ON A CERTAIN DIFFERENTIAL SANDWICH THEOREM ASSOCIATED WITH A NEW GENERALIZED DERIVATIVE OPERATOR

Adriana Cătaș and Emilia Borșa

ABSTRACT. The purpose of this paper is to derive certain subordination and superordination results involving a new differential operator. By means of the new introduced operator, $I^m(\lambda, \beta, l)f(z)$, for certain normalized analytic functions in the open unit disc, we establish differential sandwich-type theorems. These results extend corresponding previously known results.

2000 Mathematics Subject Classification: 30C80, 30C45.

Keywords:differential subordination, differential superordination, dominant, differential operator, subordinant.

INTRODUCTION AND DEFINITIONS

Let $\mathcal{H}(U)$ be the class of analytic functions in the open unit disc

$$U = \{ z \in \mathbb{C} : |z| < 1 \}.$$

For $a \in \mathbb{C}$ and $n \in \mathbb{N}$ let $\mathcal{H}[a, n]$ be the subclass of $\mathcal{H}(U)$ consisting of functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots$$

Let

$$\mathcal{A}_n = \{ f \in \mathcal{H}(U), \ f(z) = z + a_{n+1} z^{n+1} + \dots \}$$

with $\mathcal{A}_1 := \mathcal{A}$.

With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in U. Then we say that the function f is subordinate to g, written symbolically as

$$f \prec g$$
 or $f(z) \prec g(z), z \in U$

if there exists a Schwarz function w analytic in U such that f(z) = g(w(z)), $z \in U$. In particular, if the function g is univalent in U, the above subordination is equivalent to f(0) = g(0) and $f(U) \subset g(U)$.

Let $p, h \in \mathcal{H}(U)$ and let $\psi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$.

If p and $\psi(p(z), zp'(z), z^2p''(z); z)$ are univalent and if p satisfies the second order differential superordination

$$h(z) \prec \psi(p(z), zp'(z), z^2 p''(z); z), \quad z \in U$$
 (0.1)

then p is a solution of the differential superordination (0.1). If f is subordinate to g, then g is superordinate to f.

An analytic function q is called a subordinant of the differential superordination, or more simply a subordinant if $q \prec p$ for all p satisfying (0.1). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (0.1) is said to be the best subordinant. The best subordinant is unique up to a rotation of U. Recently Miller and Mocanu [7] obtained conditions on h, q and ψ for which the following implication holds:

$$h(z) \prec \psi(p(z), zp'(z), z^2 p''(z); z) \Rightarrow q(z) \prec p(z), \quad z \in U.$$

In order to prove our subordination and superordination results, we make use of the following definition and lemmas.

Definition 1 [7] Denote by Q, the set of all functions f that are analytic and injective on $\overline{U} - E(f)$, where

$$E(f) = \{\zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U - E(f)$.

Lemma 1 [8] Let the function q be univalent in the unit disc U and θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set

$$Q(z) = zq'(z)\phi(q(z)) \quad and \quad h(z) = \theta(q(z)) + Q(z).$$

Suppose that

(1)
$$Q(z)$$
 is starlike univalent in U and
(2) Re $\left\{\frac{zh'(z)}{Q(z)}\right\} > 0$ for $z \in U$.
If p is analytic with $p(0) = q(0), p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z))$$

then

$$p(z) \prec q(z)$$

and q is the best dominant.

Lemma 2 [4] Let q be convex univalent in the unit disc U and ν and φ be analytic in a domain D containing q(U). Suppose that (1) Re $\left\{ \frac{\nu'(q(z))}{\varphi(q(z))} \right\} > 0$ for $z \in U$ and (2) $\psi(z) = zq'(z)\varphi(q(z))$ is starlike univalent in U.

If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$ with $p(U) \subseteq D$ and $\nu(p(z)) + zp'(z)\varphi(p(z))$ is univalent in U and

$$\nu(q(z)) + zq'(z)\varphi(q(z)) \prec \nu(p(z)) + zp'(z)\varphi(p(z))$$

then

$$q(z) \prec p(z)$$

and q is the best subordinant.

2. Main results

Definition 2 Let the function f be in the class \mathcal{A}_n . For $m, \beta \in \mathbb{N}_0 = \{0, 1, 2, ...\}, \lambda \ge 0, l \ge 0$, we define the following differential operator

$$I^{m}(\lambda,\beta,l)f(z) := z + \sum_{k=n+1}^{\infty} \left[\frac{1+\lambda(k-1)+l}{1+l}\right]^{m} C(\beta,k)a_{k}z^{k}$$
(0.2)

where

$$C(\beta,k) := \binom{k+\beta-1}{\beta} = \frac{(\beta+1)_{k-1}}{(k-1)!}$$

and

$$(a)_n := \begin{cases} 1, & n = 0\\ a(a+1)\dots(a+n-1), & n \in \mathbb{N} = \mathbb{N}_0 - \{0\} \end{cases}$$

is Pochhamer symbol.

Using simple computation one obtains the next result.

Proposition 1 For $m, \beta \in \mathbb{N}_0, \lambda \ge 0, l \ge 0$

$$(l+1)I^{m+1}(\lambda,\beta,l)f(z) = (1-\lambda+l)I^m(\lambda,\beta,l)f(z) + \lambda z(I^m(\lambda,\beta,l)f(z))' \quad (0.3)$$

and

$$z(I^m(\lambda,\beta,l)f(z))' = (1+\beta)I^m(\lambda,\beta+1,l)f(z) - \beta I^m(\lambda,\beta,l)f(z).$$
(0.4)

Remark 1 Special cases of this operator includes the Ruscheweyh derivative operator $I^0(1,\beta,0)f(z) \equiv D_\beta$ defined in [9], the Sălăgean derivative operator $I^m(1,0,0)f(z) \equiv D^m$, studied in [10], the generalized Sălăgean operator $I^m(\lambda,0,0) \equiv D^m_\lambda$ introduced by Al-Oboudi in [1], the generalized Ruscheweyh derivative operator $I^1(\lambda,\beta,0)f(z) \equiv D_{\lambda,\beta}$ introduced in [6], the operator $I^m(\lambda,\beta,0) \equiv D^m_{\lambda,\beta}$ introduced by K. Al-Shaqsi and M. Darus in [3] and finally the operator $I^m(\lambda,0,l) \equiv I_1(m,\lambda,l)$ introduced in [5].

The main object of the present paper is to find sufficient conditions for certain normalized analytic functions f to satisfy

$$q_1(z) \prec \frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \prec q_2(z),$$

where $m, \beta \in \mathbb{N}_0, \lambda \ge 0$ and q_1, q_2 are given univalent functions in U. Also, we obtain the number of known results as their special cases.

Theorem 1 Let $m, \beta \in \mathbb{N}_0$, $\lambda > 0$ and q be convex univalent in U with q(0) = 1. Further, assume that

$$\operatorname{Re} \left\{ \frac{2(\delta + \alpha)q(z)}{\delta} + 1 + \frac{zq''(z)}{q'(z)} \right\} > 0.$$

$$(0.5)$$

Let

$$\psi(m,\lambda,\beta,\delta,\alpha;z) = \frac{\delta[1-\lambda(1+\beta)+l]}{\lambda} \cdot \frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} +$$

$$+ \frac{\delta\lambda(\beta+1)(\beta+2)}{l+1} \cdot \frac{I^m(\lambda,\beta+2,l)f(z)}{I^m(\lambda,\beta,l)f(z)} +$$

$$+ \frac{\delta(1+\beta)[1-\lambda(\beta+2)+l]}{l+1} \cdot \frac{I^m(\lambda,\beta+1,l)}{I^m(\lambda,\beta,l)} +$$

$$+ \left[\alpha + \delta\left(1 - \frac{l+1}{\lambda}\right)\right] \left(\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)}\right)^2.$$

$$559$$
(0.6)

If $f \in \mathcal{A}_n$ satisfies

$$\psi(m,\lambda,\beta,\delta,\alpha;z) \prec \delta z q'(z) + (\delta + \alpha)(q(z))^2 \tag{0.7}$$

then

$$\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} \prec q(z)$$

and q is the best dominant.

Proof. Define the function p(z) by

$$p(z) = \frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)}, \quad z \in U.$$
(0.8)

Then the function p(z) is analytic in U and p(0) = 1.

Therefore, by making use of (0.3) and (0.4) we have

$$\frac{\delta[1-\lambda(1+\beta)+l]}{\lambda} \cdot \frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^{m}(\lambda,\beta,l)f(z)} + (0.9)$$

$$+ \frac{\delta\lambda(\beta+1)(\beta+2)}{l+1} \cdot \frac{I^{m}(\lambda,\beta+2,l)f(z)}{I^{m}(\lambda,\beta,l)f(z)} + \frac{\delta(1+\beta)[1-\lambda(\beta+2)+l]}{l+1} \cdot \frac{I^{m}(\lambda,\beta+1,l)}{I^{m}(\lambda,\beta,l)} + \left[\alpha+\delta\left(1-\frac{l+1}{\lambda}\right)\right] \left(\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^{m}(\lambda,\beta,l)f(z)}\right)^{2} = \delta z p'(z) + (\delta+\alpha)(p(z))^{2}.$$

By using (0.9) in (0.7) we get

$$\delta z p'(z) + (\delta + \alpha)(p(z))^2 \prec \delta z q'(z) + (\delta + \alpha)(q(z))^2.$$

By setting $\theta(w) = (\delta + \alpha)w^2$ and $\phi(w) = \delta$ are analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq 0$. Hence the result follows by an application of Lemma 1. \Box

Remark 2 Similar results were obtained earlier in [6] for the operator defined in [2].

Let

$$q(z) = \frac{1+Az}{1+Bz}, \quad -1 \le B < A \le 1$$

in Theorem 1. One obtains the following result.

Corollary 1 Let $m, \beta \in \mathbb{N}_0$, $\lambda > 0$. Assume that (0.5) holds. If $f \in \mathcal{A}_n$, then, differential subordination

$$\psi(m,\lambda,\beta,\delta,\alpha;z) \prec \frac{\delta(A-B)z}{(1+Bz)^2} + (\delta+\alpha) \left(\frac{1+Az}{1+Bz}\right)^2 \tag{0.10}$$

implies

$$\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} \prec \frac{1+Az}{1+Bz}$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Corollary 2 Let $m, \beta \in \mathbb{N}_0$, $\lambda > 0$. Assume that (0.5) holds. If $f \in \mathcal{A}_n$, then differential subordination

$$\psi(m,\lambda,\beta,\delta,\alpha;z) \prec \frac{2\delta z}{(1-z)^2} + (\delta+\alpha)\left(\frac{1+z}{1-z}\right)^2$$
(0.11)

implies

$$\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} \prec \frac{1+z}{1-z}$$

and $\frac{1+z}{1-z}$ is the best dominant.

Corollary 3 Let $m, \beta \in \mathbb{N}_0$, $\lambda > 0$, $0 < \mu \leq 1$. Assume that (0.5) holds. If $f \in \mathcal{A}_n$, then differential subordination

$$\psi(m,\lambda,\beta,\delta,\alpha;z) \prec \frac{2\delta\mu z}{(1-z)^2} \left(\frac{1+z}{1-z}\right)^{\mu-1} + (\alpha+\delta) \left(\frac{1+z}{1-z}\right)^{2\mu} \tag{0.12}$$

implies

$$\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\mu}$$

and $\left(\frac{1+z}{1-z}\right)^{\mu}$ is the best dominant.

Theorem 2 Let q be convex univalent in U with q(0) = 1. Assume that

Re
$$\left\{\frac{2(\delta+\alpha)q(z)q'(z)}{\delta}\right\} > 0.$$
 (0.13)

Let $f \in \mathcal{A}$, $\frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \in \mathcal{H}[q(0), 1] \cap Q.$ If function $\psi(m, \lambda, \beta, \delta, \alpha; z)$, given by (0.6), is univalent in U and

$$(\delta + \alpha)(q(z))^2 + \delta z q'(z) \prec \psi(m, \lambda, \beta, \delta, \alpha; z)$$
(0.14)

then

$$q(z) \prec \frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)}$$

and q is the best subordinant.

Proof. Theorem 2 follows by using the same technique to prove Theorem 1 and by an application of Lemma 2. \Box

By using Theorem 2 we obtain the following corollaries.

Corollary 4 Let $q(z) = \frac{1+Az}{1+Bz}$, $-1 \le B < A \le 1$, $f \in \mathcal{A}$ and $\frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \in \mathcal{H}[q(0), 1] \cap Q.$

Assume that (0.13) holds. If

$$(\delta + \alpha) \left(\frac{1 + Az}{1 + Bz}\right)^2 + \frac{\delta(A - B)z}{(1 + Bz)^2} \prec \psi(m, \lambda, \beta, \delta, \alpha; z)$$
(0.15)

then

$$\frac{1+Az}{1+Bz} \prec \frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)}$$

and $\frac{1+Az}{1+Bz}$ is the best subordinant.

Corollary 5 Let
$$q(z) = \frac{1+z}{1-z}$$
, $f \in \mathcal{A}$ and

$$\frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)} \in \mathcal{H}[q(0),1] \cap Q.$$

Assume that (0.13) holds. If

$$\frac{2\delta z}{(1-z)^2} + (\delta + \alpha) \left(\frac{1+z}{1-z}\right)^2 \prec \psi(m,\lambda,\beta,\delta,\alpha;z)$$
(0.16)

then

$$\frac{1+z}{1-z} \prec \frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^m(\lambda,\beta,l)f(z)}$$

and $\frac{1+z}{1-z}$ is the best subordinant.

Corollary 6 Let $q(z) = \left(\frac{1+z}{1-z}\right)^{\mu}$, $0 < \mu \le 1$, $f \in \mathcal{A}$ and $\frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \in \mathcal{H}[q(0), 1] \cap Q.$

Assume that (0.13) holds. If

$$\frac{2\delta\mu z}{(1-z)^2} \left(\frac{1+z}{1-z}\right)^{\mu-1} + (\alpha+\delta) \left(\frac{1+z}{1-z}\right)^{2\mu} \prec \psi(m,\lambda,\beta,\delta,\alpha;z) \tag{0.17}$$

then

$$\left(\frac{1+z}{1-z}\right)^{\mu} \prec \frac{I^{m+1}(\lambda,\beta,l)f(z)}{I^{m}(\lambda,\beta,l)f(z)}$$

and $\left(\frac{1+z}{1-z}\right)^{\mu}$ is the best subordinant.

Combining the results of differential subordination and superordination we state the following Sandwich Theorems.

Theorem 3 Let q_1 and q_2 be convex univalent in U and satisfy (0.13) and

(0.5) respectively. If $f \in \mathcal{A}$, $\frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \in \mathcal{H}[q(0), 1] \cap Q$ and $\psi(m, \lambda, \beta, \delta, \alpha; z)$ given in

$$\delta z q_1'(z) + (\delta + \alpha) (q_1(z))^2 \prec \psi(m, \lambda, \beta, \delta, \alpha; z) \prec$$

$$\prec \delta z q_2'(z) + (\delta + \alpha) (q_2(z))^2,$$

$$(0.18)$$

then

$$q_1(z) \prec \frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \prec q_2(z)$$

and q_1 and q_2 are the best subordinant and best dominant respectively.

For $q_1(z) = \frac{1 + A_1 z}{1 + B_1 z}$, $q_2(z) = \frac{1 + A_2 z}{1 + B_2 z}$, where $-1 \le B_2 < B_1 < A_1 \le A_2 \le C_1 < C_2 < C$ 1 we have the following corollary

Corollary 7 If $f \in \mathcal{A}$, $\frac{I^{m+1}(\lambda, \beta, l)f(z)}{I^m(\lambda, \beta, l)f(z)} \in \mathcal{H}[q(0), 1] \cap Q$ and $\frac{\delta(A_1 - B_1)z}{(1 + B_1z)^2} + (\delta + \alpha) \left(\frac{1 + A_1z}{1 + B_1z}\right)^2 \prec \psi(m, \lambda, \beta, \delta, \alpha; z) \prec$ $\prec \frac{\delta(A_2 - B_2)z}{(1 + B_2 z)^2} + (\delta + \alpha) \left(\frac{1 + A_2 z}{1 + B_2 z}\right)^2.$

Hence $\frac{1+A_1z}{1+B_1z}$ and $\frac{1+A_2z}{1+B_2z}$ are the best subordinant and the best dominant respectively.

564

References

- Al-Oboudi, F.M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 27, 1429-1436, (2004).
- [2] Al-Shaqsi, K., Darus, M.: Differential subordination with generalized derivative operator. (submitted).
- [3] Al-Shaqsi, K., Darus, M.: On univalent functions with respect to ksymmetric points defined by a generalized Ruscheweyh derivatives operator. (submitted).
- [4] Bulboacă, T.: Classes of first order differential superordinations. Demonstratio Math. 35(2), 287-292, (2002).
- [5] Cătaş, A.: On certain class of *p*-valent functions defined by a new multiplier transformations. Proceedings Book of the International Symposium G.F.T.A., Istanbul Kultur University, Turkey, 241-250, (2007).
- [6] Darus, M., Al-Shaqsi, K.: Differential sandwich theorems with generalized derivative operator. Int. J. of Computational and Mathematical Sciences. Vol 2, No. 2 Spring, 75-78, (2008).
- [7] Miller, S.S., Mocanu, P.T.: Subordinants of differential superordinations.
 Complex Variables, Theory and Applications. 48(10), 815-826, (2003).
- [8] Miller, S.S., Mocanu, P.T.: Differential Subordinations: Theory and Applications. Pure and Applied Mathematics. No. 225, Marcel Dekker, New York, (2000).

565

- [9] Ruscheweyh, S.: New criteria for univalent functions. Proc. Amer. Math. Soc. 49, 109-115, (1975).
- [10] Sălăgean, G. Şt.: Subclasses of univalent functions. Lecture Note in Math. (Springer-Verlag), 1013, 362-372, (1983).

Adriana Cătaș and Emilia Borșa Department of Mathematics nd Computer Science Faculty of Sciences, University of Oradea 1 University Street, 410087 Oradea, Romania E-mail:*acatas@gmail.com, eborsa@uoradea.ro*

566