and type T into the same
cluster, which confirms the above observation.

Based on the definition of distance d (Equation (1)) it can be easily proved
that d is a semi-metric function, so a clustering based approach can be applied.

HOOS is based on the idea of hierarchical agglomerative clustering, and
uses an heuristic for merging two clusters. We use average link as linkage met-
ric, consequently we will consider the distance dist(k, k′) between two clusters
k ∈ K and k′ ∈ K as given in Equation (2).

dist(k, k′) =
1

|k| · |k′| ·
∑

e∈k,e′∈k′
d(e, e′) (2)

The heuristic used in HOOS is that, at a given step, the most two similar
clusters (the pair of clusters that have the smallest distance between them) are
merged only if the distance between them is less or equal to a given threshold,
distMin. This means that the entities from the two clusters are close enough
in order to be placed in the same cluster (application class).

The main steps of HOOS algorithm are:

• Each entity from the software system is put in its own cluster (singleton).

• The following steps are repeated until the partition of methods remains
unchanged (no more clusters can be selected for merging):

20

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

– select the two most similar clusters from the current partition, i.e,
the pair of clusters that minimize the distance from Equation (2).
Let us denote by dmin the distance between the most similar clus-
ters Ki and Kj;

– if dmin ≤ distMin (the given threshold), then clusters Ki and Kj

will be merged, otherwise the partition remains unchanged.

We give next HOOS algorithm.

Algorithm HOOS is

Input: - the software system S = {s1, . . . , sn}, n ≥ 2,
- the semi-metric d between entities,

- distMin > 0 the threshold for merging the clusters.

Output: - the partition K = {K1,K2, ..., Kp}, the OO structure of S.
Begin

For i ← 1 to n do

Ki ← {si} //each entity is put in its own cluster

endfor

K ← {K1, . . . ,Kn} //the initial partition

change ← true

While change do //while K changes

dmin ← dist(K1,K2) //the minimum distance between clusters

i ← 1; j ← 1
For i∗ ← 1 to n-1 do //the most similar clusters are chosen

For j∗ ← i∗ + 1 to n do

d ← dist(Ki∗ ,Kj∗)
If d < dmin then

dmin ← d; i ← i∗; j ← j∗

endif

endfor

endfor

If dmin ≤ distMin then

Knew ← Ki ∪Kj; K ← (K \ {Ki, Kj}) ∪ {Knew}
else

change ← false //the partition remains unchanged

endif

endwhile

End.

21

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

In our approach we have chosen the value 1 for the threshold distMin, because
distances greater than 1 are obtained only for unrelated entities (Equation (1)).

Each cluster from the resulted partition will represent an application class
from the equivalent object-oriented version of the software system S.

5. Example

In order to experimentally evaluate our algorithm proposed in Section 4, a
simple code example is considered. The example is written in Borland Pascal, a
procedural programming language developed by Niklaus Wirth as a small and
efficient language intended to encourage good programming practices using
structured programming and data structuring [15].

Let us consider a simple program that manipulates lists and rational num-
bers. We give bellow a code fragment from the Pascal source code that will
provide the reader with an easy to follow example for transforming procedural
code into object-oriented code using HOOS clustering algorithm.

{...}
type List = record

s:array[1..100] of integer; {the array of elements}
n:integer; {the size of the list}

end;
type Rational = record

numerator, denominator: integer;
end;

{...}

procedure add(var l:List; poz:integer; e:integer);
{adds an element to a given position into a list}
begin
{..}

end;

function size(l:List):integer;
{the size of a list}
begin
{..}

end;

function element(l:List; poz:integer):integer;
{the element from a list from a given position}

22

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

begin
{..}

end;

{...}
{other functions/procedures for lists manipulation}

procedure createRational(var r:Rational; n, d:integer);
{creates a rational number with a given numerator and a given denominator}
begin
{..}

end;

procedure sum(var r:Rational; r1, r2:Rational);
{makes the sum of two given rational numbers}
begin
{..}

end;

{...}
{other functions/procedures for rational numbers manipulation}

The first step of our approach is the Data collection step, during which
the source code written in a procedural programming language is analyzed and
relevant entities and the relations between them are extracted.

In order to extract methods, local and global variables, subprograms pa-
rameters, subprograms invocations and data types from a software written
in Pascal programming language, ANTLR [17] parser generator framework
is used. ANTLR is an open source Java tool that provides a framework for
constructing recognizers, interpreters, compilers, and translators from gram-
matical descriptions containing actions in a variety of target languages. Using
a grammatical description for the Pascal programming language, a lexical an-
alyzer and a parser can be easily generated by ANTLR framework. Using the
generated parser, the abstract syntax tree (AST) is constructed for the input
source code and the needed entities from the Pascal source code are identified.

The set of entities extracted from the source code will contain all the sub-
programs (functions and procedures) defined in the software application and
the defined data types from the system. This set will be used in the Group-
ing step as input for the hierarchical based clustering algorithm, HOOS. The
idea is to group into separate clusters types and subprograms that are good

23

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

candidates for forming a class in the object-oriented version of the software
system.

The relations between the extracted entities (subprograms invocations,
type usages) are used for computing the distances between the entities as
defined in Equation (1).

For the considered example, the size of the entity set is 15 and after the
grouping step a partition with 2 clusters is obtained. The clusters correspond-
ing to the presented source code extract are:

• Cluster 1:
{type List, add(List;integer;integer), size(List),
element(List;integer):integer}

• Cluster 2:
{type Rational, createRational(Rational;integer;integer),
add(Rational;Rational;Rational)}

Analyzing the obtained result, we can conclude that the obtained partition
can be a good starting point for transforming a software system written in a
procedural programming language into an object-oriented system. The clus-
ters from the identified partition represent future application classes from the
equivalent object-oriented version of the software system.

6. Comparison with Existing Approaches

In this section we will compare the approach presented in this paper with
some existing related approaches which were described in Section 3.

In comparison with the approach from [4], our approach is a clustering
based approach that heuristically determines the number of application classes
candidates. In case of large software systems, this heuristic choice is an advan-
tage, because it reduces the computational complexity of the transformation
process.

The approaches from [1, 5] describe re-engineering processes for transform-
ing procedural systems into object-oriented ones, but without focusing on au-
tomating the transformation process. Compared with these approaches, the
approach presented in this paper offers an automatic method for the analyzed
transformation.

The transformation processes presented in [16, 7] are non-clustering ap-
proaches, in comparison with our approach.

24

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

Our work differs from the approaches from [8, 9, 10, 11, 12] as the clustering
based transformation process proposed in this paper exhibits a high level of
automation.

7. Conclusions and Further Work

We have presented in this paper a hierarchical agglomerative clustering
algorithm (HOOS) that can be used for assisting software developers in trans-
forming procedural software systems into object-oriented ones.

We have also illustrated how our approach is applied for transforming a
simple program written in Pascal into an equivalent object-oriented system.
Advantages of our approach in comparison with existing similar approaches
are also emphasized.

Further work will be done in the following directions:

• To improve the distance function used in the clustering process.

• To extend our approach in order to also determine relationships (class hi-
erarchies) between the application classes obtained in the object-oriented
system.

• To apply HOOS algorithm on large software systems.

• To apply other search based approaches for transforming procedural soft-
ware systems into object-oriented ones.

• To use other unsupervised learning techniques (self organizing maps [18],
Hebbian learning [19]) for transforming procedural systems into object-
oriented ones.

Acknowledgement

This work was supported by CNCSIS-UEFISCSU, project number PNII-IDEI
2286/2008.

25

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

References

[1] Cobo, H., Mauco, V., Romero, M.d.C., Rodŕıguez, C.: A tool to reengi-
neer legacy systems to object-oriented systems. In: ER ’99: Proceedings
of the Workshops on Evolution and Change in Data Management, Re-
verse Engineering in Information Systems, and the World Wide Web and
Conceptual Modeling, London, UK, Springer-Verlag (1999) 186–197

[2] Han, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2005)

[3] Czibula, I.: A clustering approach for transforming procedural into
object-oriented software systems. In: KEPT ’09: Proceedings of the
Knowledge Engineering: Principles and Techniques Conference. (2009)
185–188

[4] Zou, Y., Kontogiannis, K.: Incremental transformation of procedural
systems to object oriented platforms. In: COMPSAC ’03: Proceedings
of the 27th Annual International Conference on Computer Software and
Applications, Washington, DC, USA, IEEE Computer Society (2003) 290

[5] Jacobson, I., Lindström, F.: Reengineering of old systems to an object-
oriented architecture. SIGPLAN Not. 26 (1991) 340–350

[6] Newcomb, P., Kotik, G.: Reengineering procedural into object-oriented
systems. In: WCRE ’95: Proceedings of the Second Working Conference
on Reverse Engineering, Washington, DC, USA, IEEE Computer Society
(1995) 237

[7] Gall, H., Klösch, R.: Program transformation to enhance the reuse poten-
tial of procedural software. In: SAC ’94: Proceedings of the 1994 ACM
symposium on Applied computing, New York, NY, USA, ACM (1994)
99–104

[8] Jacobson, I., Lindström, F.: Reengineering of old systems to an object-
oriented architecture. SIGPLAN Not. 26 (1991) 340–350

[9] Jr., W.C.D., Nackman, L.R., Gracer, F.: Saving a legacy with objects.
In: OOPSLA. (1989) 77–83

26

Istvan Gergely Czibula and Gabriela Czibula - Unsupervised
transformation of procedural programs to object-oriented design

[10] Hausler, P.A., Pleszkoch, M.G., Linger, R.C., Hevner, A.R.: Using func-
tion abstraction to understand program behavior. IEEE Softw. 7 (1990)
55–63

[11] Gall, H., Klosch, R.: Finding objects in procedural programs: an alter-
native approach. In: WCRE ’95: Proceedings of the Second Working
Conference on Reverse Engineering, Washington, DC, USA, IEEE Com-
puter Society (1995) 208

[12] Yeh, A.S., Harris, D.R., Reubenstein, H.B.: Recovering abstract data
types and object instances from a conventional procedural language. In:
WCRE ’95: Proceedings of the Second Working Conference on Reverse
Engineering, Washington, DC, USA, IEEE Computer Society (1995) 227

[13] Simon, F., Loffler, S., Lewerentz, C.: Distance based cohesion measuring.
In: Proceedings of the 2nd European Software Measurement Conference
(FESMA), Technologisch Instituut Amsterdam (1999)

[14] Bieman, J.M., Kang, B.K.: Measuring design-level cohesion. Software
Engineering 24 (1998) 111–124

[15] Jensen, K., Wirth, N., Mickel, A.B., Miner, J.F.: Pascal User Manual
and Report: ISO Pascal Standard. Springer (1991)

[16] Newcomb, P., Kotik, G.: Reengineering procedural into object-oriented
systems. Proceedings of WCRE ’95, USA, IEEE Comp. Soc. (1995) 237

[17] Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific
Languages. The Pragmatic Bookshelf, Raleigh (2007)

[18] Kohonen, T.: The self-organizing map. Neurocomputing 21 (1998) 1–6

[19] O’Reilly, R.C.: Generalization in interactive networks: The benefits of
inhibitory competition and hebbian learning. Neural Computation 13
(2001) 1199–1241

Istvan Gergely Czibula and Gabriela Czibula
Department of Compuer Science
Babeş-Bolyai University
1, M. Kogalniceanu Street, Cluj-Napoca, Romania
email:{istvanc, gabis}@cs.ubbcluj.ro

27

